Advances in Mathematics 455 (2024) 109877

Contents lists available at ScienceDirect

MATHEMATICS

Advances in Mathematics

journal homepage: www.elsevier.com/locate/aim

Weighted hyperbolic composition groups on the
disc and subordinated integral operators ™

L))

Check for
Updates

Luciano Abadias®™*, José E. Galé®, Pedro J. Miana?,
Jestis Oliva-Maza "¢

# Departamento de Matemdticas, Instituto Universitario de Matemdticas y
Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spain

P Institute of Mathematics, Polish Academy of Sciences, Chopin Street 12/18,
87-100 Torun, Poland

¢ Instituto Universitario de Matemdticas y Aplicaciones, 50009 Zaragoza, Spain

ARTICLE INFO ABSTRACT
Article history: We provide the spectral picture of groups of weighted com-
Received 13 January 2023 position operators, induced by the hyperbolic group of auto-

2R§§ZiV9d in revised form 25 January morphisms of the unit disc, acting on holomorphic functions.

Accepted 30 July 2024 Eoipe questlo.rés about t};e spectr;m of sglgle (Vivelghtlid h}lfpter(i
Available online 20 August 2024 olic composition operators are discussed, and results relate

with them in the literature are completed or partly extended.
Also, our results on the weighted hyperbolic group are ap-

Communicated by Dan Voiculescu

MSC: plied to the spectral study of two families of multiparameter
47A25 weighted averaging operators, which generalize both Siskakis’
47B33 operator and the reduced Hilbert matrix operator.

47D03 © 2024 The Authors. Published by Elsevier Inc. This is an

open access article under the CC BY-NC-ND license

Keywords: (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Weighted composition operator
Spectrum

Hyperbolic group

Integral operator

* The authors have been partially supported by Project PID2019-10579GB-100 and Project PID2022-
137294NB-100 of the Ministry of Science, and Project E26-17R and Project E48-23R of D.G. Aragén,
Universidad de Zaragoza, Spain. The fourth author has been also supported by Scholarship BES-2017-
081552, MINECO, Spain.
* Corresponding author.

E-mail addresses: labadias@Qunizar.es (L. Abadias), gale@Qunizar.es (J.E. Galé), pjmiana@unizar.es
(P.J. Miana), joliva@impan.pl (J. Oliva-Maza).

https://doi.org/10.1016/j.aim.2024.109877
0001-8708/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://doi.org/10.1016/j.aim.2024.109877
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aim.2024.109877&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:labadias@unizar.es
mailto:gale@unizar.es
mailto:pjmiana@unizar.es
mailto:joliva@impan.pl
https://doi.org/10.1016/j.aim.2024.109877
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 L. Abadias et al. / Advances in Mathematics 455 (2024) 109877

0. Introduction

Let D = {#z € C : |z] < 1} be the unit disc in the complex plane C. The purpose of
this paper is twofold. In one way, we search for providing a spectral picture of weighted
hyperbolic composition groups on . On the other hand, as an application of the above,
we look for giving spectral descriptions of integral operators subordinated to the quoted
groups.

Our interest in the above operators and groups has been motivated by several issues
arising in different, though connected, ways. There is a vast literature dealing with
properties (norm, compactness, spectrum, ... ) of families of averaging integral operators
acting on Banach spaces X of holomorphic functions in . Recall, the Cesaro integral
operator C and its equivalent formulation € on sequences are defined respectively by

eneE =1 [ 1

0

dw; (€f)n —nHZf

for z €D, n € NU{0}, f € X, where f= (f(n)) denotes the Taylor coefficient sequence
of the analytic function f. The corresponding adjoint operators of C and € are given by

C*f)(= /f d¢; Q:*f)() iji_ﬁl (zeD,n e NU{0}).

Let J denote the operator defined by

f(€
(T f)(= ¢, z € D,
1/ +¢

which was introduced in [35], where its norm, spectrum and point spectrum in Hardy
spaces HP(D), p > 1, were studied. Here, we call J Siskakis’ operator. Even though
it formally looks a weighted version of C* (in fact, Jf = —C* ((1+ (-))"'f))) they
behave different from a spectral viewpoint. A reason for this is seen below, via certain
one-parameter operator families.

Likewise, there are also the so-called Hilbert matrix operator $) and the reduced Hilbert
matrix operator H defined respectively by

1 1
- 0/ 1f_(§z)£d§, () (= /1 1f

see [12] for $. While working on the present paper, the authors have been aware of the
fact that A. Aleman, A. Siskakis and D. Vukotic have recently approached the study of

zeD,
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the operator $) using its reduced version H as a key tool. We are not following this idea
here.

In recent times, a line of research has emerged that takes families of (multiparameter-
ized) generalizations of Cesaro operators as study objects. An interesting representative
of one of such families is 7, ., u, v € R, given by the formula

(Tu£)(z) = 2511 = 2) / e () dE, zeD.
0

The operator 7, generalizes C (note, 7990 = C) as well as other operators related
with C, see [2,3] and references therein. There are other generalizations of Cesaro opera-
tors in the literature, see [2,6,33,37,39,41]; in particular averaging operators of the form
% foz F(&)g'(€)d¢€ for generic functions ¢’ of essentially rational type.

In a similar way, it sounds sensible to consider parameterized averaging operators
generalizing J and to investigate their spectral properties. Here we approach the study
of the family of operators J£"" given by

1

1
v L v o n o 0—1
T D) = s | (O -9 - 2 O de €D,
(0.1)
for z € D, f € X and suitable values of parameters u,v,d € C.
This family generalizes Siskakis’ operator since J = —Jlo "~ For other particular

values of 11, v and 6, operators Jj 'Y are isometric, up to constants, to certain parameter-
ized operators, defined on fractional subspaces of L?(0,00) and H?(C™), considered in
[21,29]. The extension of the above operators to arbitrary parameters p, v, 6 (whenever
there is convergence of the integrals) seems to be natural. Weights (1 £ 2)%, « € R, also
arise in a natural way if we think of the action of composition operators (see below in
this introduction) on spaces like HP(D) with weights of the same type; see for example
[11, Section 4].

As regards generalizations of the reduced Hilbert matrix operator, we deal with the
family 5", for suitable p,v,6 € C, given by

1
1
(5" ) = T | (971 - w% i,
21

for z € D, f € X. Clearly, H = 7—[(1)’0. On the other hand, operators H§" are also
a generalization of other operators isometric to the Stieltjes transform or Poisson-like
integrals; see [30].

Operators J"" and HY"" are closely related to groups of automorphisms on the unit
disc, in particular with the hyperbolic one, as we explain later on.
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For a Banach space X, let B(X) denote the space of bounded linear operators on X.
All families of integral operators quoted above share the property that their elements,
say T, can be expressed on appropriate X by subordination to suitable vector-valued
functions V: R — B(X); that is, 7 can be written in the form

TF= /g(t)V(t)f i, fex 0.2)

where g is locally integrable on R and V (¢) is related with semigroups of composition
operators or it is a semigroup itself. We put V (¢) = S(¢) in this case, and write the semi-
group (or group) often as (S(t)) with no matter if ¢ runs over the set of nonnegative real
numbers or over the set of all real numbers. The above representation (0.2) is relevant
for the study of boundedness and norms, spectra and other properties like subnormality,
compactness and so on. The idea to exploit subordination, as in (0.2), in the study of
properties of T dates back to [9] at least. A systematic approach to classical averag-
ing operators 7 based upon the analysis of the infinitesimal generators of semigroups
S(t) was undertaken by A. Siskakis in several papers [12,35,36]. In these works, subor-
dination is mostly restricted to give integral expressions of inverses of generators and,
more generally, of resolvent functions. Families {7{""} and {#}""} lie in the framework
yield around (0.2). To see this, we need to say some words about composition groups of
automorphisms.

Assume that X is a function Banach space continuously contained in the Fréchet space
O(D) of all holomorphic functions on D. Let (¢;) be a flow of automorphisms of D. One
defines the composition operator Cy,: X — X by Cy, (f)(2) = f(¥(2)) for f € X,
z € D. Frequently, the family (Cy,) becomes a Cy-semigroup on X and furthermore it
gives rise to weighted composition Cy-semigroups (S(t)) C B(X), given by

[S®)f1(2) = vi(2)[Cy, f1(2), [eX, zeD,

where (v;) is a continuous cocycle for a flow (1;) (see Section 1 for their definitions), with
t > 0if (S(¢)) is a semigroup or with ¢ € R if (S(¢)) is indeed a group. In this paper, we
are interested in weighted composition groups (S(t)) where () is a group of hyperbolic
automorphisms. Up to isomorphism, the class of groups of hyperbolic automorphisms of
D is reduced to the hyperbolic flow (y;) where

(et +1)z+e —1
(et —1)z+et+1’

wi(z) = zeD,teR. (0.3)

The operator 7, , as well as other generalizations of Cesaro’s operator admit to be
represented by subordination, as in (0.2), to semigroups of weighted composition opera-
tors, see [38]. In turn, operators J" and H}"” can be represented by subordination to
a weighted composition group (u:Cy,); namely
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T = / g5(t) uCy,, dt, HE = / hs(t) uCyp, dt, (0.4)

where, for t € R and suitable 6 € C, g5(t) = 27%(1 — e7")° !X (0.00)(t) and hs(t) =
20=1(1 + €*)79, see Section 8. Notice that the functions gs, hs appear on the other
hand as subordinating functions in [21], [29], [30]. This fact also suggested considering
operators J", HEY.

One of the aims in this paper is to describe the fine structure of the spectrum of
the operators J{"" and H5". To do so in a unified way, we connect this question with
a functional calculus associated to the group (u:Cy,) and suitable operating functions.
More precisely, we adopt Siskakis’ view, and therefore we undertake a detailed study of
the infinitesimal generator A of (u;Cy,). Such a generator is a bisectorial-like operator
in the sense of [31], so that we apply the results obtained there on spectral mappings to
transfer the information on the spectrum of A to the one of J/* and H§".

