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0. Introduction

Let D = {z ∈ C : |z| < 1} be the unit disc in the complex plane C. The purpose of 
this paper is twofold. In one way, we search for providing a spectral picture of weighted 
hyperbolic composition groups on D. On the other hand, as an application of the above, 
we look for giving spectral descriptions of integral operators subordinated to the quoted 
groups.

Our interest in the above operators and groups has been motivated by several issues 
arising in different, though connected, ways. There is a vast literature dealing with 
properties (norm, compactness, spectrum, . . . ) of families of averaging integral operators 
acting on Banach spaces X of holomorphic functions in D. Recall, the Cesàro integral 
operator C and its equivalent formulation C on sequences are defined respectively by

(Cf)(z) := 1
z

z∫
0

f(w)
1 − w

dw ; (Cf̂)(n) := 1
n + 1

n∑
j=0

f̂(j),

for z ∈ D, n ∈ N ∪{0}, f ∈ X, where f̂ = (f̂(n)) denotes the Taylor coefficient sequence 
of the analytic function f . The corresponding adjoint operators of C and C are given by

(C∗f)(z) := 1
z − 1

z∫
1

f(ξ) dξ ; (C∗f̂)(n) :=
∞∑
j=n

f̂(j)
j + 1 (z ∈ D, n ∈ N ∪ {0}).

Let J denote the operator defined by

(J f)(z) := 1
1 − z

z∫
1

f(ξ)
1 + ξ

dξ, z ∈ D,

which was introduced in [35], where its norm, spectrum and point spectrum in Hardy 
spaces Hp(D), p ≥ 1, were studied. Here, we call J Siskakis’ operator. Even though 
it formally looks a weighted version of C∗ (in fact, J f = −C∗ ((1 + (·))−1f)

)
) they 

behave different from a spectral viewpoint. A reason for this is seen below, via certain 
one-parameter operator families.

Likewise, there are also the so-called Hilbert matrix operator H and the reduced Hilbert 
matrix operator H defined respectively by

(Hf)(z) :=
1∫

0

f(ξ)
1 − zξ

dξ, (Hf)(z) :=
1∫

−1

f(ξ)
1 − zξ

dξ, z ∈ D,

see [12] for H. While working on the present paper, the authors have been aware of the 
fact that A. Aleman, A. Siskakis and D. Vukotic have recently approached the study of 
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the operator H using its reduced version H as a key tool. We are not following this idea 
here.

In recent times, a line of research has emerged that takes families of (multiparameter-
ized) generalizations of Cesàro operators as study objects. An interesting representative 
of one of such families is Tμ,ν , μ, ν ∈ R, given by the formula

(Tμ,νf)(z) := zμ−1(1 − z)−ν

z∫
0

ξ−μ(1 − ξ)ν−1f(ξ) dξ, z ∈ D.

The operator Tμ,ν generalizes C (note, T0,0 = C) as well as other operators related 
with C, see [2,3] and references therein. There are other generalizations of Cesàro opera-
tors in the literature, see [2,6,33,37,39,41]; in particular averaging operators of the form 
1
z

∫ z

0 f(ξ)g′(ξ)dξ for generic functions g′ of essentially rational type.
In a similar way, it sounds sensible to consider parameterized averaging operators 

generalizing J and to investigate their spectral properties. Here we approach the study 
of the family of operators J μ,ν

δ given by

(J μ,ν
δ f)(z) := 1

(1 + z)ν+δ(1 − z)μ+δ

1∫
z

(1 + ξ)ν(1 − ξ)μ(ξ − z)δ−1f(ξ) dξ, z ∈ D,

(0.1)
for z ∈ D, f ∈ X and suitable values of parameters μ, ν, δ ∈ C.

This family generalizes Siskakis’ operator since J = −J 0,−1
1 . For other particular 

values of μ, ν and δ, operators J μ,ν
δ are isometric, up to constants, to certain parameter-

ized operators, defined on fractional subspaces of L2(0, ∞) and H2(C+), considered in 
[21,29]. The extension of the above operators to arbitrary parameters μ, ν, δ (whenever 
there is convergence of the integrals) seems to be natural. Weights (1 ± z)α, α ∈ R, also 
arise in a natural way if we think of the action of composition operators (see below in 
this introduction) on spaces like Hp(D) with weights of the same type; see for example 
[11, Section 4].

As regards generalizations of the reduced Hilbert matrix operator, we deal with the 
family Hμ,ν

δ , for suitable μ, ν, δ ∈ C, given by

(Hμ,ν
δ f)(z) := 1

(1 + z)ν−δ+1(1 − z)μ−δ+1

1∫
−1

(1 + ξ)ν(1 − ξ)μ f(ξ)
(1 − zξ)δ dξ,

for z ∈ D, f ∈ X. Clearly, H = H0,0
1 . On the other hand, operators Hμ,ν

δ are also 
a generalization of other operators isometric to the Stieltjes transform or Poisson-like 
integrals; see [30].

Operators J μ,ν
δ and Hμ,ν

δ are closely related to groups of automorphisms on the unit 
disc, in particular with the hyperbolic one, as we explain later on.
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For a Banach space X, let B(X) denote the space of bounded linear operators on X. 
All families of integral operators quoted above share the property that their elements, 
say T , can be expressed on appropriate X by subordination to suitable vector-valued 
functions V : R → B(X); that is, T can be written in the form

T f =
∞∫

−∞

g(t)V (t)f dt, f ∈ X, (0.2)

where g is locally integrable on R and V (t) is related with semigroups of composition 
operators or it is a semigroup itself. We put V (t) = S(t) in this case, and write the semi-
group (or group) often as (S(t)) with no matter if t runs over the set of nonnegative real 
numbers or over the set of all real numbers. The above representation (0.2) is relevant 
for the study of boundedness and norms, spectra and other properties like subnormality, 
compactness and so on. The idea to exploit subordination, as in (0.2), in the study of 
properties of T dates back to [9] at least. A systematic approach to classical averag-
ing operators T based upon the analysis of the infinitesimal generators of semigroups 
S(t) was undertaken by A. Siskakis in several papers [12,35,36]. In these works, subor-
dination is mostly restricted to give integral expressions of inverses of generators and, 
more generally, of resolvent functions. Families {J μ,ν

δ } and {Hμ,ν
δ } lie in the framework 

yield around (0.2). To see this, we need to say some words about composition groups of 
automorphisms.

Assume that X is a function Banach space continuously contained in the Fréchet space 
O(D) of all holomorphic functions on D. Let (ψt) be a flow of automorphisms of D. One 
defines the composition operator Cψt

: X → X by Cψt
(f)(z) := f(ψt(z)) for f ∈ X, 

z ∈ D. Frequently, the family (Cψt
) becomes a C0-semigroup on X and furthermore it 

gives rise to weighted composition C0-semigroups (S(t)) ⊆ B(X), given by

[S(t)f ](z) = vt(z)[Cψt
f ](z), f ∈ X, z ∈ D,

where (vt) is a continuous cocycle for a flow (ψt) (see Section 1 for their definitions), with 
t ≥ 0 if (S(t)) is a semigroup or with t ∈ R if (S(t)) is indeed a group. In this paper, we 
are interested in weighted composition groups (S(t)) where (ψt) is a group of hyperbolic
automorphisms. Up to isomorphism, the class of groups of hyperbolic automorphisms of 
D is reduced to the hyperbolic flow (ϕt) where

ϕt(z) := (et + 1)z + et − 1
(et − 1)z + et + 1 , z ∈ D, t ∈ R. (0.3)

The operator Tμ,ν as well as other generalizations of Cesàro’s operator admit to be 
represented by subordination, as in (0.2), to semigroups of weighted composition opera-
tors, see [38]. In turn, operators J μ,ν

δ and Hμ,ν
δ can be represented by subordination to 

a weighted composition group (utCϕt
); namely
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J μ,ν
δ =

∞∫
−∞

gδ(t)utCϕt
dt, Hμ,ν

δ =
∞∫

−∞

hδ(t)utCϕt
dt, (0.4)

where, for t ∈ R and suitable δ ∈ C, gδ(t) = 2−δ(1 − e−t)δ−1χ(0,∞)(t) and hδ(t) =
2δ−1(1 + et)−δ, see Section 8. Notice that the functions gδ, hδ appear on the other 
hand as subordinating functions in [21], [29], [30]. This fact also suggested considering 
operators J μ,ν

δ , Hμ,ν
δ .

One of the aims in this paper is to describe the fine structure of the spectrum of 
the operators J μ,ν

δ and Hμ,ν
δ . To do so in a unified way, we connect this question with 

a functional calculus associated to the group (utCϕt
) and suitable operating functions. 

More precisely, we adopt Siskakis’ view, and therefore we undertake a detailed study of 
the infinitesimal generator Δ of (utCϕt

). Such a generator is a bisectorial-like operator 
in the sense of [31], so that we apply the results obtained there on spectral mappings to 
transfer the information on the spectrum of Δ to the one of J μ,ν

δ and Hμ,ν
δ .

We wish to establish our results here for a class of Banach spaces as large as pos-
sible, following a unified approach. Thus we introduce the notion of Banach γ-space, 
depending on a nonnegative parameter γ, which includes classical Banach spaces usu-
ally considered in the subject. Among these spaces, one has for instance Hardy spaces, 
(weighted) Bergman spaces, little Korenblum spaces and the disc algebra, (weighted) 
Dirichlet spaces and little Bloch spaces.

On the other hand, the study of weighted hyperbolic groups (utCϕt
) has interest in 

its own. This was another of our aims in the beginning of this work, as well as finding 
out applications to weighted hyperbolic composition operators, say vCψ. Let ψ denote 
a hyperbolic automorphism and let v denote a weight or multiplier. It is still an open 
question, in general, whether or not the spectrum σ(vCψ) is an annulus and, in such a 
case, which are its radii. Just citing the most recent papers on that question, one has 
in [8] that, for the classical Dirichlet space (D2

0(D) in our notation), v continuous at the 
fixed points a (attractive) and b (repulsive) of ψ, and vCψ invertible,

σ(vCψ) ⊆ {λ ∈ C : min{|v(a)|, |v(b)|}ψ′(a) ≤ |λ| ≤ max{|v(a)|, |v(b)|}ψ′(b)}.

The above inclusion is improved in [17], where it is shown that

σ(vCψ) ⊆ {λ ∈ C : min{|v(a)|, |v(b)|} ≤ |λ| ≤ max{|v(a)|, |v(b)|}},

whenever v is in the disc algebra. It is also conjectured that

σ(vCψ) = {λ ∈ C : min{|v(a)|, |v(b)|} ≤ |λ| ≤ max{|v(a)|, |v(b)|}}, (0.5)

for the Dirichlet space and the Bloch space.
Furthermore, for the spaces Hp(D), Ap

σ(D), K−γ
0 (D), p ≥ 1, and vCψ invertible, 

it is proved in [27] that the spectrum of vCψ is contained in the annulus of radii 
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min {|v(a)|ψ′(a)−γ , |v(b)|ψ′(b)−γ} and max {|v(a)|ψ′(a)−γ , |v(b)|ψ′(b)−γ} and that, pro-
vided |v(b)|ψ′(b)−γ ≤ |v(a)|ψ′(a)−γ ,

σ(vCψ) = {λ ∈ C : |v(b)|ψ′(b)−γ ≤ |λ| ≤ |v(a)|ψ′(a)−γ}, (0.6)

as well as, under additional assumptions on u, that Int(σ(vCψ)) ⊆ σpoint(vCψ). The 
question of whether or not the corresponding identity is true in the case |v(b)|ψ′(b)−γ >

|v(a)|ψ′(a)−γ is left open in [27] as a conjecture in the positive.
Every hyperbolic automorphism ψ can be embedded in a hyperbolic flow (ψt), in the 

sense that ψ = ψ1. If the weight v can also be embedded in a cocycle (vt) for (ψt), then 
the spectrum of the infinitesimal generator Δ of (vtCψt

) provides substantial information 
about the one of v1Cψ1 = vCψ. With this method, we prove that conjectures (0.5) and 
(0.6) are true if the operator vCψ can be embedded in a C0-group (vtCψt

)t∈R, and for all 
the spaces quoted above, see Theorem 7.2. Moreover, the theorem provides information 
about subspectra of vCψ which seems to be of interest, in particular for Dirichlet spaces. 
The ideas considered in the paper could be helpful to study arbitrary invertible weighted 
hyperbolic operators uCψ1 by means of quasi-nilpotent perturbations uCψ1 − v1Cψ1 , 
since uCψ1 − v1Cψ1 is a quasi-nilpotent operator for a suitable cocycle (vt) for (ψt).

