IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 18 July 2024, accepted 5 August 2024, date of publication 8 August 2024, date of current version 20 August 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3440828

== RESEARCH ARTICLE

Fast IEEE802.1Qbv Gate Scheduling Through
Integer Linear Programming

ALITZEL GALILEA TORRES-MACIAS “12, (Graduate Student Member, IEEE),
JUAN SEGARRA FLOR"“23, JOSE LUIS BRIZ VELASCO 23,

ANTONIO RAMIREZ-TREVINO !, (Member, IEEE),

AND HECTOR BLANCO-ALCAINE"“4

ICINVESTAV Unidad Guadalajara, Zapopan 45019, Mexico

2Departamento de Informética e Ingenieria de Sistemas, Universidad de Zaragoza, 50009 Zaragoza, Spain
3I3A Research Institute, Universidad de Zaragoza, 50009 Zaragoza, Spain

“Intel Deutschland GmbH, 85579 Neubiberg, Germany

Corresponding author: Alitzel Galilea Torres-Macias (alitzel.torres @cinvestav.mx)

This work was supported in part by the Ministerio de Ciencia, Innovacién y Universidades (MCIN)/Agencia Espafiola de Investigacion
(AEI)/10.13039/501100011033 under Grant PID2022-136454NB-C22; in part by the Department of Science, University and Knowledge

Society, Government of Aragén, Spain, under Grant TS8_23R; and in part by the CINVESTAYV, Mexico.

ABSTRACT Time-Sensitive Networking (TSN) is an in-development technology that enables predictability
over Ethernet or wireless networks. Network interfaces compliant with the IEEE 802.1Qbv standard provide
different queues/gates on each bridge egress port. In this way, a global network schedule can be set by
defining the opening and closing times (Gate Control List, GCL) for each gate. In this paper, we propose
a new method to schedule GCLs by dividing the problem into several subproblems. We use Weighted Fair
Queuing (WFQ) to set the ordering of frames, and then generate an Integer Linear Programming (ILP)
model to optimize the TSN scenario. Next, we assign gates to the scheduled windows, trying to ensure
frame isolation whenever possible. Our results show that we can schedule GCLs around 2 times faster than
previous studies and up to 5.5 orders of magnitude faster if we choose to obtain any valid solution instead of
the optimal one. In addition, we are able to schedule systems with utilization up to 85%, whereas previous
papers reach 65%. Moreover, our approach does not need to predefine the number of windows or gates,
as required by other methods.

INDEX TERMS 802.1Qbv, delay, GCL, ILP, jitter, real-time, scheduling, TAS, time-sensitive networking,

TSN.

I. INTRODUCTION

Time-Sensitive Networking (TSN) is a set of technologies
to guarantee precise synchronization and timeliness across
Ethernet and wireless networks. It is especially valuable
for real-time control applications, across industrial, energy,
or transportation domains, as it allows the deployment
of ultra-low latency traffic relying on standard IEEE
mechanisms. TSN provides traffic shaping and scheduling
mechanisms to guarantee the Quality of Service (QoS) for
different traffic types in a converged network.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shih-Wei Lin

The Time-Aware Shaper (TAS), defined in IEEE
802.1Qbv, allows the scheduling of egress traffic for an
end-station or bridge in different periodic slots. In order to
accomplish that, the frames for each traffic class are queued
in their egress queue. The transmission for each queue is
governed by the so-called gates. The opening and closing of
each gate follow a preconfigured periodic schedule known as
the Gate Control List (GCL). When a gate is opened, frames
from its respective queue are forwarded for transmission in
first-in first-out (FIFO) order, resulting in time-predictable
transmissions [1]. Fig. 1 illustrates an IEEE 802.1Qbv TAS,
which holds up to eight different queues. The configuration
of the TAS involves synchronization and priority assignment,

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

111239

https://orcid.org/0009-0009-6122-1484
https://orcid.org/0000-0003-1550-735X
https://orcid.org/0000-0001-5940-9837
https://orcid.org/0000-0003-3028-3446
https://orcid.org/0009-0006-7261-8215
https://orcid.org/0000-0003-1343-0838

IEEE Access

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

‘ Switching Fabric |

{ i i }
Queue 0 Queue 1 Queue 2 Queue 7
T AVB BE BE
GCL
t0: 01111111
l 1 l 11: 10000000
Sl a — t2: 01111111
Strict Priority Credit Based Tra:sfnr;::ion Tri;r;s::t?;on 13: 10000000
i t4: 01111111
el S Selection Algorithm .
Time-Aware Time-A Time-A Time-Aware t125: 10000000
Gate Gate Gate Gate 1126: REPEAT

[| | |
{

‘ Transmission Selection |

FIGURE 1. The TAS mechanism in a TSN bridge.

meeting real-time applications requirements such as ultra-low
latency or jitter. The practical result of a TSN scheduler is
the GCL entries to be deployed over the TAS of the network
nodes.

Time-aware traffic in TSN consists of periodic streams
with tight timing constraints regarding latency and jitter.
Scheduling time-aware traffic and generating the GCL entries
for the TAS is a pivotal aspect of TSN. However, computing
the schedules that coordinate the transmission times for
all frames along the network such that their real-time
requirements are met is a challenging task [2]. Ensuring
frame isolation can be all the more complex. Frame isolation
guarantees that frames from different streams never share
the same queue at the same time. Without it, the timing
of frames from a single stream can be altered by frames
from other streams, especially if those frames are larger,
shorter than expected, or lost altogether. Thus, the TSN
scheduling problem and its variations (such as joint routing,
GCL synthesis, queueing, multicasting, integration of other
traffic types, and dynamic reconfiguration) are an active area
of research and development.

Optimal approaches face the GCL synthesis problem
relying on Satisfiability Modulo Theories (SMT) [3], [4],
which require rather long analysis times. Other approaches
leverage heuristics to get valid schedules faster [5]. In this
study, we propose to use a mixed heuristic-optimal approach:
we divide the GCL synthesis problem into several sub-
problems in order to reduce its complexity and yet obtain
solutions as good as pure optimal approaches.

First, we calculate heuristically the order in which frames
should be transmitted, based on a Weighted Fair Queuing
(WFQ) policy [6], [7]. Then, we optimize the GCL synthesis
complying with the precalculated frame transmission order,
resorting to a Mixed Integer Linear Programming (MILP)
solver, which is faster than an SMT solver as a rule. Also,
our model automatically calculates parameters such as the
maximum number of windows (open-close periods) in the
GCLs, which, with other methods, must be known in advance.
Finally, we allocate gates to windows to obtain the resulting
schedule. In this last step, we ensure frame isolation whenever
possible. Our approach inherently considers best-effort (BE)

111240

traffic in the network. We also allow multicast (multiple
destinations over multiple paths), merge frames (frames go
over different paths and then join together), and end-to-end
delays longer than the stream period.

The contributions of this work are as follows:

1) A novel model for TSN scheduling problems with
heuristics and Mixed Integer Linear Programming
(MILP).

2) Outperforming similar methods [4] by a factor of about
2 times in finding the optimal schedule, and about
5.5 orders of magnitude faster if we choose to find a
valid schedule, even if it is not optimal.

3) Automatic computation of the maximum number of
windows to use in each gate.