We wish to establish our results here for a class of Banach spaces as large as pos-
sible, following a unified approach. Thus we introduce the notion of Banach ~-space,
depending on a nonnegative parameter v, which includes classical Banach spaces usu-
ally considered in the subject. Among these spaces, one has for instance Hardy spaces,
(weighted) Bergman spaces, little Korenblum spaces and the disc algebra, (weighted)
Dirichlet spaces and little Bloch spaces.

On the other hand, the study of weighted hyperbolic groups (u.Cy,) has interest in
its own. This was another of our aims in the beginning of this work, as well as finding
out applications to weighted hyperbolic composition operators, say vCy. Let 1 denote
a hyperbolic automorphism and let v denote a weight or multiplier. It is still an open
question, in general, whether or not the spectrum o(vCy) is an annulus and, in such a
case, which are its radii. Just citing the most recent papers on that question, one has
in [8] that, for the classical Dirichlet space (D3(D) in our notation), v continuous at the
fixed points a (attractive) and b (repulsive) of ¢, and vCy, invertible,

o(vCy) € {X € C : min{[v(a)|, [v(b)[}¢'(a) < |A] < max{[v(a)], [v(b)[}¥'(b)}.
The above inclusion is improved in [17], where it is shown that
o(vCy) € {x € C: min{lv(a)], [v(b)[} < [A] < max{[v(a)], [v(b)[}},
whenever v is in the disc algebra. It is also conjectured that
o(vCy) ={x € C: min{lv(a)], [v(b)[} < [A] < max{[v(a)], [v(b)[}}, (0.5)
for the Dirichlet space and the Bloch space.

Furthermore, for the spaces HP(D), A2(D), K, (D), p > 1, and vCy invertible,
it is proved in [27] that the spectrum of vCy is contained in the annulus of radii
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min {|v(a)[¢’(a) =7, [v(b)[¢'(b) ™7} and max {|v(a)['(a) 77, [v(b)[¢'(b) "7} and that, pro-
vided [v(b)[' (b)™7 < |v(a)|y’(a) 77,

o(vCy) ={A e C: @) (0) < A < [v(a)['(a) 7}, (0.6)

as well as, under additional assumptions on u, that Int(c(vCy)) C Opoint(vCy). The
question of whether or not the corresponding identity is true in the case |v(b)[)'(b) ™7 >
|v(a)|1' (a)~7 is left open in [27] as a conjecture in the positive.

Every hyperbolic automorphism ¢ can be embedded in a hyperbolic flow (1;), in the
sense that 1 = 1. If the weight v can also be embedded in a cocycle (v;) for (1¢), then
the spectrum of the infinitesimal generator A of (v,Cly, ) provides substantial information
about the one of v1Cy, = vCy. With this method, we prove that conjectures (0.5) and
(0.6) are true if the operator vCy, can be embedded in a Cyp-group (v;Cy, )icr, and for all
the spaces quoted above, see Theorem 7.2. Moreover, the theorem provides information
about subspectra of vCy, which seems to be of interest, in particular for Dirichlet spaces.
The ideas considered in the paper could be helpful to study arbitrary invertible weighted
hyperbolic operators uCy, by means of quasi-nilpotent perturbations uCy, — v1Cly,,
since uCy, — v1Cy, is a quasi-nilpotent operator for a suitable cocycle (v¢) for ().

In view of the above, the description of spectra of the infinitesimal generator A turns
out to be the key point of the paper. Thus another question of importance is to find
families of cocycles (u;) for which the spectral picture of A is available. In this respect,
it is useful the representation of (u:) as a coboundary, i.e.

W O Y

U = ,tEeR,

for some non-vanishing holomorphic function w : D — C, see [28,38]. We obtain the
notable property that, under fairly mild conditions on (u;) (namely, that (u;) is a DW-
continuous cocycle, see Section 1), w presents zeroes or singularities of polynomial type
at the Denjoy-Wolf points of (¢;). This property is crucial (and enough) to give a detailed
spectral picture of A for Hardy spaces, Bergman spaces, little Korenblum classes and
the disc algebra. The case of Dirichlet spaces and little Bloch spaces require an extra
condition on w which does not seem to be strong.

We now outline how the paper is organized.

Section 1 contains basic material about spectra of operators, functional calculus of
bisectorial-like operators, semigroups and flows, where we pay special attention on the
spectral mapping results of [31]. We also define DW-continuous cocycles and explain
that, in most of the paper, we focus on the hyperbolic flow (;) of DW-points 1 and —1.
Conditions or properties defining Banach ~y-spaces are given in Section 2, together with
some lemmas which provide us with a number of such spaces, including the examples
quoted above. In particular, condition (Gamb5) is introduced to place Dirichlet spaces
and little Bloch spaces into the setting. For the other examples it is sufficient to recall
the well known fact that (Gam5) hods for € = 0. The notion of y-space covers a range
of spaces a bit larger than other systems of axioms do.
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Section 3 is devoted to prove that the weight w associated with a cocycle (u;) for the
flow (¢¢) is tempered at the DW-points —1, 1. The overall argument to prove that is
rather involved and culminates with Theorem 3.11. In order to establish our results on
spectra in a general form, we also introduce spectrally DW-contractive cocycles, and
hyperbolically DW-contractive spaces accordingly (see definitions there), and show that
the examples of y-spaces of Subsection 2.1 are hyperbolically DW-contractive.

In Section 4, estimates on the group (u:C,,) of asymptotic type related to the spectral
radius are given. In Section 5, properties of two helpful integrals related to the resolvent
operator are presented, as preparation to Section 6 where the fine structure of the spec-
trum of A is exposed, see Theorem 6.7. This theorem widely extends results of [35]. At
this point, it must be said that the ideas behind the results of this paper, in particular
in Section 5 and Section 6, have been mainly inspired by papers [2,8,27,33,35]. The level
of generality that such ideas present in this paper, in the direction considered here, has
been very much facilitated by the quoted Theorem 3.11.

Features of spectra of the generator A are transferred, first to the weighted hyper-
bolic group u;Cy,, = €' (Theorem 7.1), and then to arbitrary weighted hyperbolic
groups (v;Cy,) (under corresponding assumptions on (v;)) by composition with suitable
automorphisms, in Section 7, Theorem 7.2. It is to be noticed that Theorem 7.2 gives us
information on the full spectrum, essential spectrum, point spectrum and residual spec-
trum of v,Cy,, t € R. In Remark 7.3, we point out that Theorem 7.2 provides partial
solutions, even for Dirichlet and little Bloch spaces, to the conjectures discussed around
(0.5) and (0.6).

Finally, in Section 8 the results obtained in preceding sections are applied to the
aforementioned integral averaging operators which generalize the Siskakis operator and
the reduced Hilbert matrix operator.

Quite frequently through this paper, for a set Y and h;: Y — R, j = 1,2, we shall
write hi(y) < ha(y), y € Y, whenever there exists a parameter ¢ > 0 such that hy(y) <
cha(y) for all y € Y. We shall write hq(y) ~ ha(y), y € Y, if we have hy(y) < ha(y) S
hi(y) for ally € Y.

1. Functional calculus, spectra, semigroups, flows

Let X be a Banach space, let B(X) denote the Banach algebra of bounded linear
operators on X and let C(X) denote the space of closed operators on X. For A € C(X),
let o(A) be the spectrum of A. Here we collect some results concerning functional calculus
of bisectorial-like operators on X, and corresponding spectral mappings.

Given 6 € (0,7) let g denote the sector g := {z € C\ {0} : |arg(z)| < 0} of the
complex plane. For every 6 € (0,7/2] and a > 0, put

BSpa:=(—a+X;0)N(a—Xr_9), if0 <7/20ra>0; BS;0:=iR.
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Definition 1.1. Let (0,a) € (0,7/2] x [0, 00) and A € C(X). We say that A is a bisectorial-
like operator, of angle 6 and half-width a, if 0(A) C BSp,, and

sup {min{|A —al, A+ a[}|(A — A) "' : A ¢ BS, .} = K, < oo, n€(0,0).

Notice that an operator A € C(X) is bisectorial-like if and only if both —a + A and
a — A are sectorial of angle m — 6 in the sense of [23].

For an open subset Q of C, let O(£2) denote the algebra of holomorphic functions in
Q. Put O[BSpa] = Uycyy<cp O(BSy,a) for every (6,a) € (0,7/2] x [0, 00).

Definition 1.2. We say that f € O[BSp,] is regular at oo if there exists f(oo) :=
lim, o f(z) in C, where the limit must be understood through the holomorphic do-
main of f, and

(BS,,o)N{|z|>R}
for some R > 0,0 <n <6 andall ¥ € (n,7/2].

Fix a bisectorial-like operator A of angle 6 € (0, 7/2] and half-width a € [0, 00). The
space of functions in O[BSy 4] which are regular at oo and holomorphic at —a and a is
denoted here by £(A). Then it is a matter of fact that

E(A) = Eo(A) + ——C +

1
b1 () b_(_)(CJr(Cl

for any b € C\ BSp, 4, where 1 is the constant function with value 1 and &;(A) is formed
by all elements f in £(A) with f(oc0) = f(a) = f(—a) =0.

Let us now define the (primary) functional calculus for a bisectorial-like operator A
and functions in £(A) according to the following rules:

(1)(A) = 4, (Hl()> (A) = (b+A)", (b_l()> (A) = (b—A)"Y, VbeC\BSya,

and

_ 1
T o

F(A) - / F2) (e — A) Yz, [ € Eo(A),

where 3. is the positively oriented boundary of a bisector BS, , with " < n < 6 for
some 7’ such that f € O(BS, ).