In view of the above, the description of spectra of the infinitesimal generator Δ turns 
out to be the key point of the paper. Thus another question of importance is to find 
families of cocycles (ut) for which the spectral picture of Δ is available. In this respect, 
it is useful the representation of (ut) as a coboundary, i.e.

ut = ω ◦ ϕt

ω
, t ∈ R,

for some non-vanishing holomorphic function ω : D → C, see [28,38]. We obtain the 
notable property that, under fairly mild conditions on (ut) (namely, that (ut) is a DW -
continuous cocycle, see Section 1), ω presents zeroes or singularities of polynomial type 
at the Denjoy-Wolf points of (ϕt). This property is crucial (and enough) to give a detailed 
spectral picture of Δ for Hardy spaces, Bergman spaces, little Korenblum classes and 
the disc algebra. The case of Dirichlet spaces and little Bloch spaces require an extra 
condition on ω which does not seem to be strong.

We now outline how the paper is organized.
Section 1 contains basic material about spectra of operators, functional calculus of 

bisectorial-like operators, semigroups and flows, where we pay special attention on the 
spectral mapping results of [31]. We also define DW -continuous cocycles and explain 
that, in most of the paper, we focus on the hyperbolic flow (ϕt) of DW -points 1 and −1. 
Conditions or properties defining Banach γ-spaces are given in Section 2, together with 
some lemmas which provide us with a number of such spaces, including the examples 
quoted above. In particular, condition (Gam5) is introduced to place Dirichlet spaces 
and little Bloch spaces into the setting. For the other examples it is sufficient to recall 
the well known fact that (Gam5) hods for ε = 0. The notion of γ-space covers a range 
of spaces a bit larger than other systems of axioms do.
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Section 3 is devoted to prove that the weight ω associated with a cocycle (ut) for the 
flow (ϕt) is tempered at the DW -points −1, 1. The overall argument to prove that is 
rather involved and culminates with Theorem 3.11. In order to establish our results on 
spectra in a general form, we also introduce spectrally DW -contractive cocycles, and 
hyperbolically DW -contractive spaces accordingly (see definitions there), and show that 
the examples of γ-spaces of Subsection 2.1 are hyperbolically DW -contractive.

In Section 4, estimates on the group (utCϕt
) of asymptotic type related to the spectral 

radius are given. In Section 5, properties of two helpful integrals related to the resolvent 
operator are presented, as preparation to Section 6 where the fine structure of the spec-
trum of Δ is exposed, see Theorem 6.7. This theorem widely extends results of [35]. At 
this point, it must be said that the ideas behind the results of this paper, in particular 
in Section 5 and Section 6, have been mainly inspired by papers [2,8,27,33,35]. The level 
of generality that such ideas present in this paper, in the direction considered here, has 
been very much facilitated by the quoted Theorem 3.11.

Features of spectra of the generator Δ are transferred, first to the weighted hyper-
bolic group utCϕt

= etΔ (Theorem 7.1), and then to arbitrary weighted hyperbolic 
groups (vtCψt

) (under corresponding assumptions on (vt)) by composition with suitable 
automorphisms, in Section 7, Theorem 7.2. It is to be noticed that Theorem 7.2 gives us 
information on the full spectrum, essential spectrum, point spectrum and residual spec-
trum of vtCψt

, t ∈ R. In Remark 7.3, we point out that Theorem 7.2 provides partial 
solutions, even for Dirichlet and little Bloch spaces, to the conjectures discussed around 
(0.5) and (0.6).

Finally, in Section 8 the results obtained in preceding sections are applied to the 
aforementioned integral averaging operators which generalize the Siskakis operator and 
the reduced Hilbert matrix operator.

Quite frequently through this paper, for a set Y and hj : Y → R, j = 1, 2, we shall 
write h1(y) � h2(y), y ∈ Y , whenever there exists a parameter c > 0 such that h1(y) ≤
ch2(y) for all y ∈ Y . We shall write h1(y) ∼ h2(y), y ∈ Y , if we have h1(y) � h2(y) �
h1(y) for all y ∈ Y .

1. Functional calculus, spectra, semigroups, flows

Let X be a Banach space, let B(X) denote the Banach algebra of bounded linear 
operators on X and let C(X) denote the space of closed operators on X. For A ∈ C(X), 
let σ(A) be the spectrum of A. Here we collect some results concerning functional calculus 
of bisectorial-like operators on X, and corresponding spectral mappings.

Given θ ∈ (0, π) let Σθ denote the sector Σθ := {z ∈ C \ {0} : | arg(z)| < θ} of the 
complex plane. For every θ ∈ (0, π/2] and a ≥ 0, put

BSθ,a := (−a + Σπ−θ) ∩ (a− Σπ−θ), if θ < π/2 or a > 0; BSπ/2,0 := iR.
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Definition 1.1. Let (θ, a) ∈ (0, π/2] ×[0, ∞) and A ∈ C(X). We say that A is a bisectorial-
like operator, of angle θ and half-width a, if σ(A) ⊆ BSθ,a and

sup
{
min{|λ− a|, |λ + a|}‖(λ−A)−1‖ : λ /∈ BSη,a

}
= Kη < ∞, η ∈ (0, θ).

Notice that an operator A ∈ C(X) is bisectorial-like if and only if both −a + A and 
a −A are sectorial of angle π − θ in the sense of [23].

For an open subset Ω of C, let O(Ω) denote the algebra of holomorphic functions in 
Ω. Put O[BSθ,a] :=

⋃
0<η<θ O(BSη,a) for every (θ, a) ∈ (0, π/2] × [0, ∞).

Definition 1.2. We say that f ∈ O[BSθ,a] is regular at ∞ if there exists f(∞) :=
limz→∞ f(z) in C, where the limit must be understood through the holomorphic do-
main of f , and ∫

(BSη′,a)∩{|z|>R}

∣∣∣∣f(z) − f(∞)
z

∣∣∣∣ |dz| < ∞

for some R > 0, 0 < η < θ and all η′ ∈ (η, π/2].

Fix a bisectorial-like operator A of angle θ ∈ (0, π/2] and half-width a ∈ [0, ∞). The 
space of functions in O[BSθ,a] which are regular at ∞ and holomorphic at −a and a is 
denoted here by E(A). Then it is a matter of fact that

E(A) = E0(A) + 1
b + (·)C + 1

b− (·)C + C1

for any b ∈ C \BSθ,a, where 1 is the constant function with value 1 and E0(A) is formed 
by all elements f in E(A) with f(∞) = f(a) = f(−a) = 0.

Let us now define the (primary) functional calculus for a bisectorial-like operator A
and functions in E(A) according to the following rules:

(1)(A) := A,

(
1

b + (·)

)
(A) := (b+A)−1,

(
1

b− (·)

)
(A) := (b−A)−1, ∀b ∈ C \BSθ,a,

and

f(A) := 1
2πi

∫
Σε

f(z)(z −A)−1dz, f ∈ E0(A),

where Σε is the positively oriented boundary of a bisector BSη,a with η′ < η < θ for 
some η′ such that f ∈ O(BSη′,a).

It is not difficult to check that the above integral is well defined in the Bochner sense 
and independent of Σε, and that the E(A)-calculus is well defined. The calculus just 
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introduced for bisectorial-like operators mimics the primary calculus given in [23] for 
sectorial operators.

Let σ̃(A) be the extended spectrum of A, which is to say σ̃(A) := σ(A) ∪ {∞} if A is 
unbounded and σ̃(A) := σ(A) if A ∈ B(X). Let σess(A) denote the Fredholm essential 
spectrum of A, which is defined as follows. A closed operator T with domain D(T ) in X
is said to be a Fredholm operator if

dim kerT < ∞ and dimX/Ran(T ) < ∞,

see [16, Section I.3]. Then σess(T ) is the subset of λ ∈ C such that λ − T is not a Fred-
holm operator. The extended essential spectrum σ̃ess(T ) is defined as σ̃ess(T ) := σess(T )
if dimX/D(T ) < ∞, and σ̃ess(T ) := σess(T ) ∪ {∞} otherwise. Let σpoint(A) denote 
the point spectrum of A and ρ(A) the resolvent set of A. By R(λ, A) := (λ − A)−1

we denote the resolvent operator, whenever λ ∈ ρ(A). The approximate spectrum 
σap(A) of A is the subset σap(A) := {λ ∈ C : λ − A is not injective or Ran(λ −
A) is not closed}. The residual spectrum σres(A) of A is the subset σap(A) := {λ ∈
C : Ran(λ − A) is not dense in X}. Finally, let r(A) denote the spectral radius of A, 
r(A) := supλ∈σ(A) |λ|. Recall that r(A) = limn→∞(‖An‖B(X))1/n whenever A ∈ B(X).

The following theorem provides spectral mapping results for functions in E(A), see 
[31].

Theorem 1.3. Let A be an unbounded bisectorial-like operator of half-width a ≥ 0 and 
angle θ ∈ (0, π/2]. For every f ∈ E(A) we have
(1)

σ̃(f(A)) = f(σ̃(A)) and σ̃ess(f(A)) = f(σ̃ess(A)).

(2)
f(σpoint(A)) ⊆ σpoint(f(A)) ⊆ f(σpoint(A)) ∪ f(∞).

(3) If, moreover, there exists c > 0 such that

|f(z) − f(∞)| � |z|−c as z → ∞ through BSη,a, (1.7)

where 0 < η < θ is such that f ∈ O(BSη,a), then

f(σpoint(A)) = σpoint(f(A)).

Important examples of bisectorial-like operators are the infinitesimal generators of 
C0-groups in B(X) since such generators are sectorial to the left and to the right. Recall 
that a family (S(t)) ⊆ B(X) is said to be a (one-parameter) semigroup if S(t) exists for 
t ≥ 0, S(0) is the identity mapping and S(s + t) = S(s)S(t) for all s, t ≥ 0. If, moreover, 
S(t) exists for t ∈ R and S(s + t) = S(s)S(t) for all s, t ∈ R we say that (S(t)) is a 
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group. A semigroup (S(t)) is called C0-semigroup when limt→s T (t)x = T (s)x for every 
s ≥ 0 and x ∈ X. The infinitesimal generator Δ of a C0-semigroup (S(t)) is the operator 
defined by Δx := limt→0 t

−1(S(t)x − x) = ∂S(t)x
∂t |t=0 for those x ∈ X such that the 

above limit (in norm) exists in X. Put D(Δ) := {x ∈ X : there exists Δx ∈ X}. It is 
well known that Δ is a closed densely defined linear operator, [18, Section II.1].

Let us assume from now on in this section that (S(t)) is a C0-group of bounded 
operators on X, with infinitesimal generator Δ. Then there exist some K ≥ 0 and c ∈ R

such that

‖S(t)‖B(X) ≤ Kec|t|, t ∈ R,

i.e. (S(t)) is exponentially bounded, and Δ is bisectorial-like of angle π/2 and half-width 
c, see [23, Subsect. 2.1.1].

Let μ be a complex bounded Borel measure on R such that 
∫∞
−∞ ec|t||dμ|(t) < ∞ and 

let Lb(μ) be its bilateral Laplace transform given by

Lb(μ)(z) :=
∞∫

−∞

e−ztdμ(t), z ∈ BSπ/2,c.

Put f := Lb(μ)(− · ).
Next, we state a result on transference of spectra from the generator of an operator 

group (S(t)) to integral operators subordinated to (S(t)), which is obtained on the basis 
of the spectral mappings given in Theorem 1.3.

Theorem 1.4. For (S(t)), μ and f as above, suppose that f ∈ E(Δ). Then
(1)

f(Δ) =
∞∫

−∞

S(t) dμ(t) ∈ B(X),

whence

σ̃(f(Δ)) = f(σ̃(Δ)) = {Lb(μ)(−z) : z ∈ σ̃(Δ)},

σ̃ess(f(Δ)) = f(σ̃ess(Δ)) = {Lb(μ)(−z) : z ∈ σ̃ess(Δ)},

{Lb(μ)(−z) : z ∈ σpoint(Δ)} ⊆ σpoint(f(Δ)) ⊆ {Lb(μ)(−z) : z ∈ σpoint(Δ)}
∪ {Lb(μ)(∞)}.

(2) If, moreover, f satisfies (1.7) one has

σpoint(f(Δ)) = f(σpoint(Δ)) = {Lb(μ)(−z) : z ∈ σpoint(Δ)}.
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Proof. (1) The integral formula can be shown in a similar way to [23, Prop. 3.3.2] for 
sectorial operators, as it is noticed in [32, Prop. A.3]. The equalities involving the spectra 
in (1) and (2) are consequences of the integral identity and Theorem 1.3. �
Remark 1.5. Theorem 1.3 and Theorem 1.4 are given in [31] for the so-called regularized 
calculus, which involves meromorphic functions. In particular, versions of Theorem 1.4
can be obtained in other cases covering the regularized calculus, sectorial operators and 
operator semigroups which are not necessarily groups. However, we do not need such 
results here since our interest is focused on groups of composition operators on the unit 
disc. More precisely, we study weighted hyperbolic groups (acting on a specific but fairly 
general class of Banach spaces) whose definition is recalled right now.