4) Gate selection after scheduling, ensuring frame iso-
lation if possible, or scheduling non-isolated frames
otherwise.

5) BE traffic is considered inherently in the model.

6) Open optimization objectives.

7) Higher (more cases) and better (frame isolation)
schedulability than previous studies [5].

8) Zero-jitter results with our proposed optimization
objective.

We limit our approach in this paper to fixed paths, i.e., we do
not optimize the path in case there are alternative paths.

This paper is structured as follows. Sec. II provides an
overview of the most relevant related works in the context of
this study. Sec. III explains the system model and the problem
definition. Sec. IV presents our contribution: the solution
to the GCL synthesis problem by means of heuristics and
linear programming. Sec. V describes our experiments and
compares our results with those of existing models. Finally,
Sec. VI summarizes our conclusions.

Il. RELATED WORK

In this section, we gather the contributions that are closer to
our proposal. For recent and comprehensive surveys about
TSN scheduling approaches, we refer to [2] and [8].

Scheduling algorithms for TSN streams on the IEEE
802.1Qbv TAS fall into two categories: optimal and heuristic.
Optimal methods compute optimal schedules, if the schedule
exists. Otherwise, they prove the problem instance is
infeasible. Heuristic methods prioritize speed over optimality.
They cannot deduce whether a problem instance is infeasible,
nor are they guaranteed to find a solution if one exists.

In a seminal optimization approach, Satisfiability Modulo
Theories (SMT) are used to schedule time-aware streams [3].
They define stream and frame isolation as properties of a
schedule to prevent single-link failures. Nevertheless, the
GCL configuration is not obtained. The latter problem is
addressed in [4], mapping stream frames to transmission
windows. Here, the number of windows and gates is fixed per
egress port, limiting the number of GCL entries. Isolation is
used to avoid unconsidered events for a frame (such as getting
lost or being shorter than expected) to affect others (e.g.,
anticipated arrivals that increase jitter). The experimental

VOLUME 12, 2024

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

IEEE Access

results show that solving time increases exponentially with
the number of streams and predefined windows. Our proposal
avoids some of the drawbacks of this study and provides
faster scheduling times.

The process of transmitting packets as an SMT specifi-
cation is also formulated in [9], relaxing the constraint that
bridges must record the port controls for all packets. Since the
execution time of SMT solvers increases exponentially with
the problem size, the original specification is divided into
multiple Optimization Modulo Theories (OMT) specifica-
tions, whose execution time increases linearly as the number
of streams grows.

The authors in [10] present an ILP model and a heuristic
algorithm for no-wait scheduling of time-aware streams.
The model uses a binary variable for each combination of
two frames. Since the solving time increases as the number
of frames increases, they separate the problem into frame
sorting, stream tabulation (getting the initial offset), and
compaction to avoid gaps. They resolve each one using Tabu
Search and obviate both the number of gates and the number
of windows.

The heuristic approach in [10] is extended and outper-
formed in [11]. Here, the network is split into hierarchical
sub-networks to improve the scalability of schedule planning,
which consists of two parts. First, a cycle phase model is used
to isolate different traffic types in time. Second, a two-stage
approach: intra-level scheduling for communication within
one level, and inter-level scheduling for communication
between different levels of the hierarchy.

A different ILP model based on [3], is presented in [12].
They consider that the frame isolation constraint may be
a burden in finding a feasible schedule, so they propose a
hardware enhancement of a TSN bridge, which checks if the
device is about to send the correct frame as scheduled. If this
is not the case, the corresponding egress port remains idle
instead of sending a different frame from the queue.

Also, related to [3], the SMT model in [13] integrates
frame and stream isolation. They focus on the improvement of
QoS for the BE traffic with soft real-time requirements while
ensuring real-time guarantees for time-aware streams. The
study introduces three alternative objective functions (Max-
imization, Sparse, and Evenly Sparse), a set of constraints on
time-aware streams, and the notion of slack, which is a time
interval between the transmission of time-aware windows.
Since existing analytical schedulability analysis methods do
not provide support for lower-priority traffic, the proposed
solutions are evaluated using the NeSTiNg TSN simulation
tool, which is based on the OMNeT++/INET framework.
In our analytical proposal, we achieve a cleaner management
of slack/gaps between windows without enforcing such gaps,
although gap management itself is outside our scope.

Oftentimes there are time-aware streams with relatively
small periods within large hyperperiods. Such streams must
be scheduled multiple times per hyperperiod, requiring many
windows, and yielding GCLs longer than the available
hardware allows. This limitation is considered in [14]

VOLUME 12, 2024

for industrial scenarios, with constraints also based on
Satisfiability Modulo Theories (SMT). Instead of using the
hyperperiod as the GCL cycle time, they use a base period
less than or equal to the periods of streams, and then try to
schedule each stream on several of these GCL cycles.

A Genetic Algorithm (GA) is considered in [15] to
optimize a time-aware traffic schedule in TSN on a real
autonomous driving vehicle network as the use case.
A chromosome consists of messages (genes) to be scheduled
(ordered). A schedule is the order of messages arranged in
a chromosome. The fitness function considers end-to-end
delay, jitter, and bandwidth utilization for guard bands. The
chromosome length is the total number of frames transmitted
during the hyperperiod for all bridges in the network. There is
no evaluation data on rate-constrained and BE-related delays.
Slightly increasing the number and type of streams or nodes
would hamper the feasibility of the method due to the poor
scalability of the GA.

More recently, authors in [16] introduce a heuris-
tic algorithm to schedule large-scale problem instances
(2000 network nodes and more than 10000 streams). They
leverage the search in the space of partial schedules, guided
by discovered conflicts. Frames are scheduled one by one,
and if a conflict arises, all decisions are reverted up to
the conflicting frame. The experimental evaluation shows
that this algorithm outperforms existing schedulers on a
production line and an avionic dataset.

Authors in [5] introduce a heuristic scheduler for time-
aware traffic to be applied in runtime for online rescheduling.
The paper details the experimental setup with the LETRA
Evaluation Toolset, which includes network configurations,
network generators, HERMES scheduler, Constraint Pro-
gramming scheduler, and result comparison mechanisms. For
the experiments, they use a single-bridge network with three
nodes and a three-bridge network with nine nodes. Results
show that the time to calculate a schedule for both network
topologies is in the order of milliseconds. As far as we know,
this is the only work that studies the schedulability of the
proposed scheduler. Although our proposal is not designed
to be used in runtime, we compare our analysis time and
schedulability to this proposal.

Ill. SYSTEM MODEL AND PROBLEM DEFINITION

This section focuses on formalizing the problem addressed
in this work which, in general terms, tries to synthesize
the GCLs in a network so that the traffic meets the time
requirements established a priori.

Definition 1: A TSN system encompasses two elements:
a) Data traffic that must be transmitted subject to temporal
constraints, and b) A communications network composed
of end-stations (the sources and destinations of the traffic),
bridges, and connections between them. The IEEE 802.1Qbv
TAS must shape the traffic through the network honoring the
aforementioned constraints.

The communications network is represented by a directed
graph as follows.