It is not difficult to check that the above integral is well defined in the Bochner sense
and independent of Y., and that the £(A)-calculus is well defined. The calculus just
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introduced for bisectorial-like operators mimics the primary calculus given in [23] for
sectorial operators.

Let 5(A) be the extended spectrum of A, which is to say 6(A4) := o(A) U {oc} if A is
unbounded and (A) := o(A) if A € B(X). Let 0¢s5(A) denote the Fredholm essential
spectrum of A, which is defined as follows. A closed operator T' with domain D(T) in X
is said to be a Fredholm operator if

dimker T < oo and dim X/Ran(T) < oo,

see [16, Section 1.3]. Then o.45(T) is the subset of A € C such that A — T is not a Fred-
holm operator. The extended essential spectrum G.ss(7T) is defined as Gess(T) 1= 0ess(T)
if dim X/D(T) < 00, and Gess(T) 1= 0ess(T) U {00} otherwise. Let opoint(A) denote
the point spectrum of A and p(A) the resolvent set of A. By R(\, A) := (A — A)~!
we denote the resolvent operator, whenever A € p(A). The approximate spectrum
oap(A) of A is the subset o,,(4) := {A € C : X — Ais not injective or Ran(\ —
A) is not closed}. The residual spectrum o,.s(A) of A is the subset o,,(A) = {X €
C : Ran(A — A) is not dense in X }. Finally, let r(A) denote the spectral radius of A,
7(A) := SUPyey(a) |[Al- Recall that 7(A4) = limn—>oo(||A"||B(x))1/" whenever A € B(X).

The following theorem provides spectral mapping results for functions in £(A), see
31).

Theorem 1.3. Let A be an unbounded bisectorial-like operator of half-width a > 0 and
angle 6 € (0,7/2]. For every f € £(A) we have

(1)
5(f(A) =f(6(A)) and Gess(f(A)) = f(Fess(A)).

@) F(@point(A)) € Gpoint (F(A)) € F(Gromi (4)) U f(o0).

(3) If, moreover, there exists ¢ > 0 such that
|f(2) = f(c0)| 2 |2|7¢ as z = oo through BSy.a, (1.7)

where 0 < n < 0 is such that f € O(BS,.q), then
F(@point(A)) = Tpoint (f(A))-

Important examples of bisectorial-like operators are the infinitesimal generators of
Co-groups in B(X) since such generators are sectorial to the left and to the right. Recall
that a family (S(¢)) C B(X) is said to be a (one-parameter) semigroup if S(t) exists for
t >0, 5(0) is the identity mapping and S(s+1t) = S(s)S(t) for all s,t > 0. If, moreover,
S(t) exists for t € R and S(s +t) = S(s)S(t) for all s,t € R we say that (S(t)) is a
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group. A semigroup (S(¢)) is called Cyp-semigroup when lim,_,, T'(t)x = T'(s)x for every
s> 0and z € X. The infinitesimal generator A of a Cy-semigroup (S(¢)) is the operator
S (t)x

defined by Az := limy_,ot~'(S(t)x — 2) = =57% |i—o for those € X such that the

above limit (in norm) exists in X. Put D(A) := {x € X : there exists Az € X}. It is
well known that A is a closed densely defined linear operator, [18, Section II.1].

Let us assume from now on in this section that (S(t)) is a Cp-group of bounded
operators on X, with infinitesimal generator A. Then there exist some K > 0 and ¢ € R
such that

1S(®)|lsxy < Ketl, ¢ eR,

i.e. (S(t)) is exponentially bounded, and A is bisectorial-like of angle /2 and half-width
¢, see [23, Subsect. 2.1.1].

Let 1 be a complex bounded Borel measure on R such that [ e“ltldp (t) < oo and
let Lp(p) be its bilateral Laplace transform given by

o0

L)@ i= [ € Fdu(t), 2 € BS g

— 00

Put f = Ly(p)(— - ).

Next, we state a result on transference of spectra from the generator of an operator
group (S(t)) to integral operators subordinated to (S(t)), which is obtained on the basis
of the spectral mappings given in Theorem 1.3.

Theorem 1.4. For (S(t)), u and f as above, suppose that f € E(A). Then
(1)

oo

f(a) = / S() dult) € B(X),

whence

a(f(A)) = f(@(A)) ={Le(n)(=2) : z €(A)},
ess(f(A)) = f(Tess(A)) = {Lo()(=2) 1 2 € Tess(A)},
{Lo(1)(=2) + 2 € opoint(A)} C Tpoint(f(A)) € {Lo(1)(—2) : 2 € Tpoint(A)}
U{Ls(p)(c0)}

(2) If, moreover, f satisfies (1.7) one has

Upoint(f(A)) = f(apoint(A)) ={Ly(n)(—2) : z € Upoint<A)}-
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Proof. (1) The integral formula can be shown in a similar way to [23, Prop. 3.3.2] for
sectorial operators, as it is noticed in [32, Prop. A.3]. The equalities involving the spectra
in (1) and (2) are consequences of the integral identity and Theorem 1.3. O

Remark 1.5. Theorem 1.3 and Theorem 1.4 are given in [31] for the so-called regularized
calculus, which involves meromorphic functions. In particular, versions of Theorem 1.4
can be obtained in other cases covering the regularized calculus, sectorial operators and
operator semigroups which are not necessarily groups. However, we do not need such
results here since our interest is focused on groups of composition operators on the unit
disc. More precisely, we study weighted hyperbolic groups (acting on a specific but fairly
general class of Banach spaces) whose definition is recalled right now.

Let O(D) be the Fréchet algebra of holomorphic functions on the unit disc D. Let
Aut(D) be the group of automorphisms of the disc, that is, ¢ € Aut(D) if and only
if ¢ € O(D) and it is of the form ¢(z) := e®¢¢(2) for all 2 € D, where ¢ € D and
0 € [0,27), and where ¢¢(2) = (1 — £2)7 (2 — £). A family (¢1)ier in Aut(D) is said to
be a group, or (holomorphic) flow, if

(1) ¥o(2) = z for all z € Dy

(2) Ysit = s 0ty for all s,t € R;
(3) 4:(z) is continuous in (t,2) on R x D.

Here we use preferably the term flow to distinguish such families of automorphisms from
groups of operators (on Banach spaces).

The infinitesimal generator of a given flow (1) is the function ¥ defined by the limit
U(z) = limy_0t (¢ (2) — 2), 2 € D. Actually, the limit exists uniformly on D (see [7,
Section 8.2]), the mapping ¢ — .(z) is differentiable on R for every z € D, and one
has %t(z) = U(y4(2)), z € D, t € R. Flows of automorphisms are classified according to
their fixed points. Namely, one says that the flow (¢;) is: 1) elliptic, if it has a unique
fixed point in D; 2) parabolic, if it has a unique fixed point in T :={z € C : |z| = 1}; 3)
hyperbolic, if it has two distinct fixed points in T.

Here we deal with flows of hyperbolic automorphisms. For such a given flow (¢;) the
well known Denjoy-Wolff theorem states that its fixed points in T are obtained as

a:= lim wt(z),b::tlim P (z), z€D.
——00

t——+o0
Points a and b are called attractive and repulsive DW-points, respectively. There always
exists an automorphism ¢ of D such ¢(a) = 1 and ¢(b) = —1, so that there exists
¢ > 0 for which ¢ = ¢potpy 0™t t € R, where (p;) is the hyperbolic flow (0.3)

with DW-points 1 (attractive) and —1 (repulsive). The generator G of (¢;) is given by
G(z) = 3(1 — 2?), z € D, and one also has
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0ipi(2)
ot

= G(pi(2)) = a(pa;z(z)G(z), zeD,teR. (1.8)

For the above items and other details about flows of self-analytic maps of D, see [4,5,10,
35,38].

A family (v;) of analytic functions v;: D — C is called a continuous cocycle for (1;)
if

(1) wo(z) =1 for all z € D;
(2) vsrt = vy - (vs0y) for all s,t € R;
(3) the mapping ¢ — v;(z) is continuous on R for every z € D.

If the mapping t — wv;(z) is differentiable on R for every z € D the cocycle (vy)
is called differentiable. The infinitesimal generator g of a differentiable cocycle (v:) is
defined by g(2) := £v.(2) |¢=o. Suppose that g is analytic in D. Then we define w(z) :=

exp (fo \g((fg)) df), z € D (note that ¥ = 0 on D and the attractive DW-point a of (1)

lies in T'). Then one has

see [28, Lemma 2.2].
In this paper, we consider cocycles (v:)ser enjoying the following property:

(Vt € R) There exist v¢(b) := lim v(z) € C, v¢(a) := lim v (z2) € C; (Col)
D>z—b D>z—a
see [8,27] for the suitability of this condition when dealing with the spectrum of weighted
composition operators on Banach spaces.

Let X be a Banach function space continuously contained in O(D) (that is, X — O(D)
for short). Important examples of one-parameter groups in B(X) are the operator families
of the form (v;Cy,) where (v;) is a cocycle for a flow (¢/¢). In fact, that (v;) is a cocycle
is also a necessary condition for (v:Cy,) to be a group, see for example [22].

The function spaces X which we are dealing with in this paper satisfy that composition
operators Cy : X — X (Cyf = fo¢), ¢ € Aut(D), are bounded isomorphisms of X, see
Remark 2.2. Since multiplication by v; is decomposed as

f S fo vt S i,

we have that v,Cy, is bounded on X if and only if the multiplication operator f +— v.f is
bounded on X which is to say that v; is a multiplier of X. The space of multipliers of X
is denoted by Mul(X). In view of the above, it sounds sensible to consider the following
property for a cocycle (v;):

(Co2) The mapping t — v; is Bochner-measurable from R to Mul(X).
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Definition 1.6. Let (v;) be a continuous cocycle for a hyperbolic flow (). We say that
(vy) is a DW -continuous cocycle (for the flow (¢;)) on X if it satisfies conditions (Col)
and (Co2).