Let O(D) be the Fréchet algebra of holomorphic functions on the unit disc D. Let 
Aut(D) be the group of automorphisms of the disc, that is, φ ∈ Aut(D) if and only 
if φ ∈ O(D) and it is of the form φ(z) := eiθφξ(z) for all z ∈ D, where ξ ∈ D and 
θ ∈ [0, 2π), and where φξ(z) = (1 − ξz)−1(z − ξ). A family (ψt)t∈R in Aut(D) is said to 
be a group, or (holomorphic) flow, if

(1) ψ0(z) = z for all z ∈ D;
(2) ψs+t = ψs ◦ ψt for all s, t ∈ R;
(3) ψt(z) is continuous in (t, z) on R ×D.

Here we use preferably the term flow to distinguish such families of automorphisms from 
groups of operators (on Banach spaces).

The infinitesimal generator of a given flow (ψt) is the function Ψ defined by the limit 
Ψ(z) := limt→0 t

−1(ψt(z) − z), z ∈ D. Actually, the limit exists uniformly on D (see [7, 
Section 8.2]), the mapping t �→ ψt(z) is differentiable on R for every z ∈ D, and one 
has ∂ψt(z)

∂t = Ψ(ψt(z)), z ∈ D, t ∈ R. Flows of automorphisms are classified according to 
their fixed points. Namely, one says that the flow (ψt) is: 1) elliptic, if it has a unique 
fixed point in D; 2) parabolic, if it has a unique fixed point in T := {z ∈ C : |z| = 1}; 3) 
hyperbolic, if it has two distinct fixed points in T .

Here we deal with flows of hyperbolic automorphisms. For such a given flow (ψt) the 
well known Denjoy-Wolff theorem states that its fixed points in T are obtained as

a := lim
t→+∞

ψt(z), b := lim
t→−∞

ψt(z), z ∈ D.

Points a and b are called attractive and repulsive DW -points, respectively. There always 
exists an automorphism φ of D such φ(a) = 1 and φ(b) = −1, so that there exists 
c > 0 for which ϕct := φ ◦ ψt ◦ φ−1, t ∈ R, where (ϕt) is the hyperbolic flow (0.3)
with DW -points 1 (attractive) and −1 (repulsive). The generator G of (ϕt) is given by 
G(z) = 1 (1 − z2), z ∈ D, and one also has
2
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∂ϕt(z)
∂t

= G(ϕt(z)) = ∂ϕt(z)
∂z

G(z), z ∈ D, t ∈ R. (1.8)

For the above items and other details about flows of self-analytic maps of D, see [4,5,10,
35,38].

A family (vt) of analytic functions vt : D → C is called a continuous cocycle for (ψt)
if

(1) v0(z) = 1 for all z ∈ D;
(2) vs+t = vt · (vs ◦ ψt) for all s, t ∈ R;
(3) the mapping t �→ vt(z) is continuous on R for every z ∈ D.

If the mapping t �→ vt(z) is differentiable on R for every z ∈ D the cocycle (vt)
is called differentiable. The infinitesimal generator g of a differentiable cocycle (vt) is 
defined by g(z) := ∂

∂tvt(z) |t=0. Suppose that g is analytic in D. Then we define ω(z) :=
exp

(∫ z

0
g(ξ)
Ψ(ξ) dξ

)
, z ∈ D (note that Ψ �= 0 on D and the attractive DW -point a of (ψt)

lies in T ). Then one has

vt(z) = ω(ψt(z))
ω(z) , z ∈ D, t ∈ R;

see [28, Lemma 2.2].
In this paper, we consider cocycles (vt)t∈R enjoying the following property:

(∀t ∈ R) There exist vt(b) := lim
D�z→b

vt(z) ∈ C, vt(a) := lim
D�z→a

vt(z) ∈ C; (Co1)

see [8,27] for the suitability of this condition when dealing with the spectrum of weighted 
composition operators on Banach spaces.

Let X be a Banach function space continuously contained in O(D) (that is, X ↪→ O(D)
for short). Important examples of one-parameter groups in B(X) are the operator families 
of the form (vtCψt

) where (vt) is a cocycle for a flow (ψt). In fact, that (vt) is a cocycle 
is also a necessary condition for (vtCψt

) to be a group, see for example [22].
The function spaces X which we are dealing with in this paper satisfy that composition 

operators Cφ : X → X (Cφf = f ◦ φ), φ ∈ Aut(D), are bounded isomorphisms of X, see 
Remark 2.2. Since multiplication by vt is decomposed as

f
C

ψ
−1
t−−−−→ f ◦ ψ−1

t

vtCψt−−−−→ vtf,

we have that vtCψt
is bounded on X if and only if the multiplication operator f �→ vtf is 

bounded on X which is to say that vt is a multiplier of X. The space of multipliers of X
is denoted by Mul(X). In view of the above, it sounds sensible to consider the following 
property for a cocycle (vt):

(Co2) The mapping t �→ vt is Bochner-measurable from R to Mul(X).
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Definition 1.6. Let (vt) be a continuous cocycle for a hyperbolic flow (ψt). We say that 
(vt) is a DW -continuous cocycle (for the flow (ψt)) on X if it satisfies conditions (Co1)
and (Co2).

We are interested in groups (vtCψt
) where (ψt) is a hyperbolic flow and vt is a DW -

continuous cocycle. We have seen before that composition (on the left and on the right) 
of (ψt) with suitable φ ∈ Aut(D) turns (ψt) into the standard hyperbolic group (ϕt)
of generator G(z) = (1 − z2)/2. Let us now see how the action of φ affects weighted 
composition operators, under mild assumptions.

So let (ψt) be a hyperbolic flow of D with DW -points a, b ∈ T and let (vt) be a 
DW -continuous cocycle for (ψt) so that (vtCψt

) is a one-parameter group in B(X). Take 
φ ∈ Aut(D) such that φ(a) = 1, φ(b) = −1. Then there exists some c > 0 for which 
ϕct = φ ◦ ψt ◦ φ−1 for all t ∈ R, see [5]. Now set ut := vc−1t ◦ φ−1, thus uctCϕct

=
Cφ−1 ◦ (vtCψt

) ◦ Cφ. It is readily seen that t �→ ut is measurable if and only if t �→ vt is 
measurable, hence (ut) satisfies (Co2). Moreover, if there exist vt(a) := limD�z→a vt(z)
and vt(b) := limD�z→b vt(z) in C, then there exist ut(−1) := limD�z→−1 ut(z), ut(1) :=
limD�z→1 ut(z) in C, for all t, so (ut) also satisfies (Co1), i.e. (ut) is a DW -continuous 
cocycle for (ϕt). Since the operators Cφ and Cφ−1 are isomorphisms, the spectra of vtCψt

and uctCϕtct are the same. Thus, from now on, we concentrate our study of spectra of 
weighted hyperbolic groups on families (utCϕt

) of bounded operators on X where (ϕt)
is the hyperbolic flow of (0.3) and (ut) is a DW -continuous cocycle for (ϕt).

2. γ-conformal spaces

One of the aims of this paper is to study spectra of weighted composition groups 
(vtCψt

) acting on Banach spaces X ↪→ O(D). In this section, we put up the setting where 
to work by introducing a number of conditions on X. We also show that most classical 
holomorphic function spaces satisfy such conditions. The two first of these conditions, 
namely (Gam1) and (Gam2), concern multipliers. For every open subset U ⊆ C, let 
H∞(U) be the Banach algebra of bounded analytic functions on U endowed with the 
sup-norm ‖f‖H∞(U) := supz∈U |f(z)|, f ∈ H∞(U). If U = D we write ‖ ·‖H∞(D) = ‖ ·‖∞. 
Then, set ⋃

D⊆Uopen

H∞(U) ↪→ Mul(X), (Gam1)

where the “hook” arrow on the right means that ‖F‖Mul(X) ≤ KU‖F‖H∞(U), if F ∈
H∞(U), D ⊆ U open, and KU is a constant depending on U . By [15, Lemma 11], we 
have Mul(X) ↪→ H∞(D).

Let P denote the set of functions f ∈ O(D) of the form f(z) = (λz+μ)δ, z ∈ D, with 
δ > 0 and λ, μ ∈ C such that |μ| ≥ |λ|, μ �= 0. Then, set

P ⊆ Mul(X). (Gam2)
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The next property is a kind of splitting condition on X related, as we will see, with 
concentration on DW -points. For the rest of the paper, let ι denote the number −1 or 
1. Let D1 := D ∩ {z : Re z > 0} and D−1 := D ∩ {z : Re z < 0}.

(Gam3) There are two Banach spaces X1 ↪→ O(D1), X−1 ↪→ O(D−1) such that the 
following holds true

• X = {f ∈ O(D) : f |Dι
∈ Xι, ι = −1, 1} (note that the mappings f �→ f |Dι

are 
continuous by the closed graph theorem).

• If U is an open set containing Dι, then O(U) ⊆ Mul(Xι).

In order to take advantage of the theory of C0-groups, we also assume that

(Gam4) The one-parameter group of operators (Cϕt
)t∈R is strongly continuous on X.

The latter property is a mild assumption since every strongly measurable group of 
operators is strongly continuous on R as a consequence of [25, Th. 10.2.3].

Moreover, since (ϕt) is holomorphic in D, (Gam4) holds if the inclusion A(D) ↪→ X

[38, Section 4] is dense. Here, A(D) is the disc algebra; that is, the Banach algebra of 
functions in O(D) with continuous extension to the closure D, endowed with the sup-
norm.

Let us set some notation before introducing the two last properties. For ρ ∈ R and 
φ ∈ Aut(D) let Cφ,ρ denote the operator on O(D) given by Cφ,ρ := (φ′)ρCφ, where φ′ is 
the derivative of φ.

Definition 2.1. Let γ ≥ 0 and let X be a Banach space such that X ↪→ O(D), which 
separates points of D, and such that it satisfies properties (Gam1)-(Gam4). We say that 
the space X is conformally invariant of index γ and tempered type, or just γ-space for 
short, if Cφ,γ ∈ B(X) for all φ ∈ Aut(D) and

(∀ε > 0) sup
φ∈Aut(D)

(1 − |φ(0)|)ε‖Cφ,γ‖B(X) < ∞. (Gam5)

Let S be a subset of O(D) which is invariant for multiplication by functions z �→
(1 − z)λ(1 + z)μ for any λ, μ ∈ C. We say that the pair (X, S) is a DW -conditioned pair 
of index γ, or γ − pair for short, if X is a γ-space and

f ∈ S such that |f(z)| � |(1 − z)(1 + z)|−γ+ε, z ∈ D, for some ε > 0 =⇒ f ∈ X.

(Gam6)

Remark 2.2. (1) Since φ ∈ Aut(D) and Cφ,γ ∈ B(X), it follows from Cφ = (φ′)−γCφ,γ

that Cφ is a bounded isomorphism of X.
(2) One obtains from (Gam5) that σ(Cφ,γ) ⊆ D. Indeed, if φ = ϕt for some t ∈ R \{0}

(the claim is trivial if t = 0), a straightforward calculation gives us
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‖Cn
ϕt,γ‖B(X) = ‖Cϕnt,γ‖B(X) � (1 − |ϕnt(0)|)−ε � (1 + en|t|)ε, (2.1)

for every ε > 0. Then, the spectral radius formula yields σ(Cϕt,γ) ⊆ D, and our claim 
follows. If now φ is an arbitrary hyperbolic automorphism one can show, via some φ̃ ∈
Aut(D), that the operator Cφ,γ is similar to Cϕt,γ for some t ∈ R, thus σ(Cφ,γ) =
σ(Cϕt,γ) ⊆ D.

Remark 2.3. The definition of γ-pair explicitly involves the canonical hyperbolic flow 
(ϕt) with DW -points −1 and 1. It must be noticed that such a definition could be also 
given in terms of an arbitrary hyperbolic flow (ψt) with DW -points a, b ∈ T instead. 
Since γ-spaces are Cφ-invariant (φ ∈ Aut(D)), see Remark 2.2(1), all these definitions 
are indeed equivalent.

2.1. Examples

Here we list several classical Banach spaces which provide examples of γ-pairs.