111241

IEEE Access

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

Definition 2: The network topology is represented by the
digraph G = (V, £) [3], [4], where each vertex represents
a network element (either a bridge or an end-station), and
€ C V x V represents the set of physical unidirectional links
between each pair of connected nodes, e.g., the ordered pair
(a, b) € & corresponds to the physical connection from node
a € V (point-to-point source) to node b € V (point-to-point
destination). A bidirectional link can be represented as two
ordered pairs (a, b) and (b, a).

For each link (a, b) € £, an egress port in element a leads
to element b through this physical link. This means that b
identifies both the destination node and the egress port in a
used to reach b. In this paper, we indistinctly identify egress
ports with the destination nodes they are connected to.

The traffic is modeled as a set of streams where each stream
is a tuple with temporal attributes [3], [4], according to the
following definition.

Definition 3: The set of streams is S = {s;|s; is a stream}
and each stream is a 5-tuple s; = (R;, L;, T;, D;, J;) € S.
R: € & is the set of links (the path) traversed by all the frames
in this stream. L; is the length of each frame in the stream.
T; is the period of the stream, that is, the time between the
dispatch of each consecutive pair of frames. D; is the deadline
or maximum allowed end-to-end latency. J; is the maximum
allowed jitter.

R; describes the path in the net that the frames of the s;
stream follow. There exists (a,j) € R; such that a is the
source end-station (end-to-end source, or talker), and any
other link (r,s) € 'R; is reachable from a through other
links in R;. For unicast streams, R; is a chain of links
with a single end-to-end destination, or listener. In Multicast
streams, R; represents the branches of a tree with multiple
leaves (multiple listeners). Multipath streams (which reach
a given node by replicated frames from different paths to
provide fault tolerance) are also supported.

The final goal of a TAS scheduler is to synthesize the
GCL entries that shape network traffic, honoring the time
constraints of time-aware streams, and considering the delays
introduced by each node and link. The GCL entries determine
the opening and closing times of bridge gates. Thus, the
problem addressed in this work can be defined as follows.

Definition 4: Let be the elements of a TSN described
in Def. 1. The digraph in Def. 2 represents the network
topology. The set of 5-tuples in Def. 3 represents the time-
aware streams. The problem to solve consists of computing
a schedule establishing the opening and closing times of the
gates of the IEEE 802.1Qbv TAS in the network, subject to
the time constraints of each time-aware stream.

We take into account the following considerations and
assumptions in order to find a solution to this problem.

A. GCL PERIOD (HYPERPERIOD)

To calculate a schedule, we consider a hyperperiod that
corresponds to the gate cycle time (i.e., the scheduling period
of the GCL), computed as the least common multiple of the

111242

Schedule indicating
the times of opening
and closing of gates Gate GCL

The order of
S frames in links

— WFQ MILP

allocation

FIGURE 2. Proposed GCL synthesis scheme: WFQ (Sec. IV-A), MILP
(Sec. IV-B to IV-G), Gate allocation (Sec. IV-H).

periods of the streams:
T = lcm.(T) (1)

This means that each stream i will dispatch j = % frames
separated by T; over the hyperperiod 7. We define F; =

o,..., % — 1} as the set of frames for each stream.

We calculate the transmission time TransT ; of a frame i as
L; divided by the transmission speed of the physical network.
We also consider the propagation delay PropT (, , of a wave
in the physical link between a and b as calculated by the
Peer Delay Mechanism of the gPTP protocol [17]. Finally,
we consider a processing time ProcT j, at each node b which is
device-specific and, therefore, must be measured or provided
by the vendor.

Assumption 1: For simplicity, we assume that all frames
in a stream have the same length L; and, accordingly, the same
TransT ;.

Assumption 2: When the transmission of a frame from
a node a is completed, it will take a time PropT ;) to
propagate the frame up to node b. Next, it will require a
time ProcT for the frame to enter the state queued in the
corresponding egress port in node b.

IV. PROBLEM SOLUTION

We leverage heuristics for ordering frame transmissions and
for associating windows with gates. In this way, the remaining
problem can be stated as a MILP problem, and the process
of reaching a solution is simpler than in related approaches
that solve the whole stream scheduling problem using SMT
(e.g., [3], [4], [13]). Additionally, we do not restrict the solver
to use a predefined number of windows or gates and do
assume that BE traffic will be present in the system. Fig. 2
depicts our procedure for CGL synthesis.

A. FRAME ORDERING

One of the subproblems to solve when finding a schedule in a
TSN system is to decide the order in which frames of different
streams are transmitted through the same physical link.

We propose to order the frames heuristically, before
computing a schedule of the system. Specifically, we order
the frames according to a speculative application of Weighted
Fair Queueing (WFQ) [6], [7]. That is, for each frame,
we calculate the time it should reach each node in its path,
and how long it should take to complete its corresponding
transmission. Then, we use this completion value to order the
frames traversing each egress port of each node.

Alg. 1 applies WFQ calculations to set the transmission
order of frames. Lines 1 to 5 set the initial values for each
bridge/port: empty for the ordered list of frames (line 2),

VOLUME 12, 2024

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

IEEE Access

Algorithm 1 Calculate Speculative WFQ Completion Time
for Each Frame in Each Bridge/Port

Algorithm 2 Calculate the Number of Hyperperiods to
Consider in the Analysis

Ensure: Ordered set of frames WFQ*? traversing each
bridge/port (a, b) € £.
1: for all (a, b) € £ do

2 WFQW@D ¢
3. weightSum,) <0
4. foralls; € S,(a,b) e R> do
5: weightSumy, ;) < weightSum,) + weight;
6: foralls; € S do
7. forallj € F; do
8: ready < j - T;
9: for all (a, b) € R; do
10: hops < hopsToNode((a, b), R;)
P weight;
11: transmission < hops - TransT; - Wuml(a_b)
12: propagation <— hops - PropT (, 1,
13: processing <— hops - ProcT),
14: ﬁnf‘jb) <« ready + transmission + propagation +
processing
is: WFQ@H « WFQ@b y ﬁnl?j:b)
16: for all (a, b) € £ do ’

sort(WFQ(“’b))

~

and the sum of the weights of the streams traversing this
bridge/port (lines 3 to 5). Then, for each stream (line 6)
and frame (line 7), we set the dispatch time (line 8) and
then calculate the time upon which perform the ordering.
For each traversed bridge/port (line 9), several components
of the final time are calculated. Line 10 calculates the
number of hops from the talker to the current bridge
(function not detailed). Line 11 computes the transmission
time component, considering the weights of the streams.
Lines 12 and 13 compute the propagation and processing time
components. Line 14 computes the transmission completion
time. Line 15 adds this time element to the list. This time
element also contains the stream and frame identifiers. Once
the time for all frames has been added for each bridge/port
(line 16), the time list is sorted by completion time (line 17).
If several frames have the same completion time, they are
sorted by their stream identifier.

B. MILP AND MODEL CONSTRAINTS
In this section, we specify the main variables and constraints
in our model.

1) STREAM OFFSET

The transmission start of a stream i can be delayed by an
offset; up to its period. The following constraint allows the
solver to accommodate the dispatch of the frames of the
different streams during the stream period 7;:

VsieS 0<offset; <T; 2)

2) FRAME QUEUED AT TALKER
A frame j of stream i is queued in the egress port of
its source end-station (node first; and port/destination b,

VOLUME 12, 2024

Ensure: Number of hyperperiods N to consider
1: maxDelay < 0
2: for alls; € S do
3: maxDelay <— max(maxDelay, T + D;)
4 N <« {max?elay

(first;, b) € R;) at its corresponding period plus the stream
offset:

VsieS,jeFi QMeuedEﬁm’"b) =j-T;+ offset; (3)

The queued variables in bridges are defined in Sec. IV-B5.