We are interested in groups (v;Cy,) where (1) is a hyperbolic flow and v, is a DW-
continuous cocycle. We have seen before that composition (on the left and on the right)
of (¢) with suitable ¢ € Aut(D) turns (¢;) into the standard hyperbolic group (¢;)
of generator G(z) = (1 — 2?)/2. Let us now see how the action of ¢ affects weighted
composition operators, under mild assumptions.

So let (¢;) be a hyperbolic flow of D with DW-points a,b € T and let (v¢) be a
DW -continuous cocycle for (¢;) so that (v,Cy,) is a one-parameter group in B(X). Take
¢ € Aut(D) such that ¢(a) = 1, ¢(b) = —1. Then there exists some ¢ > 0 for which
et = pothyop ! for all t € R, see [5]. Now set uy := ve-1; 0 ¢~ 1, thus unCy., =
Cy-1 0 (v;Cy,) 0 Cy. It is readily seen that ¢ — wu; is measurable if and only if ¢t — v is
measurable, hence (u;) satisfies (Co2). Moreover, if there exist v¢(a) := limps,_q v¢(2)
and vy (b) := limps,_,p v¢(2) in C, then there exist u;(—1) := limps,_, 1 u(2), ue(1) :=
limps, 1 u(2) in C, for all ¢, so (u;) also satisfies (Col), i.e. (u) is a DW-continuous
cocycle for (). Since the operators Cy and Cy-1 are isomorphisms, the spectra of v,Cy,
and ucCy, e are the same. Thus, from now on, we concentrate our study of spectra of
weighted hyperbolic groups on families (u:Cy,) of bounded operators on X where (¢)
is the hyperbolic flow of (0.3) and (u;) is a DW-continuous cocycle for (¢;).

2. ~y-conformal spaces

One of the aims of this paper is to study spectra of weighted composition groups
(v,Cy, ) acting on Banach spaces X < O(D). In this section, we put up the setting where
to work by introducing a number of conditions on X. We also show that most classical
holomorphic function spaces satisfy such conditions. The two first of these conditions,
namely (Gaml) and (Gamz2), concern multipliers. For every open subset U C C, let
H>(U) be the Banach algebra of bounded analytic functions on U endowed with the

sup-norm || f|| gee vy 1= sup,ep | f(2)], f € HX(U). If U = D we write ||- || oo ) = [ [|o-
Then, set
U H>U) < Mul(X), (Gami1)
DCUopen

where the “hook” arrow on the right means that || F'[|yruix) < KullF|lgew), if F €
H>(U), D C U open, and Ky is a constant depending on U. By [15, Lemma 11], we
have Mul(X) — H>*(D).

Let P denote the set of functions f € O(D) of the form f(z) = (Az+p)°, z € D, with
d > 0and A, p € C such that |u| > |A|, 4 # 0. Then, set

P C Mul(X). (Gam?2)
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The next property is a kind of splitting condition on X related, as we will see, with
concentration on DW-points. For the rest of the paper, let ¢ denote the number —1 or
1.Let Dy :=DnN{z:Rez >0} and D_; : =D N {z:Rez <0}

(Gam3) There are two Banach spaces X; — O(Dy), X_; — O(D_;) such that the
following holds true

e X ={feOD) : flp, € X,,t = —1,1} (note that the mappings f — f
continuous by the closed graph theorem).
e If U is an open set containing D,, then O(U) C Mul(X,).

D, are

In order to take advantage of the theory of Cy-groups, we also assume that
(Gam4) The one-parameter group of operators (Cy, )icr is strongly continuous on X.

The latter property is a mild assumption since every strongly measurable group of
operators is strongly continuous on R as a consequence of [25, Th. 10.2.3].

Moreover, since (i;) is holomorphic in I, (Gam4) holds if the inclusion A(D) — X
[38, Section 4] is dense. Here, A(D) is the disc algebra; that is, the Banach algebra of

functions in O(D) with continuous extension to the closure D, endowed with the sup-
norm.

Let us set some notation before introducing the two last properties. For p € R and
¢ € Aut(D) let Cy , denote the operator on O(D) given by Cy , := (¢')?Cy, where ¢’ is
the derivative of ¢.

Definition 2.1. Let v > 0 and let X be a Banach space such that X — O(D), which
separates points of D, and such that it satisfies properties (Gam1)-(Gam4). We say that

the space X is conformally invariant of index - and tempered type, or just ~y-space for
short, if Cy ~ € B(X) for all ¢ € Aut(D) and

(Ve>0)  sup  (1—=1[8(0)])*[[CyrllB(x) < o0 (Gam5)
$EAut(D)

Let & be a subset of O(D) which is invariant for multiplication by functions z
(1—2)*(1+4 2) for any \, u € C. We say that the pair (X, &) is a DW-conditioned pair
of index -y, or v — pair for short, if X is a y-space and

f € G such that |f(2)| S |(1—2)(1+2)]77",2 €D, forsomee >0 = fc X.
(Gam6)

Remark 2.2. (1) Since ¢ € Aut(D) and Cy , € B(X), it follows from Cy = (¢') 7Cy 4
that Cy is a bounded isomorphism of X.

(2) One obtains from (Gams5) that 0(Cy_) C D. Indeed, if ¢ = ¢, for some t € R\ {0}
(the claim is trivial if ¢ = 0), a straightforward calculation gives us
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1C3, A llsx) = 10 allsx) S (1= lene(0))) 7% S (1 +€"), (2.1)

for every ¢ > 0. Then, the spectral radius formula yields o(C,, ) C D, and our claim
follows. If now ¢ is an arbitrary hyperbolic automorphism one can show, via some ¢ €
Aut(D), that the operator Cy  is similar to C, , for some ¢ € R, thus ¢(Cy.) =
0(Cy,,y) CD.

Remark 2.3. The definition of «y-pair explicitly involves the canonical hyperbolic flow
(p¢) with DW-points —1 and 1. Tt must be noticed that such a definition could be also
given in terms of an arbitrary hyperbolic flow (¢;) with DW-points a,b € T instead.
Since 7y-spaces are Cy-invariant (¢ € Aut(D)), see Remark 2.2(1), all these definitions
are indeed equivalent.

2.1. Examples
Here we list several classical Banach spaces which provide examples of ~y-pairs.

(1) Little Korenblum classes and the disc algebra. For v > 0, let ~7(D) be the weighted
Korenblum growth class of order v defined by

K7(D) :={f € OD) : || fllx- := Stelg(l = 2)1f(2)] < oo},

which is a Banach space endowed with the norm ||-||x-~. Note that v = 0 corresponds
to H>® (D). These spaces fulfill all conditions (Gam1)-(Gam6), except for the strong
continuity condition (Gamd4). Indeed, for f(z) = (i—2z)~7 ify > 0, and f(z) = (i—2)°
if v = 0, one can check that the mapping t — C,, f is not norm continuous. However,
as we pointed out above, the closure of (D) in these spaces satisfies (Gam4).

If v > 0, then the closure of (D) in £~7(D) is the Little Korenblum growth class
Ko7 (D) given by

K3 (B) = {f €K7(D) + lim (1 [} |f(2)] = 0},

with norm || - | c—~. Then (K, 7 (D), O(D)) is a y-pair for every v > 0 which satisfies
properties (Gaml)-(Gam6) as we check next.

(Gaml) and (Gam2): These are clear since H®(D) — Mul(K, " (D)).

(Gam3): Let Co(D,, (1—|2|?)7) be the Banach weighted space of continuous functions
f on D, such that

1m
|z|—=1,zeD,

(L= [21*)1f(2)] =0 and | fllx- = Sélﬂl)?(l — 2P)1f(2)] < oo.

Define
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Ko7 (D), = O(D,) N Co(Dy, (1 = [2*)7),

endowed with the norm |[|-|[,.—~, for ¢ = 1, —1. Since convergence in the norm |- || .-~
implies uniform convergence on compact subsets of D,, it follows that K, 7(D), is
closed in the space Co(D,, (1 — |2|*)7). So K, (D), is complete. It is also clear that
OU) C Mul(K,"(D),) for all open subset U C C containing D,. Then the spaces
Ky 7(D), satisfy (Gam3).

(Gamd4): This holds since the disc algebra (D) is a subspace dense in K, (D).
(Gam5) and (Gamé6): In fact, we have supyc suyp) [Conllgsr) = 1, as it was
noted in [2,27]. Also, it is clear that (Gam6) holds for every v > 0 and f € O(D).
So (Ky7(D),O(D)) is a y-pair for every v > 0.

If vy = 0, when K~7(D) is H>°(D), we have that the closure of the disc algebra (D)
in H*(D) is A(D) itself. Take G(A) := {f € O(D) : f extends continuously to D \
{1,—1}}. Then one can easily check that (A(D),&(2A)) is a 0-pair. For instance,
condition (Gam3) is satisfied if we consider the Banach spaces of continuous functions
2A(D), :== O(D,) N C(D,) with the sup-norm on D),.

Remark 2.4. Spaces K~7(D), v > 0, enjoy the property that, for each v > 0 and
e >0, K77 ¢(D) contains every Banach space X satisfying (Gamb5). In effect, in this
case, for f € X one has

sup(1 — [2[*)"°|f(2)| = sup (1 —[g(0)[*)" =] f(¢(0))]

zeD pcAut(D)
= sup_ (1—[¢(0)*)?(Cy.f)(0)]
¢ Aut(D)
< sup (1= 16(0))lICs fllx < Iflx,
pcAut(D)

where Schwarz-Pick’s Lemma has been used in the second equality. This bound
obviously implies X — K~77¢(ID) as claimed.