(1) Little Korenblum classes and the disc algebra. For γ ≥ 0, let K−γ(D) be the weighted 
Korenblum growth class of order γ defined by

K−γ(D) := {f ∈ O(D) : ‖f‖K−γ := sup
z∈D

(1 − |z|2)γ |f(z)| < ∞},

which is a Banach space endowed with the norm ‖ ·‖K−γ . Note that γ = 0 corresponds 
to H∞(D). These spaces fulfill all conditions (Gam1)-(Gam6), except for the strong 
continuity condition (Gam4). Indeed, for f(z) = (i −z)−γ if γ > 0, and f(z) = (i −z)i
if γ = 0, one can check that the mapping t �→ Cϕt

f is not norm continuous. However, 
as we pointed out above, the closure of A(D) in these spaces satisfies (Gam4).
If γ > 0, then the closure of A(D) in K−γ(D) is the Little Korenblum growth class 
K−γ

0 (D) given by

K−γ
0 (D) := {f ∈ K−γ(D) : lim

|z|→1
(1 − |z|2)γ |f(z)| = 0},

with norm ‖ · ‖K−γ . Then (K−γ
0 (D), O(D)) is a γ-pair for every γ > 0 which satisfies 

properties (Gam1)-(Gam6) as we check next.
(Gam1) and (Gam2): These are clear since H∞(D) ↪→ Mul(K−γ

0 (D)).
(Gam3): Let C0(Dι, (1 −|z|2)γ) be the Banach weighted space of continuous functions 
f on Dι such that

lim
|z|→1,z∈Dι

(1 − |z|2)γ |f(z)| = 0 and ‖f‖K−γ
ι

:= sup
z∈Dι

(1 − |z|2)γ |f(z)| < ∞.

Define
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K−γ
0 (D)ι := O(Dι) ∩ C0(Dι, (1 − |z|2)γ),

endowed with the norm ‖ ·‖K−γ
ι

, for ι = 1, −1. Since convergence in the norm ‖ ·‖K−γ
ι

implies uniform convergence on compact subsets of Dι, it follows that K−γ
0 (D)ι is 

closed in the space C0(Dι, (1 − |z|2)γ). So K−γ
0 (D)ι is complete. It is also clear that 

O(U) ⊆ Mul(K−γ
0 (D)ι) for all open subset U ⊆ C containing Dι. Then the spaces 

K−γ
0 (D)ι satisfy (Gam3).

(Gam4): This holds since the disc algebra A(D) is a subspace dense in K−γ
0 (D).

(Gam5) and (Gam6): In fact, we have supφ∈Aut(D) ‖Cφ,γ‖B(K−γ
0 ) = 1, as it was 

noted in [2,27]. Also, it is clear that (Gam6) holds for every γ > 0 and f ∈ O(D). 
So (K−γ

0 (D), O(D)) is a γ-pair for every γ > 0.
If γ = 0, when K−γ(D) is H∞(D), we have that the closure of the disc algebra A(D)
in H∞(D) is A(D) itself. Take S(A) := {f ∈ O(D) : f extends continuously to D \
{1, −1}}. Then one can easily check that (A(D), S(A)) is a 0-pair. For instance, 
condition (Gam3) is satisfied if we consider the Banach spaces of continuous functions 
A(D)ι := O(Dι) ∩ C(Dι) with the sup-norm on Dι.

Remark 2.4. Spaces K−γ(D), γ ≥ 0, enjoy the property that, for each γ ≥ 0 and 
ε > 0, K−γ−ε(D) contains every Banach space X satisfying (Gam5). In effect, in this 
case, for f ∈ X one has

sup
z∈D

(1 − |z|2)γ+ε|f(z)| = sup
φ∈Aut(D)

(1 − |φ(0)|2)γ+ε|f(φ(0))|

= sup
φ∈Aut(D)

(1 − |φ(0)|2)ε|(Cφ,γf)(0)|

� sup
φ∈Aut(D)

(1 − |φ(0)|2)ε‖Cφ,γf‖X � ‖f‖X ,

where Schwarz-Pick’s Lemma has been used in the second equality. This bound 
obviously implies X ↪→ K−γ−ε(D) as claimed.
Notice that if (Gam5) holds for ε = 0, then mimicking the above argument we have 
X ↪→ K−γ(D).

(2) Hardy spaces of integrable functions. For 1 ≤ p < ∞, let Hp(D) be the Hardy space 
on D formed by all functions f ∈ O(D) such that

‖f‖Hp := sup
0<r<1

⎛⎝ 2π∫
0

|f(reiθ)|p dθ

2π

⎞⎠1/p

< ∞,

endowed with the norm ‖ · ‖Hp .
We claim that (Hp(D), O(D)) is a γ-pair for γ = 1/p. First, H∞(D) = Mul(Hp(D))
and therefore (Gam1), (Gam2) are fulfilled. (Gam4) holds since the disc algebra 
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A(D) is dense in Hp(D). It is well known that they satisfy (Gam5) even for ε = 0; 
in fact, operators Cφ,γ are isometries in this case, see [20, Th. 2]. (Gam6) is clear. 
Checking property (Gam3) requires a bit more of work:
Given a Banach space Z with norm ‖ · ‖Z and a set J , let B(J ; Z) denote the 
Banach space of ‖ · ‖Z-bounded Z-valued functions on J , with norm ‖F‖Z,∞ :=
supj∈J ‖F (j)‖Z . Put T1 := {z ∈ T : Re z > 0} and T−1 := {z ∈ T : Re z < 0}, and 
consider the Banach spaces

Lp(T−1) :=

⎧⎪⎪⎨⎪⎪⎩f : T−1 → C : ‖f‖p,−1 =

⎛⎜⎝ 3π/2∫
π/2

|f(eiθ)|p dθ

2π

⎞⎟⎠
1/p

< ∞

⎫⎪⎪⎬⎪⎪⎭ ,

Lp(T1) :=

⎧⎪⎪⎨⎪⎪⎩f : T1 → C : ‖f‖p,1 =

⎛⎜⎝ π/2∫
−π/2

|f(eiθ)|p dθ

2π

⎞⎟⎠
1/p

< ∞

⎫⎪⎪⎬⎪⎪⎭ .

Take the interval J = (0, 1) in R and Z = Lp(Tι), ι = −1, 1. Define

Hp(D)ι := K−γ(Dι) ∩B((0, 1);Lp(Tι)),

where K−γ(Dι) = {f ∈ O(Dι) : ‖f‖K−γ
ι

< ∞}. In such an intersection, an element 
F ∈ K−γ(Dι) is regarded as the family (Fr)0<r<1 of functions on T where Fr(z) :=
F (rz) for r ∈ (0, 1), z ∈ T . Thus F ∈ Hp(D)ι means that F ∈ K−γ(Dι) and 
F̃ : (0, 1) → Lp(Tι) given by F̃ (r) := Fr satisfies sup0<r<1 ‖F̃ (r)‖p,ι < ∞. Then the 
space Hp(D)ι, provided with the norm

‖F‖Hp
ι

:= ‖F‖K−γ
ι

+ sup
0<r<1

‖F̃ (r)‖p,ι,

is a Banach space. Since Hp(D) ↪→ K−γ(D), see the end of Remark 2.4, it is readily 
seen that Hp(D)ι satisfies (Gam3).

(3) Weighted Bergman spaces. Let 1 ≤ p < ∞ and σ > −1. Let Ap
σ(D) denote the 

weighted Bergman space formed by all holomorphic functions in D such that

‖f‖Ap
σ

:=

⎛⎝∫
D

|f(z))|pdAσ(z)

⎞⎠1/p

< ∞,

where dAσ(z) = (1 −|z|2)σ dA(z), and where dA is the Lebesgue measure on D. The 
space Ap

σ(D), with norm ‖ ·‖Ap
σ
, is a Banach space such that the pair (Ap

σ(D), O(D))
is a γ-pair with for γ = σ+2

p .
Indeed, as in the above examples, H∞(D) = Mul(Ap

σ(D)), so (Gam1), (Gam2)
hold. Define Ap

σ(D)ι := O(Dι) ∩ Lp(Dι, (1 − |z|2)σ). Clearly, Ap
σ(D)ι endowed with 
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the usual norm of Lp(Dι, (1 − |z|2)σ) satisfies (Gam3). Moreover, Ap
σ(D) satisfies 

(Gam4) since A(D) is dense in Ap
σ(D). It is well known that Ap

σ(D) satisfies (Gam5); 
see for instance the proof of [27, Th. 4.6].
Finally, (Gam6) is also satisfied. To see this, set hε(z) := (1 − z2)−γ+ε, z ∈ D, for 
ε > 0. Let us check that hε belongs to Ap

σ(D). Note that hε ∈ Ap
σ(D) if and only if ∫

D |1 −z2|−σ−2+pεdAσ(z) < ∞. Then the finiteness of the integral readily follows by 
decomposing it in three (finite, eventually) terms corresponding to the (integration) 
domains D ∩ D(−1; 1/2), D \ (D(−1; 1/2) ∪ D(1; 1/2)) and D ∩ D(1; 1/2) where 
D(w; r) := {z : |z − w| < r}, w ∈ C, r > 0.

The two following examples are provided by Dirichlet spaces and Bloch spaces. To 
deal with them, we introduce the set Slog of all functions f ∈ O(D), zero-free on D, 
such that

(∀ε > 0) sup
z∈D

|(1 − z2)|1+ε

∣∣∣∣f ′(z)
f(z)

∣∣∣∣ < ∞.

(4) Weighted Dirichlet spaces. For p ≥ 1 and σ > −1, let Dp
σ(D) denote the weighted 

Dirichlet space of all functions f ∈ O(D) such that f ′ ∈ Ap
σ(D) and

‖f‖Dp
σ

:=
(
|f(0)|p + ‖f ′‖pAp

σ

)1/p

< ∞.

Then Dp
σ(D) is a Banach space with norm given by ‖ · ‖Dp

σ
. When σ > p − 1 one has 

Dp
σ(D) = Ap

σ−p(D) with equivalent norms, see e.g. [19, Th. 6]. Hence (Dp
σ(D), O(D))

is a γ-pair for γ = σ+2
p − 1.

In the case p − 2 ≤ σ ≤ p − 1, we prove that the pair (Dp
σ(D), Slog) is a γ-pair 

for γ = σ+2
p − 1. The following lemma concerns multipliers and shows that Dp

σ(D)
satisfies properties (Gam1) and (Gam2).

Lemma 2.5. Let σ > −1, p ≥ 1 be such that p − 2 ≤ σ ≤ p − 1. Then 
H∞(U) ↪→ Mul(Dp

σ(D)) for every open subset U of C such that D ⊆ U , and also 
P ⊆ Mul(Dp

σ(D)).

Proof. (1) The inclusion H∞(U) ↪→ Mul(Dp
σ(D)) is well known. We include here a 

proof for the sake of completeness. Let U be an open subset of C such that D ⊆ U . 
Let h ∈ H∞(U). For every f ∈ Dp

σ(D), one has ‖hf‖pDp
σ

= |h(0)f(0)|p + ‖(hf)′‖pAp
σ

with

‖(hf)′‖Ap
σ
≤ ‖hf ′‖Ap

σ
+ ‖h′f‖Ap

σ
≤ ‖h‖∞‖f ′‖Ap

σ
+ ‖h′‖∞‖f‖Ap

σ

� (‖h‖∞ + ‖h′‖∞)‖f ′‖Ap
σ
,
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where we have used that ‖f‖Ap
σ

� ‖f ′‖Ap
σ+p

≤ ‖f ′‖Ap
σ

for all f ∈ Dp
σ(D), see 

for instance [19, Th. 6]. Now, using Cauchy’s estimate for the derivative, one has 
‖h′‖∞ � ‖h‖H∞(U), and we are done.
Let now g(z) = cz + d, z ∈ D, with c, d ∈ C such that |c| ≤ |d| and take δ > 0. If 
|c| < |d| the function gδ is a holomorphic function in an open set containing D and 
therefore it is a multiplier of Dp

σ(D) as seen before. If |c| = |d| one can assume that 
g(z) = 1 − z since rotations are isometries of Dp

σ(D). Then, for every f ∈ Dp
σ(D), 

one has ‖gδf‖pDp
σ

= |gδ(0)f(0)|p + ‖(gδf)′‖pAp
σ

with

‖(gδf)′‖Ap
σ
≤ ‖gδ‖∞‖f ′‖Ap

σ
+ δ‖gδ‖∞‖g−1f‖Ap

σ

≤ 2δ‖f ′‖Ap
σ

+ δ2δ
⎛⎝∫

D

|f(z)|pρ(z)dA(z)

⎞⎠1/p

,

where ρ(z) := (1 − |z|2)σ|1 − z|−p, z ∈ D.
Assume first σ > p − 2. Then, using [24, Th. 1.7], one has∫

D

ρ(ζ)
|1 − ζz|η+2

dA(ζ) =
∫
D

(1 − |ζ|2)σ
|1 − ζ|p|1 − ζz|η+2

dA(ζ) � ρ(z)
(1 − |z|)η , z ∈ D.

