000144743 001__ 144743
000144743 005__ 20250923084421.0
000144743 0247_ $$2doi$$a10.20870/oeno-one.2024.58.2.7447
000144743 0248_ $$2sideral$$a139507
000144743 037__ $$aART-2024-139507
000144743 041__ $$aspa
000144743 100__ $$0(orcid)0000-0002-0730-6606$$aLópez, Ricardo$$uUniversidad de Zaragoza
000144743 245__ $$aThe remarkable effects of the non-volatile matrix of wine on the release of volatile compounds evaluated by analysing their release to the headspaces
000144743 260__ $$c2024
000144743 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144743 5203_ $$aSix Spanish wines with different wine-making styles were completely dearomatised and later reconstituted to their original volume with a standard volatile solution containing 15 wine aroma compounds with broad differences in physicochemical characteristics. The headspace composition of the reconstituted wines was evaluated using an automated dynamic headspace (DHS) method combined with thermal desorption (TD) and gas chromatography–mass spectrometry (GC–MS). This method provides a snapshot of the volatile profiles transferred to the headspace in non-equilibrium conditions. The results showed that the non-volatile matrix of the wine significantly affected the transference to the headspace of the 15 aroma compounds. Differences between wines for butanoic and hexanoic acids, DMS and vanillin are above factors 5, 4 or 3, respectively, while for ethyl acetate, ethyl decanoate, 3-methylbutan-1-ol, 2-phenylethan-1-ol or 4-ethylphenol are close to a factor 2. Only ethyl butanoate was uniformly transferred. The release of DMS was related to copper levels, while pH explained part of the release of fatty acids. However, most effects of volatility are difficult to explain. Results strongly indicate that a sample-specific correction for volatility is required to interpret the sensory effects of aroma volatiles.
000144743 536__ $$9info:eu-repo/grantAgreement/ES/AEI/PID2021-126031OB-C21$$9info:eu-repo/grantAgreement/ES/DGA/T29
000144743 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000144743 590__ $$a2.2$$b2024
000144743 592__ $$a0.556$$b2024
000144743 591__ $$aHORTICULTURE$$b15 / 45 = 0.333$$c2024$$dQ2$$eT2
000144743 593__ $$aHorticulture$$c2024$$dQ1
000144743 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b111 / 181 = 0.613$$c2024$$dQ3$$eT2
000144743 593__ $$aFood Science$$c2024$$dQ2
000144743 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144743 700__ $$aWen, Yan
000144743 700__ $$0(orcid)0000-0002-4353-2483$$aFerreira, Vicente$$uUniversidad de Zaragoza
000144743 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000144743 773__ $$g58, 2 (2024), [14 pp.]$$pOENO One$$tOeno One$$x2494-1271
000144743 8564_ $$s1248143$$uhttps://zaguan.unizar.es/record/144743/files/texto_completo.pdf$$yVersión publicada
000144743 8564_ $$s1895638$$uhttps://zaguan.unizar.es/record/144743/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144743 909CO $$ooai:zaguan.unizar.es:144743$$particulos$$pdriver
000144743 951__ $$a2025-09-22-14:35:48
000144743 980__ $$aARTICLE