Notice that if (Gam5) holds for e = 0, then mimicking the above argument we have
X <= K7(D).

Hardy spaces of integrable functions. For 1 < p < oo, let HP(D) be the Hardy space
on D formed by all functions f € O(D) such that

27 1/17
) do
— q 0\ |p
p = Su re —
[ralv?: o<7£1 O/f( )l o

endowed with the norm || - || g».
We claim that (HP(D), O(D)) is a y-pair for v = 1/p. First, H*(D) = Mul(H? (D))
and therefore (Gaml), (Gam2) are fulfilled. (Gam4) holds since the disc algebra
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2A(D) is dense in HP(D). Tt is well known that they satisfy (Gam5) even for ¢ = 0;
in fact, operators Cy - are isometries in this case, see [20, Th. 2]. (Gam6) is clear.
Checking property (Gam3) requires a bit more of work:

Given a Banach space Z with norm | - ||z and a set J, let B(J;Z) denote the
Banach space of || - ||z-bounded Z-valued functions on J, with norm ||F| 7 :=
supjey [[F(j)llz. Put Ty :={2 € T : Rez >0} and T_; := {2 € T : Rez < 0}, and
consider the Banach spaces

3m/2 p
P i0\|p do
LP(T-1) == f: Tor = C o || fllp—1 = ACRoL <000,
/2
w/2 1/p
p 0\ |p a9
LP(T1) == f: Ti = C 1 || fllp = [FeD)IP o < o0
—m/2

Take the interval J = (0,1) in R and Z = L?(T,), « = —1, 1. Define
H?(D), :=K77(D,)n B((0,1); LP(T,)),

where K77(D,) = {f € O(D,) : || f[l;c-+ < oo}. In such an intersection, an element
F e K~7(D,) is regarded as the family (F})o<r<1 of functions on T where F,.(z) :=
F(rz) for r € (0,1), z € T. Thus F € HP(D), means that ' € K~7(D,) and
F:(0,1) — LP(T,) given by F(r) := F, satisfies SUPQ<ye1 ||}~7(7‘)||W < 00. Then the
space HP(D),, provided with the norm

[E ez o= 1Fllc= + sup [[F(r)]lp..,
0<r<1

is a Banach space. Since H?(D) — K~7(ID), see the end of Remark 2.4, it is readily
seen that H? (D), satisfies (Gam3).

Weighted Bergman spaces. Let 1 < p < oo and o > —1. Let A2(D) denote the
weighted Bergman space formed by all holomorphic functions in D such that

1/p

1fllag = / FEIPAAL() | < oo,

where dA,(2) = (1—|2]?)? dA(z), and where dA is the Lebesgue measure on D. The
space AP (D), with norm || - || 4z, is a Banach space such that the pair (A2 (D), O(D))
is a y-pair with for y = 22,

Indeed, as in the above examples, H*(D) = Mul(A2(D)), so (Gaml), (Gam2)
hold. Define A2 (D), := O(D,) N LP(D,, (1 — |2]?)?). Clearly, AE (D), endowed with
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the usual norm of LP(D,, (1 — |z|?)?) satisfies (Gam3). Moreover, A2 (D) satisfies
(Gam4) since 2(ID) is dense in AP (D). It is well known that A2 (D) satisfies (Gam5);
see for instance the proof of [27, Th. 4.6].

Finally, (Gam6) is also satisfied. To see this, set h.(z) := (1 — 22)77¢ 2 € D, for
e > 0. Let us check that h. belongs to A2 (D). Note that h. € A2(D) if and only if
Jp 11 —=2%]7772%P=d A, (z) < co. Then the finiteness of the integral readily follows by
decomposing it in three (finite, eventually) terms corresponding to the (integration)
domains D N D(-1;1/2), D \ (D(-1;1/2) U D(1;1/2)) and D N D(1;1/2) where
D(w;r) :={z:|z—w|<r},weC,r>0.

The two following examples are provided by Dirichlet spaces and Bloch spaces. To
deal with them, we introduce the set &;,4 of all functions f € O(D), zero-free on D,
such that

(Ve > 0) sup |(1 — 2%)|*e
zeD

Weighted Dirichlet spaces. For p > 1 and o > —1, let D2(D) denote the weighted
Dirichlet space of all functions f € O(D) such that ' € A2(D) and

1/p
Iz = (O + 171, ) < .

Then D% (ID) is a Banach space with norm given by || - ||pz. When ¢ > p — 1 one has
Di(D) = AL _,(D) with equivalent norms, see e.g. [19, Th. 6]. Hence (D% (D), O(D))
is a y-pair for y = 2 — 1.

In the case p —2 < 0 < p — 1, we prove that the pair (D2(D), &;oq) is a vy-pair

g+2

for v = — 1. The following lemma concerns multipliers and shows that DP (D)

satisfies properties (Gaml) and (Gam?2).

Lemma 2.5. Let ¢ > —1,p > 1 be such that p — 2 < o < p — 1. Then
H>(U) = Mul(D2(D)) for every open subset U of C such that D C U, and also
P C Mul(DE(D)).

Proof. (1) The inclusion H>®(U) < Mul(D2(D)) is well known. We include here a
proof for the sake of completeness. Let U be an open subset of C such that D C U.
Let h € H>(U). For every f € DE(D), one has [[hf|5, = [R(0)f(0)[ + [[(hf) |4
with

ICrf) Nlaz < SNl ag + 10 fllag < alloollFllaz + 1 looll £ a2
S (Ills + 1P o) 1] a2
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where we have used that ||fllaz < [[f'llaz,, < If/[laz for all f € DE(D), see
for instance [19, Th. 6]. Now, using Cauchy’s estimate for the derivative, one has
1A |oo S 1Rl o< (1), and we are done.

Let now g(z) = cz +d, z € D, with ¢,d € C such that |¢| < |d| and take 6 > 0. If
|c| < |d| the function g° is a holomorphic function in an open set containing D and
therefore it is a multiplier of D2(D) as seen before. If |¢| = |d| one can assume that
g(z) = 1 — z since rotations are isometries of D?(D). Then, for every f € D2(D),

one has [lg°f[[55, = l9°(0)£(0)I” + [|(g° f)'[I%, with

6 6 0 -
19° ) laz < 19° loo I llaz + 0119 loollg™ fllaz

1/p
<27 g+ 02 | [UGIPpA) |
D
where p(2) := (1 — |2[})7]1 — 2|7P, 2 € D.
Assume first o > p — 2. Then, using [24, Th. 1.7], one has
|1—C«2‘|’7Jr2 |1—C\p|1—C«2‘I”Jr2 (1= [z[)”
D

In the terminology of [1], the above inequality implies that p/(1 — |- )" € B5(n),

7 > o. Moreover, a few computations show that

1¥0(2) 2 <2f<|a|+p>%, ceD,

where Vp denotes the gradient of the differentiable function p. In short, p satisfies
condition (3.21) of [1]. Hence, we can apply [1, Th. 3.2(iv)] in the inequality “<”
coming in to obtain

/|f JPo(x)dA(z) S | FO) + /|f JP(L— |22)7p(2)dA(2)
0P+ [ 17/ P~ 1:2)7dAE) = 1.
D

(see also [2, Prop. 3.1]).
Assume now o = p — 2 and take £ € (0,6). One gets

1° ) laz < 19° ool 'l az + 6119° lloallg™ =) fllaz
1/p

< f g + 62 / £ pe(2)dA(2)
D



20

L. Abadias et al. / Advances in Mathematics 455 (2024) 109877

with p.(2) := (1 — |2]?)?|1 — 2|7P(1=%), 2 € D. The remainder of the argument goes
along the same lines as in the case o > p — 2, where the weight p should be replaced
by the weight p..
All in all, one has ¢° € Mul(D2(D)) for every 6 > 0 and therefore P C
Mul(DE(D)). O

Let D2(D), := {f € O(D,) : f' € LP(D,, (1 — |2*)?)} equipped with the norm

1/p

1Dz, = If(L/Q)I”+/\f’(z)|pdAa(Z) :
D,

which satisfies (Gam3). Note that if (f,) is a Cauchy sequence in D2(D), then
there exists g € A2(D), such that lim, f), = g in AZ(D),. Since D, is sim-
ply connected there exists a primitive function f of g, which we take such that
f(¢/2) =limy, f,(¢/2). Thus we have that lim,, f, = f in D2(D), and it follows that
this space is complete. Moreover, (Gam4) is also satisfied since polynomials are dense
in D2(D), and it is readily seen that the mapping ¢t — C,,Q is norm continuous for
every polynomial Q). The fact that the Dirichlet space satisfies (Gam5) and (Gam6)
is proved in the following lemma.

Lemma 2.6. Letp > 1 and 0 > —1 be such that p—2 < o < p—1. Then (D%(D), Giog)

o’+271

is a y-pair with v = ==

Proof. As noticed above, all that is left to prove is that the pair (DZ(D), Sioq)
satisfies properties (Gam5) and (Gam6). It is known that supe 4,4y |Co - |8(D2) <
oo if and only if 0 > p—2 with v = (6 +2)/p—1 [2, Prop. 3.1]. Thus D2(D) satisfies
(Gam5) with v = (¢ +2)/p — 1 when ¢ > p — 2. For 0 = p — 2, whence v = 0, we
show that D} _, is a 0-space as follows.