In the terminology of [1], the above inequality implies that ρ/(1 − | · |)η ∈ B∗
1(η), 

η > σ. Moreover, a few computations show that

‖∇ρ(z)‖R2 ≤ 2
√

2(|σ| + p) ρ(z)
1 − |z|2 , z ∈ D,

where ∇ρ denotes the gradient of the differentiable function ρ. In short, ρ satisfies 
condition (3.21) of [1]. Hence, we can apply [1, Th. 3.2(iv)] in the inequality “�” 
coming in to obtain∫

D

|f(z)|pρ(z)dA(z) � |f(0)|p +
∫
D

|f ′(z)|p(1 − |z|2)pρ(z)dA(z)

≤ |f(0)|p +
∫
D

|f ′(z)|p(1 − |z|2)σdA(z) = ‖f‖pDp
σ
,

(see also [2, Prop. 3.1]).
Assume now σ = p − 2 and take ε ∈ (0, δ). One gets

‖(gδf)′‖Ap
σ
≤ ‖gδ‖∞‖f ′‖Ap

σ
+ δ‖gδ−ε‖∞‖g−(1−ε)f‖Ap

σ

≤ 2δ‖f ′‖Ap
σ

+ δ2δ−ε

⎛⎝∫
D

|f(z)|pρε(z)dA(z)

⎞⎠1/p
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with ρε(z) := (1 − |z|2)σ|1 − z|−p(1−ε), z ∈ D. The remainder of the argument goes 
along the same lines as in the case σ > p − 2, where the weight ρ should be replaced 
by the weight ρε.
All in all, one has gδ ∈ Mul(Dp

σ(D)) for every δ > 0 and therefore P ⊆
Mul(Dp

σ(D)). �
Let Dp

σ(D)ι := {f ∈ O(Dι) : f ′ ∈ Lp(Dι, (1 − |z|2)σ)} equipped with the norm

‖f‖Dp
σ,ι :=

⎛⎝|f(ι/2)|p +
∫
Dι

|f ′(z)|p dAσ(z)

⎞⎠1/p

,

which satisfies (Gam3). Note that if (fn) is a Cauchy sequence in Dp
σ(D)ι then 

there exists g ∈ Ap
σ(D)ι such that limn f

′
n = g in Ap

σ(D)ι. Since Dι is sim-
ply connected there exists a primitive function f of g, which we take such that 
f(ι/2) = limn fn(ι/2). Thus we have that limn fn = f in Dp

σ(D)ι and it follows that 
this space is complete. Moreover, (Gam4) is also satisfied since polynomials are dense 
in Dp

σ(D), and it is readily seen that the mapping t �→ Cϕt
Q is norm continuous for 

every polynomial Q. The fact that the Dirichlet space satisfies (Gam5) and (Gam6)
is proved in the following lemma.

Lemma 2.6. Let p ≥ 1 and σ > −1 be such that p −2 ≤ σ ≤ p −1. Then (Dp
σ(D), Slog)

is a γ-pair with γ = σ+2
p − 1.

Proof. As noticed above, all that is left to prove is that the pair (Dp
σ(D), Slog)

satisfies properties (Gam5) and (Gam6). It is known that supφ∈Aut(D) ‖Cφ,γ‖B(Dp
σ) <

∞ if and only if σ > p −2 with γ = (σ+2)/p −1 [2, Prop. 3.1]. Thus Dp
σ(D) satisfies 

(Gam5) with γ = (σ + 2)/p − 1 when σ > p − 2. For σ = p − 2, whence γ = 0, we 
show that Dp

p−2 is a 0-space as follows.
Let f ∈ Dp

p−2(D) so that f ′ ∈ Ap
p−2(D) ↪→ K−1(D), see the end of Remark 2.4. 

Then, since f(z) = f(0) +
∫ z

0 f ′(ξ)dξ for all z ∈ D, we have

|f(z)| ≤ |f(0)| +
∫

[0,z]

‖f ′‖Ap
p−2

(1 − |ξ|)−1|dξ|

≤ |f(0)| − ‖f ′‖Ap
p−2

log(1 − |z|) ≤ ‖f‖Dp
p−2

(1 − log(1 − |z|) ,

for all z ∈ D and f ∈ Dp
p−2(D). Hence, for every φ ∈ Aut(D),

‖f ◦ φ‖Dp
p−2

=
(
|f(φ(0))|p + ‖φ′(f ′ ◦ φ)‖pAp

p−2

)1/p

=
(
|f(φ(0))|p + ‖f ′‖pAp

p−2

)1/p

≤ ‖f‖ p (1 − log(1 − |φ(0)|)) ,

(2.2)
Dp−2
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where we have used that Cφ,1 is an isometric isomorphism in Ap
p−2 and the previous 

estimate for |f(z)|, z ∈ D. Thus Dp
p−2(D) satisfies (Gam5) with γ = 0.

As for condition (Gam6), let γ = σ+2
p − 1 and f ∈ Slog such that, for some ε > 0, 

we have |f(z)| � |1 − z2|−γ+ε for all z ∈ D. Then

|f ′(z)| = |f(z)| |f
′(z)|

|f(z)| � |1 − z2|−γ+ε|1 − z2|−1−ε/2 = |1 − z2|−γ−1+ε/2,

for every z ∈ D. Since γ + 1 = (σ + 2)/p one gets f ′ ∈ Ap
σ(D); that is, f ∈ Dp

σ(D), 
which implies that (Dp

σ(D), Slog) is a γ-pair with γ = σ+2
p − 1. �

(5) Bloch spaces. For δ > 0, let Bδ(D) denote the Bloch space, that is, the space of 
holomorphic functions on D such that

‖f‖Bδ
:= |f(0)| + sup

z∈D
(1 − |z|2)δ|f ′(z)| < ∞,

endowed with the norm ‖ · ‖Bδ
. Let Bδ,0(D) denote the little Bloch space, consisting 

of the closure of polynomials in Bδ(D). One has indeed

Bδ,0(D) = {f ∈ Bδ(D) : lim
|z|→1

(1 − |z|2)δ|f ′(z)| = 0},

see [42, Prop. 2]. For δ > 1 these spaces are Korenblum classes; i.e.,

Bδ(D) = K−(δ−1)(D) and Bδ,0(D) = K−(δ−1)
0 (D)

with corresponding equivalent norms, see [42, Prop. 7].
For δ = 1, B1(D) fails to satisfy condition (Gam4). In fact, the mapping t �→ Cϕt

f , 
with f(z) = Log(i − z), z ∈ D, is not norm continuous (where Log is the branch of 
the logarithm with argument in [π/2, 5π/2)). On the other hand, B1,0(D) satisfies 
(Gam4) since the mapping t ∈ R �→ Cϕt

Q ∈ B1,0(D) is continuous for every analytic 
polynomial Q and the space of analytic polynomials is dense in B1,0(D).

Let us show that the little Bloch space B1,0(D) is a 0-space and that (B1,0(D), Slog)
is a 0-pair. We know that (Gam4) holds. As regards multipliers, we have

Mul(B1(D) = Mul(B1,0(D))

= {f ∈ H∞(D) : (1 − | · |2) log(1 − | · |2)f ′ ∈ H∞(D)},

see [42, Th. 27], from which (Gam1), (Gam2) follow.
Define B1(D)ι := {f ∈ O(Dι) : supz∈Dι

(1 − |z|2)|f ′(z)| < ∞}, with norm 
‖f‖Bσ,ι

:= |f(ι/2)| + supz∈Dι
(1 − |z|2)|f ′(z)|, and let B1,0(D)ι denote the clo-

sure of the polynomials in B1(D)ι. If (fn) is a Cauchy sequence in B1,0(D)ι, then 
(f ′

n) is convergent to some g in K−1(D)ι. Taking f ∈ O(Dι) with f ′ = g and 
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f(ι/2) = limn fn(ι/2) we get limn fn = f in B1,0(D)ι. In short, B1,0(D)ι is com-
plete, and it is readily seen that B1,0(D)ι satisfies (Gam3) for B1,0(D).
Now, for every φ ∈ Aut(D),

‖f ◦ φ‖B1,0 = |f(φ(0))| + sup
z∈D

(1 − |z|2)|φ′(z)f ′(φ(z))|,

with

|f(φ(0))| ≤ |f(0)| +
φ(0)∫
0

|f ′(ξ)||dξ|

� ‖f‖B1,0

⎛⎜⎝1 +
φ(0)∫
0

(1 − |ξ|)−1dξ

⎞⎟⎠ = ‖f‖B1,0(1 − log(1 − |φ(0)|)).

On the other hand, using the Schwarz-Pick lemma one has

sup
z∈D

(1 − |z|2)|φ′(z)f ′(φ(z))| ≤ sup
z∈D

(1 − |φ(z)|2)|f ′(φ(z))| ≤ ‖f‖B1,0 .

Thus (Gam5) holds. Finally, by an argument like in the case of Dirichlet spaces, it 
can be seen that (B1,0(D), Slog) satisfies (Gam6).

3. Cocycles for the hyperbolic group on γ-spaces

Let X be a γ-space for some γ ≥ 0 and let (ut) be a DW -continuous cocycle for 
the hyperbolic flow (ϕt) on X. Condition (Co2) together with (Gam4) imply that the 
mapping t �→ utCϕt

is strongly measurable, hence (utCϕt
) is a C0-group of bounded 

operators on X, see [25, Th. 10.2.3]. This fact implies, along the same lines as in [28, 
Th. 1], that there exists a holomorphic function ω : D → C with no zeros such that 
ut = (ω ◦ ϕt)/ω for all t ∈ R.

The first part of this section is devoted to show that functions ω associated to DW -
continuous cocycles (ut) ⊆ Mul(X) as indicated above, present zeroes or singularities 
of polynomial type at −1 and 1. In the second part, further additional properties of 
γ-spaces, regarding DW -continuous cocycles, are introduced.

Every measurable subadditive function on (0, ∞) is locally bounded [14, p. 618]. In-
spired by this result, we obtain the lemma which follows.

Lemma 3.1. Let g : (0, ∞) → R be a measurable function such that

g(s + t) ≤ g(s) + g(t) + H(s, t) s, t > 0,

where H is nondecreasing if s, t increase simultaneously. Then g is locally bounded on 
(0, ∞).
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Proof. Take a > 0 and put F := {t ∈ (0, a) : g(t) ≥ (g(a) − H(a, a))/2)}. For a given 
t ∈ (0, a) with t /∈ F one has g(t) < g(a)/2 −H(t, a − t)/2. Also, g(a) ≤ g(t) + g(a − t) +
H(t, a − t). All in all,

g(a− t) ≥ g(a) − g(t) −H(t, a− t)

> g(a) − g(a) −H(t, a− t)
2 −H(t, a− t) ≥ g(a)

2 − H(a, a)
2 ,

since H is nondecreasing. Hence t ∈ a −F ; that is, (0, a) = F∪(a −F ) and so μ(F ) ≥ a/2.
Suppose now, if possible, that g is unbounded on [c, d] for some c, d > 0. Take a 

sequence (sn) in [c, d] such that g(sn) ≥ 2n for each n ∈ N. Put Bn := {0 < t < d :
g(t) ≥ n −H(d, d)}, n ≥ 1. Applying the above argument to Fn := {0 < t < sn : g(t) ≥
(g(sn) −H(sn, sn))/2} we get μ(Bn) ≥ c/2 since Fn ⊆ Bn, for all n ≥ 1. Then, taking 
t ∈

⋂∞
n=1 Bn one gets g(t) = ∞, which is a contradiction.

In conclusion, g is locally bounded, as we claimed. �
Lemma 3.2. For (ut) as above, the mapping t �→ ‖ut‖Mul(X) is locally bounded on R.

Proof. First, we prove that for every ε > 0 there is Kε > 0 such that

‖us+t‖Mul(X) ≤ ‖us‖Mul(X)‖ut‖Mul(X)

(
Kεe

εmin{|s|,|t|}
)2

, s, t ∈ R. (3.1)

Note that (us ◦ϕt)f = Cϕt,γ(usCϕ−t,γf) for any f ∈ X, thus us ◦ϕt ∈ Mul(X) for every 
s, t ∈ R. Moreover, by the cocycle property us+t = us(ut ◦ ϕs) = ut(us ◦ ϕt), hence

‖us+t‖Mul(X)

≤ min
{
‖us‖Mul(X)‖ut ◦ ϕs‖Mul(X), ‖ut‖Mul(X)‖us ◦ ϕt‖Mul(X)

}
, s, t ∈ R.

In addition, ‖us◦ϕt‖Mul(X) ≤ ‖Cϕt,γ‖B(X)‖us‖Mul(X)‖Cϕ−t,γ‖B(X). Since ‖Cϕt,γ‖B(X) ≤
Kεe

ε|t| for t ∈ R (see (2.1)), the inequality (3.1) follows. Hence, for s, t ∈ R,

log ‖us+t‖Mul(X) ≤ log ‖us‖Mul(X) + log ‖ut‖Mul(X) + 2(εmin{|t|, |s|} + logKε). (3.2)

Thus applying Lemma 3.1 to g(t) := log ‖ut‖Mul(X) and H(s, t) := 2(ε min{|t|, |s|} +
logKε), s, t > 0, we obtain that t �→ ‖ut‖Mul(X) is bounded on [c, d] if cd > 0. So it 
remains to prove the result for [c, d] with c < 0 and d > 0.

