000144769 001__ 144769
000144769 005__ 20240906111329.0
000144769 0247_ $$2doi$$a10.5565/PUBLMAT6822402
000144769 0248_ $$2sideral$$a139546
000144769 037__ $$aART-2024-139546
000144769 041__ $$aeng
000144769 100__ $$0(orcid)0000-0002-8276-5116$$aArtal Bartolo, Enrique$$uUniversidad de Zaragoza
000144769 245__ $$aCyclic coverings of rational normal surfaces which are quotients of a product of curves
000144769 260__ $$c2024
000144769 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144769 5203_ $$aThis paper deals with cyclic covers of a large family of rational normal surfaces that can also be described as quotients of a product, where the factors are cyclic covers of algebraic curves. We use a generalization of the Esnault–Viehweg method to show that the action of the monodromy on the first Betti group of the covering (and its Hodge structure) splits as a direct sum of the same data for some specific cyclic covers over P1.
This has applications to the study of Lˆe–Yomdin surface singularities, in particular to the action of the monodromy on the mixed Hodge structure, as well as to isotrivial fibered surfaces.
000144769 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E22-20R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-114750GB-C31/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/RYC2021-034300-I
000144769 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000144769 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144769 700__ $$0(orcid)0000-0003-1820-6755$$aCogolludo-Agustín, José Ignacio$$uUniversidad de Zaragoza
000144769 700__ $$0(orcid)0000-0002-6559-4722$$aMartín-Morales, Jorge$$uUniversidad de Zaragoza
000144769 7102_ $$12006$$2440$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Geometría y Topología
000144769 773__ $$g68, 2 (2024), 359-406$$pPubl. mat.$$tPublicacions Matematiques$$x0214-1493
000144769 8564_ $$s705846$$uhttps://zaguan.unizar.es/record/144769/files/texto_completo.pdf$$yVersión publicada
000144769 8564_ $$s1860821$$uhttps://zaguan.unizar.es/record/144769/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144769 909CO $$ooai:zaguan.unizar.es:144769$$particulos$$pdriver
000144769 951__ $$a2024-09-06-10:25:42
000144769 980__ $$aARTICLE