3) FRAME TRANSMISSION START
Each frame starts its transmission after it has been queued:

(a,b)
e

i, J

Vs;eS, je Fi,(a,b) eR; start(‘j-’b) > queued
@

4) FRAME TRANSMISSION COMPLETION
Each frame in stream i completes its transmission after a time
TransT ; since its transmission starts:

Vs;eS,jeF;, (a,b) e R;
(a,b)

complete; i = startl(.’(;-’b) + TransT ; 5)

5) FRAME QUEUED AT BRIDGE / NODE ORDER IN PATH
This constraint provides the queued variables in bridges and
also the transmission sequence of any particular frame along
its path R;:

Vsl‘ S S,]E -7:1', (avb)’(bsc) € Ri
queued g,};’c) = completegflj’b) + PropT (,) + ProcT)
(6)

6) FRAME ORDER IN A STREAM

The next constraint sets the transmission order for the frames
of a single stream i. At any one bridge/port (a, b), the
transmission of a frame j + 1 may start after the transmission
of frame j completes:

Vs; €8, j,j+1eF, (a,b) e R;

b) < start(.”’b) 7)

completeﬁ‘;’ P+

7) CALCULATION OF TRANSMISSION TIMES IN/BEYOND T

All frames are transmitted from their source end-station
before 7. However, they may traverse bridges and arrive at
destinations beyond T, e.g., when the end-to-end delay is
greater than the period, or when the stream is scheduled to
start after a large enough offset. In the worst case, a source
end-station may complete the transmission of its last frame
at time 7. Therefore, we need to compute the number of

111243

IEEE Access

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

hyperperiods N amenable to hold all the traffic sent during
the first hyperperiod (Alg. 2).

A schedule repeats every T, therefore, any event beyond T’
must also be considered inside 7'. That is, an event occurring
at, say, T + 2, will be scheduled at 0 + 2, T + 2, 2T + 2, and
so on, as shown in Fig. 3. In other words, it is not relevant the
absolute time of the event, but its relative time, or offset, with
respect to T'.

<-- offset --»

Iy NN

Talker

Listener

0 T 2T

FIGURE 3. Transmission of a frame started after a large offset.

The constraints exposed so far can take values beyond
T because we use the absolute time in their formulation.
However, we also need relative values for our start variables.
Essentially, we need to calculate the offset of each starting
transmission with respect to the start of the hyperperiod:

(a,b)
i.j

(a,b)

startOffset = start; ; mod T ®)

Since the function modulo is not linear, it cannot be used
in an ILP solver. Still, we can explicitly unroll the starting
transmission time as an offset plus a number of T's:

start =startOffset+T +---+T, ke {0,...,N—1} (9)
——
k

Upon the previous idea, we can now set the following
constraints:

Vs;ieS,jeF;, (a,b) e Ri, ke{0,...,N—1}

N—-1
start;aj’b) = startOﬂsetEflj’b) + Z k- T - periody ﬁj’b)
k=0
(10)

periody Eflj’b) are binary variables indicating the hyperperiod &
during which frame j of stream i in bridge a and port b is
transmitted: hyperperiod O (periodp = 1), hyperperiod 1
(period; = 1), and so on. A given frame is transmitted just
once through each link along its route. Therefore, one and

only one of each periody:” may be 1:

i.j
VsieS,jeF, (ab)yeRi ke{0,...,N—1}

N-1
Zperiodkgf;’b) =1 (11)
k=0

C. FRAME TO WINDOW ASSOCIATION

A queue is served in IEEE 802.1Qbv by opening that queue’s
gate (see Fig. 1). Each egress port in a bridge holds a
GCL. The GCL specifies when to open and close each gate

111244

during the schedulable hyperperiod 7. Frames in a queue
are dispatched as long as its corresponding gate window is
open (i.e., between the open and close instants). In order
to obtain a predictable/schedulable system, we constraint to
1 the number of open gates at a given time, following [3]
and [4]. These studies predefine the number of windows per
hyperperiod, introducing a constraint that makes the solver
fail to schedule a system when the solution requires more
windows than this predefined number. Besides, providing
large window values makes the analysis take a very long
time [4]. Unlike these approaches, we do not predefine the
number of windows in a period but calculate the maximum
number of potentially required windows. Thus, in addition
to its short computation time, our approach provides the
advantage of obtaining a bound for the number of windows
in the hyperperiod.

For a given bridge/port, this bound matches the number of
frames that traverse this bridge/port. Although some previous
works allow several frames to use the same window [3], [4],
we associate each frame with a single window. This simplifies
the model, and the previous number of potentially required
windows is now the exact number of required windows. This
is not a restriction in practice, because the scheduler may
deploy several windows consecutively to transmit several
frames consecutively.

Authors in [3] propose to optionally include a constraint
in their SMT formulation to enforce one frame per window
and separate these consecutive windows by T; to reduce
jitter to zero for that stream. We achieve a similar result
without constraining the open/close operations on windows,
which adds flexibility and increases the chances of finding a
solution.

Since we associate each frame with a particular window,
we apply the same notation used so far for frames to
the variables open and close associated with windows.
Recall that these variables are in the range [0, T'], as our
startOffset variables. Thus, a given window must open before
transmitting its associated frame, which must complete its
transmission before closing the window. However, it is no
use opening a gate without traffic, so we can safely equal
the opening time to the start of transmission and the closing
time to the end of transmission to simplify our model
further. We also consider possible time synchronization errors
by taking into account the maximum clock skew CIkErr,
which limits the theoretical transmission times to the range
[ClkErr, T — CIkErr].

VsieS,jeF, (a,b)eR;

b) (a,b)
l‘; — CIkErr (12)

startOffset|s” + TransT; j + CIKErr = close{S” (13)

openl(.c;.’ = startOffset

D. WINDOW CONSTRAINTS

In this section, we describe all the elements related to
the windows in the GCL. This includes the ordering and
separation of windows.

VOLUME 12, 2024

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

IEEE Access

1) WINDOWS AND GAPS

To include BE traffic in the resulting schedule, previous
studies require either to schedule predefined BE-devoted
windows as time-aware traffic windows [4], or to enforce
time intervals without time-aware windows (slack) [13].
Either solution might compromise schedulability even if the
actual time-aware traffic is schedulable. However, if neither
of these solutions is taken, the scheduled windows will cover
the whole hyperperiod even when there is no scheduled time-
aware traffic, preventing other traffic from using the network.
To address this problem, our model separates each pair of
windows with a gap. This gap is equivalent to a window
during which all the gates are closed. This construct allows
us to identify time intervals with no scheduled time-aware
traffic and inherently forces windows to be as tight as possible
((12) and (13)). These gaps could be used later to schedule
new streams without rescheduling the whole system, or as
windows for BE traffic, or they could simply be ignored to
reduce the GCL length. The concepts window, slack, and gap
are graphically differentiated in Fig. 4.

window window

» | [|

o | |

|gap gap=0 gap gap gap
> < <+

o | (] [

0 T

FIGURE 4. a) Time-aware windows covering the whole hyperperiod [4].
b) Fixed enforced slack [13]. c) Our proposed virtual gaps.