Fix s big enough so that s >> |c| and s >> d. By (3.1)

‖ut‖Mul(X) ≤ ‖us‖Mul(X)‖ut−s‖Mul(X)

(
Kεe

εmin{|s|,|t−s|}
)2

, t ∈ [c, d],

which is uniformly bounded since s, t − s are bounded away from zero. �
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Lemma 3.3. Let (ut) be a cocycle as above. Then, ut has no zero for any t ∈ R, and the 
family (u−1

t ) is a DW -continuous cocycle for the flow (ϕt) on X.

Proof. First, for each t ∈ R, ut has no zero on D, see [28, Lemma 2.1], so u−1
t is well 

defined. Moreover, by the cocycle property of (ut) it follows that u−1
t = u−t ◦ ϕt, t ∈ R, 

and then it is readily seen that (u−1
t ) is a continuous cocycle for (ϕt).

Now, note that (u−t ◦ ϕt)f = Cϕt
(u−tCϕ−t

f), f ∈ X, so that u−1
t = u−t ◦ ϕt is a 

multiplier in X since Cϕt
, Cϕ−t

are isomorphisms on X, see Remark 2.2(1). In fact, u−1
t

is the inverse multiplier of ut.
Recall that Mul(X) ↪→ H∞(D) as we pointed out in Section 2. This implies that 

u−1
t is bounded, hence ut(1), ut(−1) �= 0 for any t ∈ R, and as a consequence u−1

t

is continuous at the DW -points −1, 1, that is, it satisfies (Co1). Finally, the mapping 
t �→ u−1

t is measurable since it is the composition of the measurable mapping t �→ ut

and the (continuous) inversion map in the group of invertible multipliers of X. Hence, 
(u−1

t ) fulfills (Co2). �
Lemma 3.4. Let (ut) be a cocycle as above. Then there are K, w > 0 such that, for every 
t ∈ R,

sup
{
‖ut‖Mul(X), ‖u−1

t ‖Mul(X)
}
≤ Kew|t|,

sup
{
‖ut‖∞, ‖u−1

t ‖∞
}
≤ Kew|t|.

Proof. By Lemma 3.2 there exists M > 0 for which sup−1≤t≤1 log ‖ut‖Mul(X) ≤ M . 
We show by induction that log ‖ut‖Mul(X) ≤ M + m|t| for every t ∈ R, where m =
2(ε + logKε), where Kε, ε are taken as in (3.2). The claim is trivial if |t| ≤ 1, so assume 
it holds for all |t| ≤ n for some n ∈ N. Then, for t ∈ [n, n + 1], the inequality (3.2)
implies

log ‖ut‖Mul(X) ≤ log ‖ut−1‖Mul(X) + log ‖u1‖Mul(X) + m

≤ M + m|t− 1| + m = M + m|t|.

The above inequality is proven analogously for t ∈ [−n −1, −n], thus the induction holds 
true and the bound of the lemma follows for ‖ut‖Mul(X).

As regards the inequality for ‖u−1
t ‖Mul(X), Lemma 3.3 implies that (u−1

t ) is a well-
defined DW -continuous cocycle for the flow (ϕt), hence the claim follows by what we 
have already proven for (ut).

To finish the proof, recall that by [15, Lemma 11], the continuous inclusion Mul(X) ↪→
H∞(D) holds, so the inequalities of the claim for ‖ut‖∞, ‖u−1

t ‖∞ follow from the ones 
we have already proven. �

The real numbers αu, βu found in the following lemma will be called exponents of (ut). 
They play a central role in our spectral discussion in this paper. Recall that ut(1) :=
limD�z→1 ut(z) and ut(−1) := limD�z→−1 ut(z).
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Lemma 3.5. There exists αu, βu ∈ R such that

|ut(1)| = eαut, |ut(−1)| = eβut, t ∈ R.

Proof. The mapping t �→ |ut(ι)| is a group homomorphism for ι = −1, 1 since

us+t(ι) = lim
D�z→ι

us+t(z) =
(

lim
D�z→ι

us(z)
)(

lim
D�z→ι

ut(ϕs(z))
)

= us(ι)ut(ι), s, t ∈ R,

where we have used that limD�z→ι ϕt(z) = ι through D for all t ∈ R. It follows from 
Lemma 3.4 that t �→ |ut(ι)| is a locally bounded homomorphism from R to R+, so it 
satisfies Cauchy’s exponential functional equation. Hence there exists cι ∈ R such that 
ut(ι) = ecιt, and the claim follows. �

One can deduce from [27, Lemma 4.4] that limN�n→∞ ‖un‖1/n
∞ = max{|u1(1)|,

|u1(−1)|} for every DW -continuous cocycle (ut). We need extensions of this property, 
which are pointed out in the following lemma.

Lemma 3.6. Let t ∈ R \ {0}. Then

lim
x→∞

‖uxt‖1/x
∞ = max{|ut(1)|, |ut(−1)|}.

In addition, for t > 0 it holds that

lim
x→∞

‖uxt‖1/x
H∞(D1) = |ut(1)|, lim

x→−∞
‖uxt‖−1/x

H∞(D−1) = |u−t(−1)|.

Proof. The existence of limx→∞ ‖uxt‖1/x
∞ , as well as the first equality, is a consequence 

the fact that t �→ log ‖ut‖∞ is a subadditive function of [27, Lemma 4.4].
The other claims in the statement regarding the limits are obtained similarly to the 

above and reasoning as in the proof of [27, Lemma 4.4]. �
As it has been said, ω is a zero-free holomorphic function related to (ut) by ut =

(ω ◦ϕt)/ω. We show in Theorem 3.11 that ω has tempered zeroes or singularities at the 
DW -points. This property is one of the key facts through our discussion in this paper.

Remark 3.7. In terms of the function ω, Lemma 3.6, second half, reads

lim
s→∞

∥∥∥ω ◦ ϕs

ω

∥∥∥1/s

H∞(D1)
= eαu , lim

s→−∞

∥∥∥ω ◦ ϕs

ω

∥∥∥−1/s

H∞(D−1)
= e−βu .

Lemma 3.8. Let ω be as above, let λ, ν ∈ C and set ρ(z) = ω(z)(1 −z)λ(1 +z)ν for z ∈ D. 
Then the cocycle (vt) given by vt = (ρ ◦ ϕt)/ρ is a DW -continuous cocycle for (ϕt) on 
X with exponents αv = αu −Re λ and βv = βu + Re ν.
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Proof. Given a bounded interval I ⊆ R and t ∈ R there exists an open subset U
containing the closed disc D such that the function ht given by

ht(z) =
(

1 − ϕt(z)
1 − z

)λ(1 + ϕt(z)
1 + z

)ν

=
(

2
(et − 1)z + et + 1

)λ+ν

eνt, z ∈ U,

is holomorphic in U for all t ∈ I. Then we have that vt = utht is a continuous cocycle 
which is continuous at the DW -points −1, 1. Thus it satisfies (Co1).

Moreover, U can be chosen for the mapping t ∈ I �→ ht ∈ H∞(U) to be continuous. 
Since H∞(U) ↪→ Mul(X) by (Gam1), it follows that the mapping t ∈ I �→ vt ∈ Mul(X)
is measurable, so that (vt) satisfies (Co2), that is, (vt) is a DW -continuous cocycle.

Regarding the exponents of (vt), a few computations show that limz→1(1 −ϕt(z))/(1 −
z) = e−t and limz→−1(1 +ϕt(z))/(1 +z) = et, t ∈ R. In addition, limz→−1(1 −ϕt(z))/(1 −
z) = limz→1(1 + ϕt(z))/(1 + z) = 1 since both −1, 1 are fixed points of ϕt. Hence we 
conclude limz→1 |vt(z)| = limz→1 |ut(z)||ht(z)| = eαut|e−λt| = e(αu−Reλ)t, i.e. αv =
αu −Re λ. Similarly we obtain βv = βu + Re ν and the proof is finished. �
Remark 3.9. According to (1.8), the following equality holds

(ϕ′
t)δ = Gδ ◦ ϕt

Gδ
; t ∈ R, δ ∈ R,

where G is the generator of the flow (ϕt) given by G(z) = (1 − z2)/2, z ∈ D. Whence, 
it follows by Lemma 3.8 that, for every δ ∈ R and an arbitrary DW -continuous cocycle 
(ut) for the flow (ϕt) on X, the family (ut(ϕ′

t)δ) is a DW -continuous cocycle for the flow 
(ϕt) on X. In particular, taking ut = 1 (i.e. the constant function equal to 1) we have 
that ((ϕ′

t)δ) is a DW -continuous cocycle for the flow (ϕt) on X.

Lemma 3.10. Let A ⊆ D be such that {−1, 1} ∩A = ∅. For ω as above, supz∈A |ω(z)| < ∞
and infz∈A |ω(z)| > 0.

Proof. The claim is trivial if ω is a constant function, so let us assume that ω is not 
constant.

As neither −1 nor 1 belong to A, it is readily seen that there exists R > 0 such that, 
for any z ∈ A there are (unique) x ∈ (−1, 1) and t ∈ [−R, R] such that z = ϕt(ix). As 
ω(z) = ω(ϕt(ix)) = ut(ix)ω(ix), one has by Lemma 3.4

sup
z∈A

|ω(z)| ≤
(

sup
x∈(−1,1)

|ω(ix)|
)(

sup
x∈(−1,1), t∈[−R,R]

|ut(ix)|
)

� sup
x∈(−1,1)

|ω(ix)|.

Next, we prove supx∈(−1,1) |ω(ix)| < ∞ by reaching a contradiction. Thus, suppose 
for a moment supx∈(−1,1) |ω(ix)| = ∞. In this case, for some d ∈ {−1, 1}, there exists 
a sequence (−1, 1) � xn → d such that limn→∞ |ω(ixn)| = ∞. As a consequence, if the 
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limit lim(−1,1)�x→d |ω(ix)| existed, it would be equal to ∞. Assume that this is the case 
with d = 1 (the argument for d = −1 works similarly). Now, for θ ∈ (0, π), let tθ denote 
the unique real number for which ϕtθ(i) = eiθ. A few computations show that

tθ = 2 tanh−1
(

− cos θ
1 + sin θ

)
, θ ∈ (0, π).

Therefore, the mapping Φ : [0, 1] × (0, π) → C given by Φ(x, θ) = ϕtθ (ix) is continuous. 
Even more, Φ([0, 1) ×(0, π)) ⊆ D and Φ(1, θ) = eiθ, so Φ is a continuous family of paths in 
the sense of [13, pp. 83]. Since there exist K, w > 0 such that the bound ‖u−1

t ‖∞ ≤ Kew|t|

holds for all t ∈ R (see Lemma 3.4), it follows that

lim
x→1−

|ω(Φ(x, θ))| = lim
x→1−

|ω(ϕtθ (ix))| = lim
x→1−

|utθ (ix)||ω(ix)| = ∞,

for all θ ∈ (0, π), which is absurd by the uniqueness of limits along the family of contin-
uous path Φ, see [13, pp. 83].

Before continuing with the proof, we assume furthermore that αu < 0 and βu > 0. 
Then, Remark 3.7 implies that there exists M > 0 such that

|ω(ϕs(ix))| < |ω(ix)|, for all |s| ≥ M, x ∈ (−1, 1). (3.3)

We now continue with the proof of the lemma. As lim(−1,1)�x→d |ω(ix)| does not exist 
and in particular is not equal to ∞ for neither d = −1 nor d = 1, there exist K > 0 and a 
sequence (yn)n∈N ⊆ (−1, 1) with accumulation points −1, 1 and such that |ω(iyn)| ≤ K

for all n ∈ N. One has μ := supt∈[−M,M ] ‖ut‖∞ < ∞ by Lemma 3.4, where M > 0
is as in (3.3). Take C such that C > max{μ, 1} and x̃ := xN1 , ỹ := yN2 , z̃ = yN3 for 
N1, N2, N3 ∈ N such that |ω(ix̃)| > CK and z̃ < x̃ < ỹ. Let B ⊆ D be the compact 
subset

B := {ϕs(ix) | (x, s) ∈ [z̃, ỹ] × [−M,M ]} .

We now prove that |ω| reaches its maximum in B in its interior, which contradicts the 
maximum modulus principle. Let L = maxx∈[z̃,ỹ] |ω(ix)|, which is attained in (z̃, ̃y) since 
|ω(ix̃)| > |ω(iỹ)|, |ω(iz̃)|. Now, notice that

max{|ω(ϕs(iz̃))|, |ω(ϕs(iỹ))|} ≤ C max{|ω(iz̃)|, |ω(iỹ)|} ≤ CK

< |ω(ix̃)| ≤ L, s ∈ [−M,M ],

and, by (3.3),

max{|ω(ϕ−M (ix))|, |ω(ϕM (ix))|} < |ω(ix)| ≤ L, x ∈ [z̃, ỹ].