Let f € D) (D) so that f' € A) ,(D) < K~!(D), see the end of Remark 2.4.
Then, since f(z) = f(0) + [y f/(£)d¢ for all z € D, we have

FEI< 1O+ [ 17,1~ I e

[0,2]

< £ = 1 Mlaz_, log(L = [2]) < [ fllpz

p—2

(1 —log(1 —1z]),
for all 2 € D and f € D) _,(ID). Hence, for every ¢ € Aut(D),
1
150 6lmy_, = (17GO)F + 16/ 0 D2y ) "

= (If(zzS(O))l” + ||f'||P272)1/” (2.2)
< || fllpz_, (1 =log(1 = [4(0)])),
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where we have used that Cy 1 is an isometric isomorphism in A7 _, and the previous
estimate for |f(z)], 2 € D. Thus D} _,(D) satisfies (Gam5) with v = 0.

As for condition (Gamé), let v = UTT2 — 1 and f € &)y such that, for some € > 0,
we have |f(2)| < |1 — 232|777 for all z € D. Then

PN = @IS S L= 2 = i < 2,

for every z € D. Since v+ 1 = (0 4+ 2)/p one gets ' € AL(D); that is, f € D2(D),
which implies that (D2(D), Giog) is a y-pair with v = "TfQ -1. O

Bloch spaces. For § > 0, let Bs(D) denote the Bloch space, that is, the space of
holomorphic functions on D such that

1fllBs = [f(O)] + 8161]]1;(1 —[21%)°1f'(2)] < oo,

endowed with the norm || - || g,. Let Bs,o(ID) denote the little Bloch space, consisting
of the closure of polynomials in Bs(ID). One has indeed

Bso(D) = {f € B5s(D) : |5131(1 —z)°1f'(2) = 0},
see [42, Prop. 2]. For § > 1 these spaces are Korenblum classes; i.e.,
By(D) = K~"0(D) and Bso(D) = Ko *~" ()

with corresponding equivalent norms, see [42, Prop. 7].

For 6 =1, B1(ID) fails to satisfy condition (Gam4). In fact, the mapping t — C,, f,
with f(z) = Log(i — 2), z € D, is not norm continuous (where Log is the branch of
the logarithm with argument in [7/2,57/2)). On the other hand, B ¢(D) satisfies
(Gam4) since the mapping t € R — C,,Q € By (D) is continuous for every analytic
polynomial @ and the space of analytic polynomials is dense in By o(D).

Let us show that the little Bloch space B o(ID) is a 0-space and that (B1,0(D), Sjog)
is a O-pair. We know that (Gam4) holds. As regards multipliers, we have

Mul(By (D) = Mul(B o(D))
={feH>®D): (1—| [)log(l—|-*)f € H*(D)},

see [42, Th. 27], from which (Gaml), (Gam2) follow.

Define Bi(D), = {f € OD,) : sup,cp, (1 — |2[°)|f'(2)] < oo}, with norm
1fllB,. = 1f(t/2)] + sup.ep, (1 — [2[*)|f'(2)], and let By o(D), denote the clo-
sure of the polynomials in By (D),. If (f,) is a Cauchy sequence in By o(D),, then
(f) is convergent to some g in K~1(D),. Taking f € O(D,) with f/ = g and
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f(¢/2) = lim, f,(:/2) we get lim,, f, = f in By o(D),. In short, By o(D), is com-
plete, and it is readily seen that Bj o(DD), satisfies (Gam3) for B; o(D).
Now, for every ¢ € Aut(D),

I o dllio = 1£(¢(0)] + 3‘;5“ = 12)1¢' (2)f (6(2))],

with
¢(0)
F($(0)] < £(0)] + / F(€)1de]

#(0)

Sl |1+ [ @—1[€) 7rde | = [Iflli0 (L — log(1 — [6(0)]).

o

On the other hand, using the Schwarz-Pick lemma one has
Slelg(l —[2[)¢' (2).f"(¢(2))] < Slelg(l — [P (SN < NIl Bro-

Thus (Gam5) holds. Finally, by an argument like in the case of Dirichlet spaces, it
can be seen that (B o(D), Siog) satisfies (Gam6).

3. Cocycles for the hyperbolic group on ~y-spaces

Let X be a y-space for some v > 0 and let (u;) be a DW-continuous cocycle for
the hyperbolic flow (¢;) on X. Condition (Co2) together with (Gam4) imply that the
mapping t — u;Cy,, is strongly measurable, hence (u;Cy,) is a Co-group of bounded
operators on X, see [25, Th. 10.2.3]. This fact implies, along the same lines as in [28,
Th. 1], that there exists a holomorphic function w : D — C with no zeros such that
up = (wo ) /w for all t € R.

The first part of this section is devoted to show that functions w associated to DW-
continuous cocycles (u;) € Mul(X) as indicated above, present zeroes or singularities
of polynomial type at —1 and 1. In the second part, further additional properties of
~y-spaces, regarding DW -continuous cocycles, are introduced.

Every measurable subadditive function on (0, 00) is locally bounded [14, p. 618]. In-
spired by this result, we obtain the lemma which follows.

Lemma 3.1. Let g: (0,00) — R be a measurable function such that
g(s +1) < g(s) +9(t) + H(s,t) s,t>0,

where H is nondecreasing if s, t increase simultaneously. Then g is locally bounded on
(0,00).
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Proof. Take a > 0 and put F := {t € (0,a) : g(t) > (9(a) — H(a,a))/2)}. For a given
t € (0,a) with ¢ ¢ F one has ¢(t) < g(a)/2— H(t,a—1)/2. Also, g(a) < g(t) +gla—1t) +
H(t,a —t). All in all,

g(a—1t) > g(a) —g(t) — H(t,a —t)
g(a) — H(t,a —t)
2

gla) H(a,a)
—H(ta—t)> 75 - =,

> g(a) —

since H is nondecreasing. Hence t € a—F’; that is, (0,a) = FU(a—F) and so u(F) > a/2.
Suppose now, if possible, that ¢ is unbounded on [¢,d] for some ¢,d > 0. Take a
sequence (sy) in [¢,d] such that g(s,) > 2n for each n € N. Put B, :={0 <t < d :
g(t) >n— H(d,d)}, n > 1. Applying the above argument to F,, := {0 < t < s, : g(t) >
(9(sn) — H(Sn,sn))/2} we get u(By) > ¢/2 since F,, C By, for all n > 1. Then, taking
t € N2, By, one gets g(t) = oo, which is a contradiction.
In conclusion, g is locally bounded, as we claimed. O

Lemma 3.2. For (u;) as above, the mapping t = ||u¢||prui(x) is locally bounded on R.

Proof. First, we prove that for every € > 0 there is K. > 0 such that
2

lwstellnrurcxy < lwsllaraecxo el arurx) (Ksemi“{'s"'t‘}) s,t € R. (3.1)

Note that (usopy)f = Cy, ~(usCyp_, ~f) for any f € X, thus usop, € Mul(X) for every
s,t € R. Moreover, by the cocycle property usi+ = us(us © 9s) = ut(ug 0 @4), hence

||us+t ||Mul(X)

< min {||usl| prarx) e © @sllarucx)s lwellaracollus © eellpruacx b st €R.

In addition, [[uso@t||aruix) < 1Ce, ~llBx) 1Us] aruix) |Co ., 4l B(x)- Since [|Cy, 4 ll5x) <
K.efltl for t € R (see (2.1)), the inequality (3.1) follows. Hence, for s,t € R,

1og [|ustellnrur(x) < log ||ts || arui(x) +10g [[wel arui(x) + 2(e min{[t[, [s|} + log K). (3.2)
Thus applying Lemma 3.1 to g(t) := log ||u¢[| arui(x) and H(s,t) := 2(e min{[t[,|s|} +
log K.), s,t > 0, we obtain that t — [|u|[aru(x) is bounded on [c,d] if ed > 0. So it

remains to prove the result for [¢,d] with ¢ < 0 and d > 0.
Fix s big enough so that s >> |c¢| and s >> d. By (3.1)

) 2
el arurxy < lusll arurco lwe—s L arux) (Kaesmm{lsl"t*s”) ; t € [e,d],

which is uniformly bounded since s,t — s are bounded away from zero. O
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Lemma 3.3. Let (u;) be a cocycle as above. Then, us has no zero for any t € R, and the
family (u; ') is a DW -continuous cocycle for the flow (¢;) on X.

Proof. First, for each ¢t € R, u; has no zero on D, see [28, Lemma 2.1], so ut_l is well
defined. Moreover, by the cocycle property of (u;) it follows that u, V—wu_jop, teR,
and then it is readily seen that (u; ') is a continuous cocycle for (¢;).

Now, note that (u_; 0 ¢;)f = Cy,,(u_Cy_,f), f € X, so that u; ' = u_0 ¢, is a
multiplier in X since C,,C,,_, are isomorphisms on X, see Remark 2.2(1). In fact, u; *
is the inverse multiplier of u;.

Recall that Mul(X) — H*(D) as we pointed out in Section 2. This implies that
u; ' is bounded, hence u;(1),us(—1) # 0 for any t € R, and as a consequence u; '
is continuous at the DW-points —1,1, that is, it satisfies (Col). Finally, the mapping
t— ug 1 is measurable since it is the composition of the measurable mapping ¢ — u;
and the (continuous) inversion map in the group of invertible multipliers of X. Hence,
(u; ') fulfills (Co2). O

Lemma 3.4. Let (uy) be a cocycle as above. Then there are K, w > 0 such that, for every
teR,

sup { [|ue |l iy g Hlarurex) ) < Kelt,

sup {[[utloo, [luy Hloo } < Ke®.