2) GENERAL GAP AND WINDOW CONSTRAINTS
We assume that each required window is followed by a gap,
which may have duration zero.

Vs;eS,jeF;, (a,b) eR;

open(a) < close(a b (14)
close = gapOpen(a b (15)
gapOpenl-’ j 5 gapClosei’ : a.b) (16)

3) WINDOW ORDERING CONSTRAINTS

Following the order obtained in Alg. 1 to schedule our
windows, each close instant of the predecessor (<) gap must
equal the opening of the successor window.

¥ (a,b) € £, fin"; D i
& WFQID fin®?) < i)
gapCloseEflj’b) = open(alb) (17)

VOLUME 12, 2024

4) INITIAL GAP CONSTRAINTS
We assume an initial gap at time 0, before the first window:

Y (a.b) € €. finls” € WFQP),

irst € n; < first
B first € WFQ?, fin§” < fi

0= mlttalGapOpen(”’h) (18)
initialGapOpen'“?) < initialGapClose'®? (19)
initialGapClose'®? = open](cf’rf;) (20)

5) LAST GAP CONSTRAINTS
Since the GCL restarts at time 7', the last gap must be closed
exactly at T:
V(a,b) e E,ﬁngf;’b) € WFQ@b),
3 last € WFQ“Y) | last <finl(.3.’b)
ol =T @1)

last

gapClose

E. CALCULATION OF GLOBAL METRICS

We perform the following calculations to optimize and bound
global metrics.

1) DELAY COMPUTATION

Vs;eS
1
avgDelay; = |?l Z delay; ; (22)
systemMaxDelay > maxDelay; (23)
Vs;eS,jeF;
maxDelay; > delay; (24)
delay; ; = complete(” last) _ pe dymm by
PropT (4 jasr) + ProcT jug (25)
2) JITTER COMPUTATION
Vs, €S
systemlJitter > jitter; (26)
Vs;eS, jeF;
jitter; j > avgDelay; — delay; 27
Jitter; j > delay; j — avgDelay; (28)
jitter; > jitter; j (29)
3) GAP COMPUTATION
systemGap = Z gap(“’b) (30)
(a,b)e&
VY(a,b)e&
gap'® b= = initialGapClose'® initialGapOpen(a’b) +

Z Z gapClose(a) gapOpen(a b (31)
s;€S jeF;

Other parameters could be computed in a similar way, such
as the longest gap.

111245

IEEE Access

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

F. END-TO-END CONSTRAINTS
To limit the predefined delay and jitter in each stream, the
following constraints are required:

Vs;eS
maxDelay; < D; (32)
Jitter; < J; (33)

G. OBJECTIVE FUCTION

The objective function can be adjusted to specific problems
using the previous constraints. As a generic objective
function, we propose to minimize the average delay of
all streams in the system. Accordingly, we formulate the
following objective function and problem statement:

min: Zangelay,-
s;eS
subject to: (2) to (7) and (10) to (33) (34)

We use this objective in our experiments.

H. GATE ALLOCATION

IEEE802.1Qbv defines 8 queues/gates for 8 traffic classes
(see Fig. 1). As a rule, the number of gates should not
be a problem, because a correct scheduling implies few
queue requirements, and most of the queues often remain
unoccupied. Thus, most previous studies, e.g., [3], [4], do not
fix traffic classes to frames along the whole path but allow
each frame to switch its associated traffic class identifier
at bridges. In practice, this means that each stream can be
isolated from the other streams, even when there are more
streams than queues, as long as frames of different streams
are not driven to the same queue at the same time.

The constraints formulated so far provide no limitation on
the number of gates (queues) per bridge egress port. In this
way, the problem becomes much simpler. Nevertheless,
completing the schedule requires computing the number of
required gates and obtaining a window-to-gate allocation [3],
[4]. Recall that each window transmits a single frame
according to our model. Thus, gate selection must consider
the queued and complete times of frames along with the
stream they belong to. Alg. 3 performs such computation.

For each bridge/port (line 1), we obtain the set of frames
traversing this bridge/port (lines 2 to 6), along with their
queue times and transmission completion times. The gate
identifier is initially set to —1 (line 6). This set is, then, sorted
by the queued time (line 7). Also, we initialize the lastgate
variable to —1 to state that it is still invalid (line 8). Afterward,
for all frames in the set of frames traversing this bridge/port
(line 9), we analyze the frames that have been queued before
(lines 13 to 21) in the same bridge/port. For each frame
(lines 9 and 10) we take note (lines 17 and 21) of the frames
previously queued but not yet transmitted (lines 13 to 15),
that is, the frames which are queued at the same time. We also
check whether any of these frames belong to the same stream
(line 18) so that we can use the same queue (line 19).

111246

Algorithm 3 Assign a Gate for Each Frame/Window

Ensure: V (a,b) € &, a set frames“? whose elements are
tuples (stream, frame, queued, complete, gate) contain-
ing the queue/gate assigned to the corresponding frame
(from queued to complete). Recall that each frame is
transmitted in its own window. A warning is printed if
frame isolation is not possible.
for all (a, b) € £ do

1:
2 frames? «— ¢
3 for all s; € S do
4: if (a, b) € R; then
5: forallj € F; do
6 frames@-?) <« frames@?) u
{i,], queuedﬁflj‘b), completegf;fb), —1)}
7. sort-by-queued(frames®?)
8: lastgate < —1
9: fork < 1 to |frames'“?| do
10: current <— frameska’
11: usedGates < ()
12: queuedStreams <— ()
13: for! < k—1to1step—1do
. a,b)
14: previous < frames,
15: if previous.complete > current.queued then
16: if previous.stream ¢ queuedStreams then
17: queuedStreams < queuedStreams U
{previous.stream}
18: if previous.stream = current .stream then
19: gateloReuse < previous.gate
20: else
21: usedGates <« usedGates U
{previous.gate}
22: if current .stream € queuedStreams then
23: if gateToReuse € usedGates then
24: print warning: current.stream not isolated
25: current.gate <— gateToReuse
(a.b)
26: frames; """ < current
27: else
28: if |usedGates| < AVAILABLE _GATES then
29: newGate <« (lastGateUsed 4+ 1)
mod AVAILABLE _GATES
30: while newGate € usedGates do
31: newGate <~ (newGate + 1)
mod AVAILABLE _GATES
32: else
33: print warning: current.stream not isolated
34: newGate <« (lastGateUsed + 1)
mod AVAILABLE _GATES
35: lastGateUsed < newGate
36: current.gate <— newGate
(a,b)
37: frames; """ < current

Once all the frames previously scheduled have been checked,
we proceed to allocate a gate to the current frame/window.
If the frame belongs to a stream already queued, it is allocated
to the same gate (lines 22 and 25) and the frame information

VOLUME 12, 2024

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

IEEE Access

is updated (line 26). If not, a new gate should be used. If there
are free gates (line 28), we allocate the new gate according to a
Round Robin policy (lines 29 to 31). If all gates are occupied,
the new gate is also selected by Round Robin (line 34), but
line 33 prints a message warning that isolation is not possible
(this is also performed at lines 23 and 24). Then, the new gate
is set as the gate allocated to the current frame (line 36) and
its information is updated (line 37).