Hence the maximum of |ω| in B is not attained in its boundary, reaching a contradiction. 
Therefore, supx∈(−1,1) |ω(ix)| < ∞.
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If αu ≥ 0 or βu ≤ 0, we consider the weight ρ(z) := ω(z)(1 − z)−N (1 + z)M and its 
associated cocycle vt := (ρ ◦ ϕt)/ρ, where N > |αu|, M > |βu|. It follows by Lemma 3.8
that (vt) is a DW -continuous cocycle with αv = αu − N < 0 and βv = βu + M > 0, 
so by what we have already proven, supx∈(−1,1) |ρ(ix)| < ∞, and as a consequence, 
supx∈(−1,1) |ω(ix)| ≤ 2N/2 supx∈(−1,1) |ρ(ix)| < ∞, as we wanted to show.

Finally, consider the DW -continuous cocycle given by (u−1
t ), see Lemma 3.3, and 

let A be a subset as in the statement. Then the weight associated with (u−1
t ) is ω−1, 

whence it follows from the above that supz∈A |ω(z)−1| < ∞, that is, infz∈A |ω(z)| =
(supz∈A |ω−1(z)|)−1 > 0. �
Theorem 3.11. Let ω be the holomorphic function associated with a DW -continuous co-
cycle (ut), so ut = (ω ◦ϕt)/ω. Let αu, βu be the exponents of (ut). Then, for every ε > 0, 
one has

|ω(z)| � |1 − z|−αu−ε|1 + z|βu−ε, z ∈ D,

|ω(z)| � |1 − z|−αu+ε|1 + z|βu+ε, z ∈ D.

Proof. By Lemma 3.10, we only have to prove the inequalities of the claim for some 
arbitrary neighbourhoods U−1, U1 of −1, 1 respectively. We prove it for U1 of 1, being 
the other one analogous. One has

1 − ϕs(z)
1 − z

es → 1, as z → 1,

uniformly on s > 0. On the other hand, by Remark 3.7, for any ε′ > 0, there exists some 
M > 0 such that

|ω(ϕs(z))| ≤ |ω(z)|es(αu+ε′), for all s ≥ M, z ∈ D1.

Hence, for every ε > 0, C > 1, there exists a neighbourhood U of 1, and M > 0 such 
that

|ω(ϕs(z))| ≤ C|ω(z)|
∣∣∣∣ 1 − z

1 − ϕs(z)

∣∣∣∣αu+ε

, for all s ≥ M, z ∈ U ∩D. (3.4)

Since ϕ−M is analytic at 1 and ϕ−M (1) = 1 there is an open subset V such that 
1 ∈ V ⊆ U and ϕ−M (V) ⊆ U . It follows by Lemma 3.10 that ω is bounded on D1 \ V. 
Moreover, taking V such that D \ U , ϕ−M (V) are two disjoint connected sets, it is easy 
to see that for all v ∈ V ∩ D there is s(v) ≥ M such that ϕ−s(v)(v) ∈ D ∩ (U \ V). But 
then, (3.4) applied to z = ϕ−s(v)(v) implies, for any ε > 0,

|ω(v)| ≤ C|ω(ϕ−s(v)(v)|
∣∣∣∣1 − ϕ−s(v)(v)

1 − v

∣∣∣∣αu+ε

� |1 − v|−αu−ε, v ∈ V,
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where, in the second inequality, we have used Lemma 3.10 for |ω|, and that |1 −ϕ−s(v)(v)|, 
|ω(ϕ−sv (v))| are bounded away from zero, since ϕ−s(v)(v) /∈ V. As said above, one 
can analogously obtain that there exists a neighbourhood U−1 ⊆ D of −1 such that 
|ω(z)| � |1 + z|βu−ε, z ∈ U−1 ∩D. Altogether, one gets |ω(z)| � |1 − z|−αu−ε|1 + z|βu−ε, 
z ∈ D.

Finally, the inequality � of the claim follows by an application of what we have 
already proven to the DW -continuous cocycle (vt) := (u−1

t ) with weight ρ = ω−1, 
see Lemma 3.3. Indeed, since αv = −αu and βv = −βu, one has that for any ε > 0, 
|ω(z)−1| = |ρ(z)| � |1 −z|αu−ε|1 +z|−βu−ε for all z ∈ D. Thus the proof is concluded. �

Theorem 3.11 is a significant step in our discussion since it shows that, under mild 
conditions on a cocycle, its associated weight ω must be tempered at DW -points. Besides 
such a property we next introduce two other conditions of asymptotic type that are 
needed for the unified approach we carry out in Section 5 and Section 6. Also, recall that 
by ι we denote either the number −1 or 1.

Definition 3.12. Let X be a γ-space and, for ι ∈ {−1, 1}, let Xι be Banach spaces for 
which property (Gam3) holds. A DW -continuous cocycle (ut) for the hyperbolic flow 
(ϕt) is said to be spectrally DW -contractive (DW -contractive for short) if it satisfies 
the following conditions:

lim sup
t→∞

‖uιt‖1/t
Mul(X) ≤ max{|uι(−1)|, |uι(1)|}; (SpC1)

and

lim sup
t→∞

‖uιtft‖1/t
Xι

≤ |uι(ι)|, (SpC2)

for every family (ft) ⊆ X such that lim supt→∞ ‖ft‖1/t
X ≤ 1.

We say that a γ-space is hyperbolically DW -contractive if every DW -continuous 
cocycle is spectrally DW -contractive.

Remark 3.13. Similarly to the definition of γ-pair, the hyperbolically DW -contractivity 
can be equivalently formulated in terms of cocycles (vt) associated to hyperbolic flows 
(ψt) with arbitrary DW -points a, b ∈ T . This fact and Remark 2.3 mean that cocy-
cles (vt) as above satisfy analogous properties to (SpC1) and (SpC2) when acting on a 
hyperbolically DW -contractive γ-space X.

Let X be any of the examples of γ-spaces given in Section 2. Next proposition proves 
that X is hyperbolically DW -contractive. The cases of Hardy spaces, Bergman spaces, 
little Korenblum classes and the disc algebra are covered by item (1) below.
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Proposition 3.14.

(1) Let X be a γ-space such that the continuous inclusions Mul(X) ↪→ H∞(D), 
Mul(X−1) ↪→ H∞(D−1), Mul(X1) ↪→ H∞(D1) are bounded below mappings. Then 
X is hyperbolically DW -contractive.

(2) Let either X = Dp
σ(D) for σ > −1, p ≥ 1, and p − 2 ≤ σ ≤ p − 1 or X = B1,0(D). 

Then X is hyperbolically DW -contractive.

Proof. (1) By hypothesis, ‖u‖Mul(X) � ‖u‖∞, ‖v‖Mul(Xι) � ‖v‖H∞(Dι) for every u ∈
Mul(X), v ∈ Mul(Xι) respectively (recall that the embedding Mul(Y ) ↪→ H∞(E) is 
continuous for any space Y such that Y ↪→ O(E), where E is an open subset of C, see 
[15, Lemma 11]). Let (ut) be a DW -continuous cocycle for (ϕt). It follows by Lemma 3.6
that

lim sup
t→∞

‖uιt‖1/t
Mul(X) ≤ lim

t→∞
‖uιt‖1/t

H∞(D) = max{|uι(1)|, |uι(−1)|},

so that condition (SpC1) is fulfilled. Let now (ft) ⊆ X be such that lim supt→∞ ‖ft‖1/t
X ≤

1, thus lim supt→∞ ‖ft‖1/t
Xι

≤ 1 since X ↪→ Xι. Another application of Lemma 3.6 yields 
that

lim sup
t→∞

‖uιtft‖1/t
Xι

≤ lim sup
t→∞

‖uιt‖1/t
Mul(Xι)‖ft‖

1/t
Xι

≤ lim
t→∞

‖uιt‖1/t
H∞(Dι) = |uι(ι)|,

so X satisfies (SpC2) and our claim is proven.
(2) Property (SpC1) is essentially proved in [17, Th. 5.2] for D2

0(D). The proof for 
arbitrary σ, p as in the statement, as well as for B1,0(D) and property (SpC2), runs 
similarly. �
4. Estimates of hyperbolic composition groups

Let X be a γ-space with γ ≥ 0 and let (ut) be a DW -continuous cocycle for the 
hyperbolic flow (ϕt) on X given by (0.3). Then, as seen before, there exists a zero-free 
holomorphic function ω : D → C such that ut = (ω ◦ ϕt)/ω, t ∈ R. Define

Sω(t) := utCϕt
t ∈ R.

Proposition 4.1. For (ut) and ω as above, the family (Sω(t)) is a C0-group in B(X).

Proof. It follows that (Sω(t)) is strongly measurable since (ut) is strongly measurable by 
(Co2), and Cϕt

is strongly continuous on X by (Gam4). Hence, (Sω(t)) is strongly con-
tinuous since every strongly measurable group is strongly continuous [25, Th. 10.2.3]. �
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Here we deal with asymptotic estimates of the norm of operators Sω(t), t ∈ R. For 
the sake of convenience we set α := αu, β := βu where αu, βu are the exponents of the 
cocycle (ut) obtained in Lemma 3.5; that is, |ut(1)| = eαt, |ut(−1)| = eβt for t ∈ R.

Proposition 4.2. Let X be a hyperbolically DW -contractive γ-space for some γ ≥ 0. For 
(Sω(t)) as above,

lim
t→∞

‖Sω(t)‖1/t
B(X) ≤ max{eβ−γ , eα+γ},

and

lim
t→∞

‖Sω(−t)‖1/t
B(X) ≤ max{e−β+γ , e−α−γ}.

Proof. Let ε > 0 and ι = −1, 1. Since X is a γ-space we have ‖Cϕιt,γ‖B(X) ≤ Kεe
εt, 

for t > 0; see (2.1). On the other hand, Sω(t) = ut(ϕ′
t)−γCϕt,γ , t ∈ R, where (ut(ϕ′

t)γ)
is a DW -continuous cocycle for the flow (ϕt) with exponents αu(ϕ′)−γ = α + γ and 
βu(ϕ′)−γ = β − γ, see Lemma 3.8 and Remark 3.9. As a consequence,

‖Sω(ιt)‖B(X) ≤ ‖uιt(ϕ′
ιt)−γ‖Mul(X)‖Cϕιt,γ‖B(X) ≤ ‖uιt(ϕ′

ιt)−γ‖Mul(X)Kεe
εt, t > 0.

Since X satisfies (SpC1), it follows that

(∀ε > 0) lim
t→∞

‖Sω(ιt)‖1/t
B(X) ≤ max{eι(β−γ), eι(α+γ)}eε.

Then, making ε → 0 one obtains the result. �
The following result is about localization at the DW -points of the norm of the hyper-

bolic group. For δ < 0, set Xδ
−1 := {f ∈ X : Gδ

−1f ∈ X} and Xδ
1 := {f ∈ X : Gδ

1f ∈ X}, 
where G−1(z) := (1 + z), G1(z) := (1 − z) for z ∈ D.

Proposition 4.3. For X, (ut), ω, α and β as above, assume β − α < 2γ. Then

(i) limt→∞ ‖Sω(t)f‖1/t
X ≤ eβ−γ for all f ∈ X

β−α−2γ
1 .

(ii) limt→∞ ‖Sω(−t)f‖1/t
X ≤ e−α−γ for all f ∈ X

β−α−2γ
−1 .

Proof. (i) For δ < 0 and f ∈ Xδ
1, put fδ,1 := Gδ

1f . Then, for t > 0,

Sω(t)f = (ω ◦ ϕt)(G−δ
1 ◦ ϕt)

ω
(fδ,1 ◦ ϕt)

= G−δ
1

(G−δ
1 ω) ◦ ϕt

G−δ
1 ω

(fδ,1 ◦ ϕt) = G−δ
1 (SG−δ

1 ω(t)fδ,1).
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The cocycle (vt) given by vt = ((G−δ
1 ω) ◦ ϕt)/(G−δ

1 ω) is a DW -continuous cocycle with 
exponents α+ δ and β (associated to the DW -points 1, −1 respectively) by Lemma 3.8. 
Moreover, G−δ

1 ∈ Mul(X) by (Gam2). Hence, an application of Proposition 4.2 to the 
group (SG−δ

1 ω(t)) yields that

lim
t→∞

‖SG−δ
1 ω(t)‖1/t

B(X) ≤ max{eα+δ+γ , eβ−γ},

and then

lim
t→∞

‖Sω(t)f‖1/t
X ≤ lim

t→∞

(
‖G−δ

1 ‖1/t
Mul(X)‖SG−δ

1 ω(t)‖1/t
B(X)‖fδ,1‖

1/t
X

)
≤ max{eα+δ+γ , eβ−γ}.