Proof. By Lemma 3.2 there exists M > 0 for which sup_;<,<; log [|u¢[| arux) < M.
We show by induction that log ||us | aruixy < M + mlt| for every t € R, where m =
2(e +log K. ), where K., ¢ are taken as in (3.2). The claim is trivial if |¢| < 1, so assume
it holds for all |t| < n for some n € N. Then, for ¢ € [n,n + 1], the inequality (3.2)

implies

log [|ue|| prui(xy < 10g w1 pruicx) + 1og [|ur || apruix) +m

<M+ml|t—1+m =M+ mlt|

The above inequality is proven analogously for ¢ € [-n—1, —n], thus the induction holds
true and the bound of the lemma follows for |lu¢ || arui(x)-

As regards the inequality for ||ut_1||Mul(X), Lemma 3.3 implies that (u; ') is a well-
defined DW-continuous cocycle for the flow (p;), hence the claim follows by what we
have already proven for (u;).

To finish the proof, recall that by [15, Lemma 11], the continuous inclusion Mul(X) —
H>(D) holds, so the inequalities of the claim for ||u||so, ||1; *||oo follow from the ones
we have already proven. O

The real numbers ay,, 8, found in the following lemma will be called exponents of (uy).
They play a central role in our spectral discussion in this paper. Recall that us(1) :=

limps, 1 ut(2) and ui(—1) := limps, 1 u(2).
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Lemma 3.5. There exists au,, B, € R such that
lug(1)] = e**,  Juy(—1)| = e, t e R.

Proof. The mapping ¢ — |u:(¢)| is a group homomorphism for ¢ = —1, 1 since

D3z—¢ D3z— D3z—e

w0 =t i) = (Jlim o)) (Jlim w(en()) = wu@. ster

where we have used that limps,_,, p;(2) = ¢ through D for all ¢ € R. Tt follows from
Lemma 3.4 that ¢ — |u(¢)| is a locally bounded homomorphism from R to RY, so it
satisfies Cauchy’s exponential functional equation. Hence there exists ¢, € R such that
ut(t) = et and the claim follows. O

One can deduce from [27, Lemma 4.4] that limys,_eo ||un|\<1,én = max{|uy(1)|,
|ui(—1)|} for every DW-continuous cocycle (u;). We need extensions of this property,
which are pointed out in the following lemma.

Lemma 3.6. Let t € R\ {0}. Then

limn ugel| 7 = max{fue (1)], [ue(=1)]}-
T—00

In addition, for t > 0 it holds that

. 1 . -1
Jim sl ) = e 1 el = e (=1))
Proof. The existence of lim,_, o, ||uIt||c1xéx, as well as the first equality, is a consequence
the fact that ¢ — log ||ut]|oo is a subadditive function of [27, Lemma 4.4].

The other claims in the statement regarding the limits are obtained similarly to the
above and reasoning as in the proof of [27, Lemma 4.4]. O

As it has been said, w is a zero-free holomorphic function related to (u;) by u; =
(wo)/w. We show in Theorem 3.11 that w has tempered zeroes or singularities at the
DW-points. This property is one of the key facts through our discussion in this paper.

Remark 3.7. In terms of the function w, Lemma 3.6, second half, reads

—1/s

e%u lim —Bu

lim = ,
He (D) s——00

S5— 00

=€

|=5~
H>(D_,)

1/s ’wogps
w

w

Lemma 3.8. Let w be as above, let \,v € C and set p(z) = w(2)(1—2) (142)" for z € D.
Then the cocycle (vi) given by vi = (p o wi)/p is a DW -continuous cocycle for (o) on
X with exponents o, = a,, — Re A and B, = B, + Rev.
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Proof. Given a bounded interval I C R and ¢ € R there exists an open subset U
containing the closed disc D such that the function h; given by

ha(z) = <1Iftz(«Z)>A <1J1Ff2<:2)>u - ((et—l)z2+et+1>A+yeyt’ 2el,

is holomorphic in U for all ¢t € I. Then we have that v; = uzh; is a continuous cocycle
which is continuous at the DW-points —1, 1. Thus it satisfies (Col).

Moreover, U can be chosen for the mapping ¢ € I — hy € H*(U) to be continuous.
Since H*(U) — Mul(X) by (Gam1), it follows that the mapping ¢t € I — v, € Mul(X)
is measurable, so that (v;) satisfies (Co2), that is, (v¢) is a DW-continuous cocycle.

Regarding the exponents of (v;), a few computations show that lim,_,1 (1—p(2))/(1—
z)=e tand lim,,_1(1+¢i(2))/(142) = €', t € R. In addition, lim,_, 1 (1—¢¢(2))/(1—
z) = lim,1(1 4+ ¢:(2))/(1 + z) = 1 since both —1,1 are fixed points of ¢;. Hence we

—At| _ e(oeu—me )t

conclude lim, 1 |v(2)| = lim, 1 |ue(2)||he(2)] = e*tle , le. a, =

Q, — Re A, Similarly we obtain 5, = 8, + PRev and the proof is finished. O
Remark 3.9. According to (1.8), the following equality holds

G’ oy
(@;)5 = G5 7 tER? 66R)

where G is the generator of the flow (p;) given by G(z) = (1 — 22)/2, z € D. Whence,
it follows by Lemma 3.8 that, for every 6 € R and an arbitrary DW-continuous cocycle
(uy) for the flow (¢) on X, the family (us(})°) is a DW-continuous cocycle for the flow
(p¢) on X. In particular, taking u; = 1 (i.e. the constant function equal to 1) we have
that ((¢})?) is a DW-continuous cocycle for the flow (¢;) on X.

Lemma 3.10. Let A C D be such that {—1,1}NA = 0. For w as above, sup,¢ 4 |w(z)| < oo
and inf,e 4 |w(2)| > 0.

Proof. The claim is trivial if w is a constant function, so let us assume that w is not
constant.

As neither —1 nor 1 belong to A, it is readily seen that there exists R > 0 such that,
for any z € A there are (unique) x € (—1,1) and t € [~ R, R] such that z = ¢;(iz). As
w(z) = w(pe(ix)) = u(iz)w(ix), one has by Lemma 3.4

sup |w(z)] < ( sup w(zx)|) ( sup }|ut(wc)> < osup  Jw(iz)l.

z€EA ze(—1,1) z€(—1,1),t€[—R,R z€(—1,1)

Next, we prove sup,¢_y1)|w(iz)| < oo by reaching a contradiction. Thus, suppose
for a moment sup,¢(_q 1) [w(iz)| = oo. In this case, for some d € {—1,1}, there exists
a sequence (—1,1) 3 x,, — d such that lim, o |w(ixz,)| = co. As a consequence, if the
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limit lim(_q 1)54—4 |w(iz)| existed, it would be equal to co. Assume that this is the case
with d = 1 (the argument for d = —1 works similarly). Now, for § € (0, ), let ty denote
the unique real number for which ¢y, (i) = €?. A few computations show that

—cos 6

to =2tanh™! [ ————
o= 2t <1+sin9

) , 0e(0,m).

Therefore, the mapping ® : [0,1] x (0,7) — C given by ®(z,0) = ¢4, (ix) is continuous.
Even more, ®([0,1)x (0, 7)) € D and ®(1,6) = €, so ® is a continuous family of paths in
the sense of [13, pp. 83]. Since there exist K, w > 0 such that the bound |Ju; !||o < Ke®!*!
holds for all t € R (see Lemma 3.4), it follows that

lim |w(®(z,0))| = lim |w(p, (ix))] = Um |u, (iz)]|w(iz)| = oo,
z—1- rz—1— r—1—
for all # € (0,7), which is absurd by the uniqueness of limits along the family of contin-
uous path @, see [13, pp. 83].
Before continuing with the proof, we assume furthermore that «, < 0 and 3, > 0.
Then, Remark 3.7 implies that there exists M > 0 such that

lw(ps(iz))| < |w(iz)|, for all |s| > M, z € (—1,1). (3.3)

We now continue with the proof of the lemma. As lim(_q 1)5,,4 |w(iz)| does not exist
and in particular is not equal to oo for neither d = —1 nor d = 1, there exist K > 0 and a
sequence (Ypn)nen C (—1,1) with accumulation points —1,1 and such that |w(iy,)| < K
for all n € N. One has p = sup;c(_p m [Juell, < 00 by Lemma 3.4, where M > 0
is as in (3.3). Take C such that C' > max{u,1} and T := znN,, ¥ := Yn,, 2 = YN, for
Ny, Ny, N3 € N such that |w(iz)] > CK and Z < T < y. Let B C D be the compact
subset

B = {ps(iz) | (z,5) € [2,y] x [-M, M]}.

We now prove that |w| reaches its maximum in B in its interior, which contradicts the
maximum modulus principle. Let L = max,¢z 5 |w(ix)|, which is attained in (2, %) since
lw(iZ)| > |w(ig)|, |w(iZ)|. Now, notice that

max{|w(¢s(i2))], [w(es ()]} < Cmax{|w(iz)], lw(iy)|} < CK
<|w(iz)| < L, s € [-M, M],

and, by (3.3),
max{|w(p-nr(ix))], lwlenm(iz))} < |w(iz) <L, =€ [zy]

Hence the maximum of |w| in B is not attained in its boundary, reaching a contradiction.
Therefore, sup,¢(_1,1) [w(iz)| < oo.
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If a, > 0 or B, <0, we consider the weight p(z) := w(2)(1 — 2)"N(1 + 2)™ and its
associated cocycle v, := (p o ¢i)/p, where N > ||, M > |By]. It follows by Lemma 3.8
that (v¢) is a DW-continuous cocycle with oo, = o, — N < 0 and 3, = 8, + M > 0,
so by what we have already proven, sup,c_q 1) |p(iz)| < oo, and as a consequence,
SUP,e(—1,1) lw(iz)] < 2N/2 SUPge(—1,1) |P(iT)] < 00, as we wanted to show.