V. CASE STUDIES AND RESULTS

We rely on two metrics to test our approach: analysis time
and schedulability. To test the analysis time, we replicate
scenarios from [4], inspired by industrial use cases, and
compare our results. Scheduling the proposed streams is
costly, but schedulability is not a problem because the
network utilization is rather low. Nevertheless, we must also
verify that our approach does not fail to schedule high-
utilization scenarios because part of our analysis is heuristic.
To test the schedulability, we replicate scenarios from [5] and
compare our results. All our experiments assume a weight
of 1 for all streams when applying Alg. 1. Our algorithms
are programmed in Python, and we use Ip-solve version
5.5.2.5 as our MILP solver. The next sections extend on these
evaluations.

A. ANALYSIS TIME

To evaluate the analysis time of our approach, we replicate
the medium-sized network scenario in [4]. It consists of a
line topology for 10 bridges with 5 end-stations connected
to each bridge. All streams are unicast, with the sender
(talker) and the receiver (listener) chosen randomly, and
period T; randomly set to either 10 or 20 ms. The transmission
time of each frame is 13 s, assuming the maximum
Ethernet frame size on a 1 Gb/s network. In order to mimic
the replicated scenario [4], we assume propagation and
processing times of 0, and clocks with error 0. Our model
is able to consider non-zero values, though. Experiments
using this scenario in previous papers test 10, 20, 30,
40 and 50 streams, 2, 4, 8, 16 and 32 windows and
4 available gates, totaling 25 experiments [4]. Our model
automatically calculates the required windows and gates,
so our only experimental variable is the number of streams.
We perform 100 experiments for each number of streams,
totaling 500 experiments, to provide a wider analysis.

Fig. 5 shows the analysis time required for our proposal
to optimize the system. Each mark in the plot represents
a scenario. The x axis represents the number of frame
transmissions required in 7. For instance, a frame traversing
4 bridges would need its initial transmission from the cor-
responding end-station plus a transmission by each traversed
bridge, totaling 5 transmissions. The y axis shows the analysis
time required to optimize the system. In our experiments,
we optimize (34), that is, minimize the average delay of all
streams. Since this axis is logarithmic, we show horizontal
dotted lines at 1 minute, 1 hour, and 1 day. Finally, color
and shape represent the number of streams in the experiment.

VOLUME 12, 2024

100 200 300 400 500
Frame transmissions

Streams B 10 B 20 B 30 B9 40 B 50

FIGURE 5. Analysis time.

To show how points are distributed, we overlay a boxplot for
each number of streams. The scenarios in [4] do not specify
the number of frame transmissions in 7, but we estimate this
value from their frame instances, resulting approximately in
81, 161, 233, 299, and 396 frame transmissions for their 10,
20, 30, 40, and 50 streams experiments, respectively. These
values fit in the ranges shown in the x axis of Fig. 5 for
the corresponding streams. The analysis times required by
previous studies for these scenarios range from 100 ms to
above 40 hours (set as timeout), running the z3 solver on an
Intel(R) Core(TM) i7-2600 3.40GHz CPU [4]. On average,
our experiments are completed in a much shorter time on
an Intel(R) Core(TM) i7-10700 2.90GHz CPU. We use a
single core and require a small amount of RAM (around
14 MB). If we set the same 40-hour timeout, only one
out of our 500 experiments aborts, while one out of the
25 experiments aborted in [4]. Solving the model is the main
contribution to the global analysis time. The application of
our three algorithms, the generation of the model, and feeding
the solver with the model always takes 38 ms on average,
irrespective of the number of streams.

All our results achieve 0 jitter for the scheduled streams,
whereas previous studies require specific optimizations
(adding up much more analysis time) to reduce jitter [4].
Furthermore, the maximum number of gates required in
egress ports is very low, as expected: just 1 gate for 75%
of our experiments, 2 gates for 23%, and 3 gates for the
remaining 2% of our experiments. According to these results,
previous studies were unnecessarily over-dimensioning their
predefined number of gates [4].

We can still improve our analysis times, although they are
considerably lower than previous approaches. Often enough,
it is sufficient to obtain any schedule that satisfies the
requirements, instead of finding an optimal. Fig. 6 shows that

111247

IEEE Access

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

the analysis time plummets below 1.05 seconds if we stop
the solver when finding the first valid solution, for the same
scenarios considered in Fig. 5. The thickness of the layered
clusters in Fig. 6 relates to the number of iterations it takes
the solver to reach the solution.

1.00-

o

~

(4]
'

@
£
= S T
2 050 —
>
g e = 5
) i
| |
0.251 S
']
]
0.00-
100 200 300 400 500

Frame transmissions
Streams 10 20 = 30 + 40 50

FIGURE 6. Analysis time until first suitable scheduling.

Fig. 7 plots the maximum number of windows required
in the system, i.e., the length of the longest GCL, for
the same scenarios. Recall that previous works require
a predefined maximum number of windows to solve the
system [4], whereas our method calculates such maximum
automatically. The figure shows that some scenarios require
more than 30 windows, which exceeds the predefined value
used in previous papers [4]. Those scenarios might not be
schedulable under such limitation.

30-

8 [
L +H+ A+
5 " + o+
g + HEt
o . + o+ 4t
® n o
2 20- B mt R
<] = atom
'g - -
= NN H R
2 -
% A = m mam
© mu mE— - []
> " w4
EEE N
' -
10-
100 200 300 400 500

Frame transmissions
Streams 10 20 = 30 + 40 50
FIGURE 7. Maximum number of windows required in the system.

111248

In summary, these experimental results show that the
analysis times of our method are considerably shorter than
previous approaches, providing the best solution around
2 times faster [4]. Also, our resulting schedules yield no jitter
in the scenarios under test, whereas previous studies require
far more time to minimize jitter. Additionally, we can provide
a valid scheduling around 5.5 orders of magnitude faster if
we select the first valid solution found instead of the optimal
one. Further, we do not need to predefine a specific number
of gates/windows to use.

B. SCHEDULABILITY

We evaluate schedulability by performing experiments akin
to [5]. Their results are based on network utilization,
generally defined in real-time systems as the fraction of
time the system is used. They set a simple topology
consisting of three end-stations linked through a single
bridge. In this case, utilization is the fraction of time the
6 unidirectional 1 Gb/s links are in use. All streams are
unicast, with the sender (talker) and the receiver (listener)
chosen randomly. Periods are randomly set between 200 and
1000 ws, always multiple of 200 us, and the same values
are used for the maximum allowed end-to-end latency. The
transmission time for the frames of each stream is also
randomly set between 3 and 7 s, which would correspond
to frames between 500 and 1000 bytes approximately.
We assume that inter-frame spaces are included in the
frame transmission time, as in previous papers [4], [5]. The
utilizations previously tested are in the range from 10% to
90%. To cover this utilization range, we use scenarios ranging
from 30 to 240 streams; 5 scenarios with 30 randomized
streams, 5 scenarios with 31 randomized streams, and so on,
with a total of 1055 scenarios/experiments.