Finally, consider the DW-continuous cocycle given by (u; 1), see Lemma 3.3, and
let A be a subset as in the statement. Then the weight associated with (u; ') is w1,
whence it follows from the above that sup,c 4 |w(2)7! < oo, that is, inf.ea [w(2)| =

(sup.ea lw™'(z))7' > 0. O

Theorem 3.11. Let w be the holomorphic function associated with a DW -continuous co-
cycle (ut), sous = (woy)/w. Let o, By be the exponents of (ut). Then, for everye > 0,
one has

W) SN —z" 1+ 275, zeD,

lw(2)] 21 — 2|1 + z|ﬁ“+‘5, z e D.

Proof. By Lemma 3.10, we only have to prove the inequalities of the claim for some
arbitrary neighbourhoods U_1, U; of —1, 1 respectively. We prove it for U; of 1, being
the other one analogous. One has

1 —ps(2)

1 e’ =1, asz—1,
—z

uniformly on s > 0. On the other hand, by Remark 3.7, for any & > 0, there exists some
M > 0 such that

lw(ps(2))] < |w(z)|es(°‘"+5/), for all s > M, z € Dy.

Hence, for every € > 0, C > 1, there exists a neighbourhood U of 1, and M > 0 such
that

1_ Qyt€
: . foralls>M, zeUnD.  (3.4)

[w(ps(2)] < Clut2)] \1—w>

Since ¢_js is analytic at 1 and ¢_p/(1) = 1 there is an open subset V such that
1 eV CU and p_p (V) CU. Tt follows by Lemma 3.10 that w is bounded on D4 \ V.
Moreover, taking V such that D \ U, ¢_p(V) are two disjoint connected sets, it is easy
to see that for all v € VN D there is s(v) > M such that p_ ) (v) € DN (U \ V). But
then, (3.4) applied to z = ¢_(,)(v) implies, for any £ > 0,

Q. +eE

SI1—o|7*7F ve,

()] < Clw(p—suy ()] ’M

1—wv
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where, in the second inequality, we have used Lemma 3.10 for |w|, and that |1—¢_ @) (v)],
lw(p—s,(v))| are bounded away from zero, since w_s,y(v) ¢ V. As said above, one
can analogously obtain that there exists a neighbourhood &/_; C D of —1 such that
lw(2)| < [14 2|%«¢, z € U_1 ND. Altogether, one gets |w(z)| < |1 — 2|75 |1 + z|fu—e,
z €D.

Finally, the inequality 2 of the claim follows by an application of what we have
already proven to the DW-continuous cocycle (v;) := (u; ') with weight p = w1,
see Lemma 3.3. Indeed, since a, = —ay, and 8, = —f,, one has that for any € > 0,
lw(2)7 = [p(2)] < [1—2|*¢[1+2|~P=~< for all z € D. Thus the proof is concluded. O

Theorem 3.11 is a significant step in our discussion since it shows that, under mild
conditions on a cocycle, its associated weight w must be tempered at DW -points. Besides
such a property we next introduce two other conditions of asymptotic type that are
needed for the unified approach we carry out in Section 5 and Section 6. Also, recall that
by ¢ we denote either the number —1 or 1.

Definition 3.12. Let X be a ~-space and, for ¢« € {—1,1}, let X, be Banach spaces for
which property (Gam3) holds. A DW-continuous cocycle (u;) for the hyperbolic flow
(1) is said to be spectrally DW-contractive (DW-contractive for short) if it satisfies
the following conditions:

lim sup et ey < ma{fue (=11, e (1)} (SpC1)
and
tim sup [ o[ < (0], (SpC2)
1/t

for every family (f;) € X such that limsup,_, || f¢|l¥ < 1.
We say that a -space is hyperbolically DW-contractive if every DW -continuous
cocycle is spectrally DW-contractive.

Remark 3.13. Similarly to the definition of v-pair, the hyperbolically DW-contractivity
can be equivalently formulated in terms of cocycles (v;) associated to hyperbolic flows
(1p¢) with arbitrary DW-points a,b € T. This fact and Remark 2.3 mean that cocy-
cles (vy) as above satisfy analogous properties to (SpC1) and (SpC2) when acting on a
hyperbolically DW -contractive v-space X.

Let X be any of the examples of y-spaces given in Section 2. Next proposition proves
that X is hyperbolically DW-contractive. The cases of Hardy spaces, Bergman spaces,
little Korenblum classes and the disc algebra are covered by item (1) below.
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Proposition 3.14.

(1) Let X be a ~y-space such that the continuous inclusions Mul(X) — H>(D),
Mul(X_1) <= H®(D_1), Mul(X;) — H>(D;) are bounded below mappings. Then
X is hyperbolically DW -contractive.

(2) Let either X = DE(D) foro > —-1,p>1,andp—2<o0<p—1or X = By (D).
Then X is hyperbolically DW -contractive.

Proof. (1) By hypothesis, |[ullarux) S [ulloos [Vilaru(x,) S [[0llmem,) for every u €
Mul(X), v € Mul(X,) respectively (recall that the embedding Mul(Y) — H>®(FE) is
continuous for any space Y such that Y < O(F), where E is an open subset of C, see
[15, Lemma 11]). Let (u;) be a DW-continuous cocycle for (¢;). It follows by Lemma 3.6
that

. 1/t . 1/t
tim sup [ |y < el gy = masc{fu (1), lu (<D},
t— 00 — 00

so that condition (SpC1) is fulfilled. Let now (f;) € X be such that limsup,_, ||ft||§(/t <
1, thus limsup,_, Hft||¥t < 1 since X — X,. Another application of Lemma 3.6 yields
that

lim sup ||ubtftHA1X/Lt S lim sup ||ubt‘|}\gzz(XL)
t—o0 t—o0

fil

1/t . 1/t
¥ < i fuallysp,) = lu ),

so X satisfies (SpC2) and our claim is proven.

(2) Property (SpC1) is essentially proved in [17, Th. 5.2] for D3(D). The proof for
arbitrary o,p as in the statement, as well as for B; ¢(D) and property (SpC2), runs
similarly. O

4. Estimates of hyperbolic composition groups
Let X be a y-space with v > 0 and let (u;) be a DW-continuous cocycle for the

hyperbolic flow (¢;) on X given by (0.3). Then, as seen before, there exists a zero-free
holomorphic function w : D — C such that u; = (w o ¢;)/w, t € R. Define

Sw(t) = utC% t € R.
Proposition 4.1. For (u;) and w as above, the family (S, (t)) is a Co-group in B(X).
Proof. It follows that (S, (¢)) is strongly measurable since (u;) is strongly measurable by

(Co2), and C,,, is strongly continuous on X by (Gam4). Hence, (S,,(t)) is strongly con-
tinuous since every strongly measurable group is strongly continuous [25, Th. 10.2.3]. O
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Here we deal with asymptotic estimates of the norm of operators S, (t), t € R. For
the sake of convenience we set « := «y, B := B, where «, 3, are the exponents of the
cocycle (u) obtained in Lemma 3.5; that is, |u(1)| = e, Jus(—1)| = € for t € R.

Proposition 4.2. Let X be a hyperbolically DW -contractive y-space for some v > 0. For
(Sw(t)) as above,

Jim 118 (0l < max{e? 7, e},

B(X)
and
. 1/t —B+ —a—
Jim 15(=Dllgx) < max{e™"*7, 6777},
Proof. Let ¢ > 0 and + = —1,1. Since X is a y-space we have [|Cy,, ,|5x) < K.,
for t > 0; see (2.1). On the other hand, S, (t) = u¢(p}) " 7Cy, ~, t € R, where (u¢(p})?)
is a DW-continuous cocycle for the flow (¢;) with exponents Qy(py—+ = a + 7 and

Bu(pry—+ = B — 1, see Lemma 3.8 and Remark 3.9. As a consequence,

15w (i) lB(x) < Nt (21) ™ nrut )l Cop v lBx) < Nlte(01) ™ arurcx) Kee™t, ¢ > 0.
Since X satisfies (SpC1), it follows that

(Ve>0)  lim [SLGt)ll) < max{e!?=7), et }es

Then, making € — 0 one obtains the result. O

The following result is about localization at the DW-points of the norm of the hyper-
bolic group. For § < 0,set X° ; :={f € X : G, f € X}and X} :={f € X : G{f € X},
where G_1(2) := (1 +2), G1(z) := (1 — z) for z € D.

Proposition 4.3. For X, (uy), w, a and 8 as above, assume 8 — o < 2. Then

(i) limg—oo ||Sw(t)f\|¥t < e for all f € XPT2,
(if) Timy 00 ”Sw(_t)f”;(/t <e 7 forall f € j{ﬁ;a*%'

Proof. (i) For 6 < 0 and f € X{, put fs1 := G{f. Then, for ¢t > 0,

s, = oedGiloed,

Js,1004)
w

= 9 G0 o) = G 1))
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The cocycle (v;) given by v; = ((G7°w) 0 ¢;)/(G1°w) is a DW-continuous cocycle with
exponents a + ¢ and g (associated to the DW-points 1, —1 respectively) by Lemma 3.8.
Moreover, G7° € Mul(X) by (Gam2). Hence, an application of Proposition 4.2 to the
group (SG;%(t)) yields that

: R 1/t a+d —
T (|8, (1) 5y < max{e ™0+, 577},
and then
. 1/t . —5 1/t 1/t 1/t a _
Jim 15,15 < Jim (16T 130 Sepen Nl I fsallX") < maxfertT7, 7=},

Taking now § = 8 — o — 27y one obtains lim; ||Sw(t)f\|§(/t < P77 for every f €
X797 as we wanted to show.
(ii) The argument to prove this part is similar to the preceding one. We leave it to

the reader. O
5. Two useful integrals

Through this section, let X be a hyperbolically DW-contractive ~y-space and let
(S,(t)) be a weighted composition group as in Section 4, with «, 8 the exponents of
((w o ) /w). Inspired by some ideas exposed within [33], which were further developed
in [2], we introduce two integral operator