Before analyzing schedulability, let us consider the analy-
sis times until a valid schedule is found, as displayed in Fig. 8'
The x-axis shows the network utilization, covering a range
wider than previous studies [5]. As expected, some scenarios
with high utilization cannot be scheduled (x in the figure).
For the rest, the analysis time until a valid scheduling (not
necessarily the best one) is found is under 45 seconds. This is
around four orders of magnitude longer than the HERMES
results [5]. However, our goals are different. HERMES
focuses on obtaining a very fast heuristic scheduling with zero
or low jitter, whereas our method explores a much broader
solution space, and we can optimize the scheduling for any
desired metric. Also, our proposal provides frame isolation
whenever possible, as discussed below.

Fig. 8 also shows colors for the scheduled scenarios.
These colors indicate the number of gates required to achieve
frame isolation, i.e., to ensure that a frame does not affect
others. IEEE 802.1Qbv specifies 8 gates, shown in white in
Fig. 8. Lower gate requirements present reddish tones. On the
other hand, schedules requiring more than 8 gates/queues
to provide frame isolation are shown in bluish tints. These

IThese first solutions may not be the optimal ones, but we have verified
that all obtained solutions provide a schedule without jitter.

VOLUME 12, 2024

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

IEEE Access

2 X
XX
K
200 -
X Xx X
z
©
£
L
"
=
2 100
<
x X X XX

25 50 75 100
Utilization (%)

Scheduled x FALSE ¢ TRUE

5 10 15 20

Gates

FIGURE 8. Analysis time until first suitable scheduling.

schedules are also schedulable with just 8 gates if frame
isolation is relaxed (i.e., not guaranteed). Alg. 3 provides a
scheduling with frame isolation whenever possible. However,
to clearly see the extent of gate-sharing (bluish tones in
Fig. 8), we have run it with an AVAILABLE_GATES value
much higher than 8. As far as we know, no other method
yields a schedule with frame isolation when possible and
without frame isolation when not. In previous approaches,
frame isolation is either a requirement, and the method fails
if frames cannot be isolated [4], or not [5], and it never ensures
this property.

To quantify the scheduling capabilities of our proposal,
we group our experiments in steps of 5% in utilization and
test how many of these experiments have been effectively
scheduled (Fig. 9), as previous papers [5]. We include in
the figure results HSRJ3 and HSZRJ3 from the HERMES
method [5]. These policies employ 3 gates with reception
jitter and zero reception jitter, respectively, and they do not
provide frame isolation. In contrast, our proposal guarantees
frame isolation whenever possible, and our solutions always
yield zero jitter. We show our schedulability results with 3 and
8 gates with no jitter and frame isolation (ZRJ3I and ZRJ8I)
and our results with no jitter without frame isolation (ZRJ).

As shown in Fig. 9, we can schedule almost all scenarios
until a 75% utilization, and 50% of them with utilization of
85%, without frame isolation. In contrast, HERMES presents
a much lower scheduling factor, failing to schedule 50% of
scenarios with a 65% utilization when it allows jitter and 40%
utilization with zero jitter. With 3 gates and frame isolation,
our proposal achieves similar results to HERMES without
frame isolation. With 8 gates, frame isolation, and no jitter,
our results appear between the HERMES policies with and
without jitter (3 gates without frame isolation).

In summary, our schedulability results outperform pre-
vious works in the same conditions (frame isolation not

VOLUME 12, 2024

100- &% —S=S-2—-B_R -2 3
N Sm.g *R
N \
b \
0 ‘\
\ .
75 : E
\ .
8 \ \
=])
© .
g ¥ '
8 50- \ L]
O U \
Q< \ .
=] \ .
g . _
< \
o 1 L
D 25- \ '
\ \
“; 1
\ 1
\ n--R
\ .\>
0 M e - - N
25 50 75 100
Utilization (%)
HSRJ3 HSZRJ3 —=- ZRJ — ZRJ3I ZRJ8I
Frame isolation . Zero jitter ---- No.No --- No.Yes - - Yes.Yes

FIGURE 9. Schedulability.

guaranteed) [5]. Also, our approach generates schedules
without jitter in all our tested scenarios and tries to guarantee
frame isolation whenever possible.

VI. CONCLUSION

We propose a new scheduling method for TSN streams. Our
method leverages WFQ to set the ordering of frames and then
generates a MILP model to optimize the TSN scenario. Next,
we assign gates to each scheduled frame, guaranteeing frame
isolation whenever possible.

Our model is more versatile compared to previous
approaches [4], [5] because it does not require predetermined
windows/gates nor prefix frame isolation. We also encompass
end-to-end delays longer than the hyperperiod. Further, our
proposal inherently considers the existence of BE traffic and
computes the GCLs so that the gates devoted to time-aware
traffic remain open for just the indispensable time to forward
this traffic. Compared in time, we obtained better results than
equivalent proposals. Our method provides the best solution
around 2 times faster than previous studies [4]. Additionally,
our resulting schedules provide no jitter, whereas previous
studies require much more time to minimize jitter. Also,
we can provide a valid scheduling around 5.5 orders of
magnitude faster if we choose to get any valid solution instead
of the optimal one. Finally, our approach provides higher
schedulability than previous studies. We are able to schedule
systems with utilization up to 85%, whereas previous papers
reach 65% [5].

The implementation of our proposal can be found at
https://gitlab.com/uz-gaz/ilp-tsn-scheduler.

REFERENCES

[1] L.Zhao, P. Pop, and S. Steinhorst, “Quantitative performance comparison
of various traffic shapers in time-sensitive networking,” IEEE Trans.

Netw. Service Manage., vol. 19, no. 3, pp. 2899-2928, Sep. 2022, doi:
10.1109/TNSM.2022.3180160.

111249

http://dx.doi.org/10.1109/TNSM.2022.3180160

IEEE Access

A. G. Torres-Macias et al.: Fast IEEE802.1Qbv Gate Scheduling Through Integer Linear Programming

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

T. Stiiber, L. Osswald, S. Lindner, and M. Menth, “A survey of
scheduling algorithms for the time-aware shaper in time-sensitive net-
working (TSN),” IEEE Access, vol. 11, pp. 61192-61233, 2023, doi:
10.1109/ACCESS.2023.3286370.

S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling
real-time communication in IEEE 802.1Qbv time sensitive networks,” in
Proc. 24th Int. Conf. Real-Time Netw. Syst., Brest, France, Oct. 2016,
pp. 183-192, doi: 10.1145/2997465.2997470.

R. S. Oliver, S. S. Craciunas, and W. Steiner, “IEEE 802.1Qbv gate
control list synthesis using array theory encoding,” in Proc. IEEE Real-
Time Embedded Technol. Appl. Symp. (RTAS), Porto, Portugal, Apr. 2018,
pp. 13-24, doi: 10.1109/RTAS.2018.00008.

D. Bujosa, M. Ashjaei, A. V. Papadopoulos, T. Nolte, and J. Proenza,
“HERMES: Heuristic multi-queue scheduler for TSN time-triggered
traffic with zero reception jitter capabilities,” in Proc. RTNS 30th
Int. Conf. Real-Time Netw. Syst., Y. Abdeddaim, L. Cucu-Grosjean,
G. Nelissen, and L. Pautet, Eds., Paris, France, Jun. 2022, pp. 70-80, doi:
10.1145/3534879.3534906.

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair
queueing algorithm,” ACM SIGCOMM Comput. Commun. Rev., vol. 19,
no. 4, pp. 1-12, Aug. 1989, doi: 10.1145/75247.75248.

A. K. Parekh and R. G. Gallager, “A generalized processor sharing
approach to flow control in integrated services networks: The single-node
case,” IEEE/ACM Trans. Netw., vol. 1, no. 3, pp. 344-357, Jun. 1993, doi:
10.1109/90.234856.

H. Chahed and A. Kassler, “TSN network scheduling—Challenges and
approaches,” Network, vol. 3, no. 4, pp.585-624, Dec. 2023, doi:
10.3390/network3040026.

X. Jin, C. Xia, N. Guan, C. Xu, D. Li, Y. Yin, and P. Zeng, “Real-
time scheduling of massive data in time sensitive networks with a limited
number of schedule entries,” IEEE Access, vol. 8, pp. 6751-6767, 2020,
doi: 10.1109/ACCESS.2020.2964690.

F. Diirr and N. G. Nayak, “No-wait packet scheduling for IEEE time-
sensitive networks (TSN),” in Proc. 24th Int. Conf. Real-Time Netw. Syst.,
Brest, France, Oct. 2016, pp. 203-212, doi: 10.1145/2997465.2997494.
D. Hellmanns, A. Glavackij, J. Falk, R. Hummen, S. Kehrer, and F. Diirr,
“Scaling TSN scheduling for factory automation networks,” in Proc.
16th IEEE Int. Conf. Factory Commun. Syst. (WFCS), Porto, Portugal,
Apr. 2020, pp. 1-8, doi: 10.1109/WFCS47810.2020.9114415.

M. VIk, Z. Hanzilek, K. Brejchovd, S. Tang, S. Bhattacharjee, and S. Fu,
“Enhancing schedulability and throughput of time-triggered traffic in
IEEE 802.1Qbv time-sensitive networks,” IEEE Trans. Commun., vol. 68,
no. 11, pp. 7023-7038, Nov. 2020, doi: 10.1109/TCOMM.2020.3014105.
B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjodin, and S. Mubeen,
“Synthesising schedules to improve QoS of best-effort traffic in TSN
networks,” in Proc. 29th Int. Conf. Real-Time Netw. Syst., Nantes, France,
Apr. 2021, pp. 68-77, doi: 10.1145/3453417.3453423.

Q. Li, D. Li, X. Jin, Q. Wang, and P. Zeng, “A simple and efficient time-
sensitive networking traffic scheduling method for industrial scenarios,”
Electronics, vol. 9, no. 12, p. 2131, Dec. 2020. [Online]. Available:
https://www.mdpi.com/2079-9292/9/12/2131

H. J. Kim, K. C. Lee, and S. Lee, “A genetic algorithm based scheduling
method for automotive Ethernet,” in Proc. IECON 47th Annu. Conf.
IEEE Ind. Electron. Soc., Toronto, ON, Canada, Oct. 2021, pp. 1-5, doi:
10.1109/TECON48115.2021.9589998.

M. VIk, K. Brejchové, Z. Hanzdlek, and S. Tang, “Large-scale periodic
scheduling in time-sensitive networks,” Comput. Oper. Res., vol. 137,
Jan. 2022, Art. no. 105512, doi: 10.1016/j.cor.2021.105512.

IEEE Standard for Local and Metropolitan Area Networks—Timing and
Synchronization for Time-Sensitive Applications, Standard Std 802.1AS-
2020 (Revision IEEE Std 802.1AS-2011), 2020, pp. 1-421.

ALITZEL GALILEA TORRES-MACIAS (Graduate
Student Member, IEEE) received the B.Sc. degree
in mechatronics engineering from the University
of Guadalajara, Mexico, in 2021, and the M.Sc.
degree in electrical engineering from CINVES-
TAV Unidad Guadalajara, Mexico, in 2024. She
is currently pursuing the joint Ph.D. degree
with CINVESTAV Unidad Guadalajara and the
University of Zaragoza.

111250

JUAN SEGARRA FLOR received the degree in
computer science and the Ph.D. degree from
Universitat Jaume I (Spain), in 2003. In 2003,
he joined the University of Zaragoza, where he is
currently with the Department of Computer and
Systems Engineering. He is a member with the
Computer Architecture Group (gaZ), University
of Zaragoza. His research interests include time-
sensitive networking, worst-case execution time,
and worst-case memory performance in hard
real-time systems.

JOSE LUIS BRIZ VELASCO received the com-
bined B.Sc./M.Sc. degree in geology, the M.Sc.
degree in computer science, and the Ph.D. degree
in computer engineering from the University of
Zaragoza (UZ), Spain, in 1996. He is currently a
tenured Associate Professor with the Department
of Computer and Systems Engineering and a
Researcher with the I3A Research Institute, UZ.
‘ His research interests include memory hierarchy,

processor microarchitecture, and real-time sys-
tems. He is a member with the gaZ Group and an Affiliate with the HIPEAC
European Network of Excellence. He is also a member of the Spanish Society
of Computer Architecture (SARTECO).

ANTONIO RAMIREZ-TREVINO (Member,
IEEE) received the B.Sc. degree in electrical engi-
neering from Universidad Auténoma Metropoli-
tana, Mexico City, Mexico, in 1986, the M.Sc.
degree from CINVESTAV Unidad Guadalajara,
Mexico, in 1990, and the Ph.D. degree from the
University of Zaragoza, Spain, in 1993. He is
currently an Active Professor of automation with
CINVESTAV Unidad Guadalajara. His research
interests include scheduling, analysis, and control
of discrete event systems, including controllability, observability, and
stability.

HECTOR BLANCO-ALCAINE received the M.Sc.
degree (Hons.) in computer engineering from the
University of Zaragoza. He is currently a Software
Enabling and Optimization Architect with Intel
Deutschland GmbH, Germany. He bridges appli-
cation requirements from customers to specific
software components and hardware technologies.
He has twenty years of experience in soft-
ware engineering and customer-facing roles. His
research interests include time-sensitive systems,
involving end-to-end determinism and synchronization requirements for
networking and SoCs.

VOLUME 12, 2024

http://dx.doi.org/10.1109/ACCESS.2023.3286370
http://dx.doi.org/10.1145/2997465.2997470
http://dx.doi.org/10.1109/RTAS.2018.00008
http://dx.doi.org/10.1145/3534879.3534906
http://dx.doi.org/10.1145/75247.75248
http://dx.doi.org/10.1109/90.234856
http://dx.doi.org/10.3390/network3040026
http://dx.doi.org/10.1109/ACCESS.2020.2964690
http://dx.doi.org/10.1145/2997465.2997494
http://dx.doi.org/10.1109/WFCS47810.2020.9114415
http://dx.doi.org/10.1109/TCOMM.2020.3014105
http://dx.doi.org/10.1145/3453417.3453423
http://dx.doi.org/10.1109/IECON48115.2021.9589998
http://dx.doi.org/10.1016/j.cor.2021.105512