Taking now δ = β − α − 2γ one obtains limt→∞ ‖Sω(t)f‖1/t
X ≤ eβ−γ for every f ∈

X
β−α−2γ
1 , as we wanted to show.
(ii) The argument to prove this part is similar to the preceding one. We leave it to 

the reader. �
5. Two useful integrals

Through this section, let X be a hyperbolically DW -contractive γ-space and let 
(Sω(t)) be a weighted composition group as in Section 4, with α, β the exponents of 
((ω ◦ ϕt)/ω). Inspired by some ideas exposed within [33], which were further developed 
in [2], we introduce two integral operators which play a key role in the study of the 
spectrum of (Sω(t)) in Section 6.

For z ∈ D, f ∈ O(D) and λ ∈ C (and ι = −1, 1), set

(Λλ,ι
ω f)(z) := −2

ω(z)

(
1 + z

1 − z

)λ
z∫

ι

(1 − ξ)λ−1

(1 + ξ)λ+1 ω(ξ)f(ξ) dξ, z ∈ D, (5.1)

where the integration path is to be understood as any simple path in D∪{ι} going from 
ι to z and leaving ι non-tangentially (it will be seen next that the value of the integral 
is independent of the chosen path), and

Lλ
ωf :=

1∫
−1

(1 − ξ)λ−1

(1 + ξ)λ+1 ω(ξ)f(ξ) dξ, (5.2)

where the integral is understood on any path in D between −1 and 1 touching −1, 1
non-tangentially.

The convergence of the above integrals is considered right now.

Lemma 5.1. Let f ∈ X, z ∈ D, λ ∈ C. Then, the following holds.
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• (Λλ,−1
ω f)(z) converges (absolutely) if Re λ < β − γ.

• (Λλ,1
ω f)(z) converges (absolutely) if Re λ > α + γ.

In any of the above cases, the value of (Λλ,ι
ω f)(z) is independent on the integration 

path taken, whenever it is a simple path in D ∪ {ι} leaving ι non-tangentially. Also, the 
function Λλ,ι

ω f is holomorphic in the disc.

Proof. Let us show the claims for Λλ,−1
ω . Let θ0 be a fixed angle such that |θ0| < (π/2). 

Then, for ξ ∈ D such that 1 + ξ = |1 + ξ|eiθ with |θ| ≤ |θ0| and |1 + ξ| < cos θ0, one 
has |ξ|2 = |1 + ξ|2 + 1 − 2|1 + ξ| cos θ, whence 1 − |ξ|2 = |1 + ξ|(2 cos θ − |1 + ξ|) ≥
|1 + ξ|(2 cos θ0 − |1 + ξ|) > (cos θ0)|1 + ξ|. In short,

1 − |ξ|2 > (cos θ0)|1 + ξ|, (5.3)

for every ξ in the sector −1 +
∑

θ0
of angle θ0, with vertex at −1 and symmetric with 

respect to (−1, ∞), such that |1 + ξ| < cos θ0.
Let f ∈ X and ε > 0. By Remark 2.4 one has that |f(ξ)| � (1 −|ξ|2)−γ−ε‖f‖X . Hence 

|f(ξ)| � (cos θ0)|1 + ξ|−γ−ε‖f‖X for all ξ as in (5.3). Also, ω has exponent β at −1 and 
so |ω(ξ)| � |1 + ξ|β−ε for ξ as before, see Theorem 3.11.

Altogether,

|ω(ξ)f(ξ)||1 + ξ|−Reλ−1 � |1 + ξ|β−γ−Reλ−1−2ε,

for every ξ ∈ (−1 +
∑

θ0
) such that |1 +ξ| < cos θ0, which readily implies the convergence 

of Λλ,−1
ω f on any path touching −1 non-tangentially, provided Re λ < β − γ.

The statement for Λλ,1
ω f , that is, Λλ,1

ω f converges provided Re λ > α + γ, is proven 
using analogous argument to the above one. It is left to the reader.

Let us now assume Re λ < β − γ and let τ be a closed path in D joining −1 and a 
fixed z ∈ D, and being non-tangential (to T ) at −1. For δ > 0 small enough, we can 
assume that the circle {ξ ∈ C : |1 + ξ| < δ} intersects τ exactly twice. So let Cδ be the 
arc in D of such circle joining these two intersection points. Let τ1, τ−1 be paths defined 
by τ1 := (τ ∩ {ξ ∈ D : |1 + ξ| ≥ δ}) ∪Cδ,− and τ−1 := (τ ∩ {ξ ∈ D : |1 + ξ| < δ}) ∪Cδ,+, 
where Cδ,− (respectively Cδ,+) is Cδ negatively (positively) orientated. Then we have ∫
τ1

(1 − ξ)λ−1

(1 + ξ)λ+1 ω(ξ)f(ξ) dξ = 0 by Cauchy’s theorem and therefore

∫
τ

(1 − ξ)λ−1

(1 + ξ)λ+1ω(ξ)f(ξ) dξ =
∫

τ−1

(1 − ξ)λ−1

(1 + ξ)λ+1 ω(ξ)f(ξ) dξ

=
∫

τ−1

χ(τ−1\Cδ,+)(ξ)
(1 − ξ)λ−1

(1 + ξ)λ+1 ω(ξ)f(ξ) dξ +
∫

Cδ,+

(1 − ξ)λ−1

(1 + ξ)λ+1 ω(ξ)f(ξ) dξ
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where χ(τ−1\Cδ,+) is the characteristic function of τ−1 \ Cδ,+. The first term of the two 
latter integrals tends to zero as δ → 0 by the dominated convergence theorem. As regards 
the second one, it is bounded up to a constant by 

∫
Cδ,+

|1 + ξ|β−γ−Reλ−1−2ε|dξ|, which 

in turn, using the parameterization 1 + ξ = δeiθ, θ1 ≤ θ ≤ θ2, where θ1 and θ2 are the 
arguments of the extreme points of the arc Cδ,+, equals

θ2∫
θ1

δβ−γ−Reλ−1−2εδ dθ ≤ πδβ−γ−Reλ−2ε

(with ε small enough).

In conclusion, one has 
∫
τ

(1 − ξ)λ−1

(1 + ξ)λ+1ω(ξ)f(ξ) dξ = 0 and so the integral which defines 

(Λλ,−1
ω f)(z) is independent of paths in D joining −1 and z ∈ D non-tangentially at −1. 

The case Λλ,1
ω f is proven in the same way.

Finally, it is readily seen that, under the above hypothesis, the functions Λλ,ι
ω f , ι =

−1, 1, are holomorphic in D. �
In the following corollary, we extend the values of λ for which Λλ,ι

ω f is well defined in 
the case that f belongs to the subspaces Xδ

ι introduced prior to Proposition 4.3.

Corollary 5.2. Assume β − α < 2γ. Let f ∈ X and z ∈ D. Then, on every path as in 
Lemma 5.1, (Λλ,−1

ω f)(z) converges (absolutely) if Re λ < γ + α and f ∈ X
β−α−2γ
−1 ; and 

(Λλ,1
ω f)(z) converges (absolutely) if Re λ > β − γ and f ∈ X

β−α−2γ
1 .

Moreover, the value of Λλ,ι
ω f is independent on the integration path taken, whenever 

it is a simple path in D ∪ {ι} leaving ι non-tangentially. Also, the function Λλ,ι
ω f is 

holomorphic in D.

Proof. The statement is an immediate consequence of Lemma 5.1 applied to the function 
(1 + ·)β−α−2γf if f ∈ X

β−α−2γ
−1 , and to the function (1 − ·)β−α−2γf if f ∈ X

β−α−2γ
1 . �

We show now the relationship between the integrals of (5.1) and the group (Sω(t)).

Proposition 5.3. Let f ∈ X. Then

(i) Λλ,1
ω f =

∞∫
0

e−λtSω(t)f dt, in X, provided Re λ > max{β − γ, α + γ}.

(ii) Λλ,−1
ω f = − 

∞∫
0

eλtSω(−t)f dt, in X, provided Re λ < min{β − γ, α + γ}.

Assume furthermore β − α < 2γ. Then
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(iii) Λλ,1
ω f =

∞∫
0

e−λtSω(t)f dt, in X, provided Re λ > β − γ and f ∈ X
β−α−2γ
1 .

(iv) Λλ,−1
ω f = − 

∞∫
0

eλtSω(−t)f dt, in X, provided Re λ < α + γ and f ∈ X
β−α−2γ
−1 .

Proof. (i) Let f ∈ X. The map t ∈ [0, ∞) �→ Sω(t)f ∈ X is norm continuous and

‖Sω(t)f‖X ≤ Kε max{e(β−γ+ε)t, e(α+γ+ε)t},

for ε > 0, by Proposition 4.2. Hence, choosing ε small enough, one obtains that the 

integral 
∞∫
0

e−λtSω(t)f dt is Bochner-convergent in X for Re λ > max{β − γ, α + γ}.

Now, for z ∈ D, we apply Lemma 5.1 with the path ξ = z + r

1 + rz
, 0 ≤ r ≤ 1, and make 

the variable change r = tanh(t/2), to obtain

2
ω(z)

(
1 + z

1 − z

)λ
1∫

z

(1 − ξ)λ−1

(1 + ξ)λ+1ω(ξ)f(ξ) dξ

= 2
ω(z)

1∫
0

(1 − r)λ−1

(1 + r)λ+1ω

(
z + r

1 + zr

)
f

(
z + r

1 + zr

)
dr

=
∞∫
0

e−λt (ω(ϕt(z))
ω(z) f(ϕt(z))dt =

∞∫
0

e−λt(Sω(t)f)(z) dt,

(5.4)

for every λ ∈ C such that Re λ > α + γ. Since the latter integral, regarded as a vector-
valued integral, is Bochner convergent for Re λ > max{β−γ, α+γ} we get the wished-for 
result.

(ii) This part follows along the same lines as before, by applying Proposition 4.2 to 
the semigroup (Sω(−t))t≥0.

Items (iii) and (iv) are obtained with an analogous argument. Corollary 5.2 states 
that Λλ,1

ω f , Λλ,−1
ω f are well-defined in these cases, and the sharper asymptotic bounds 

for ‖Sω(t)f‖X as t → ι∞, ι = −1, 1, given in Proposition 4.3 imply that the integrals of 
the statement are convergent in the Bochner sense. �

The following lemma is significant to study the residual spectrum of the infinitesimal 
generator of the C0-group (Sω(t)).

Lemma 5.4. Assume β−α > 2γ and γ+α < Re λ < β−γ. Then the mapping Lλ
ω : X → C

given by (5.2) is a continuous linear functional on X. Moreover, for every f ∈ kerLλ
ω

one has that Λλ,1
ω f and Λλ,−1

ω f lies in X and Λλ,1
ω f = Λλ,−1

ω f .
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Proof. Let ε > 0. By Remark 2.4, we have supz∈D(1 −|z|)γ+ε|f(z)| � ‖f‖X for all f ∈ X. 
Moreover, |ω(z)| � |1 − z|−α−ε|1 + z|β−ε for all z ∈ D by Theorem 3.11. Therefore,

|Lλ
ωf | ≤

1∫
−1

∣∣∣∣ (1 − ξ)λ−1

(1 + ξ)λ+1ω(ξ)f(ξ)
∣∣∣∣ dξ

� ‖f‖X
1∫

−1

(1 − ξ)Reλ−α−γ−2ε−1(1 + ξ)−Reλ+β−γ−2ε−1 dξ.

The last integral is finite for ε > 0 small enough, hence Lλ
ω is a well-defined bounded 

functional on X.
Now, it follows by Lemma 5.1 that Λλ,1

ω f, Λλ,−1
ω f ∈ O(D) for each f ∈ X. Moreover, 

a simple computation shows that

(Λλ,−1
ω f)(z) = (Λλ,1

ω f)(z) − 2
ω(z)

(
1 + z

1 − z

)λ

Lλ
ωf, z ∈ D, f ∈ X.

Hence Λλ,1
ω f = Λλ,−1

ω f if f ∈ kerLλ
ω as claimed.

Next we prove that Λλ,1
ω f ∈ X1, where X1 is the subspace of O(D1) associated with 

X through (Gam3). Note that the identity (5.4) holds whenever Re λ > α+γ. Moreover

(Λλ,1
ω f)(z) =

∞∫
0

e−λt(Sω(t)f)(z) dt =
∞∫
0

e−λtut(z)(ϕ′
t(z))−γ(Cϕt,γf)(z) dt, z ∈ D,

with limt→∞ ‖Cϕt,γf‖
1/t
X ≤ 1 by (Gam5). Since X is hyperbolically DW -contractive and 

(ut(ϕ′
t)−γ) is a DW -continuous cocycle with exponents α+γ, β−γ (see Lemma 3.8 and 

Remark 3.9), it follows by condition (SpC2) that for any ε > 0,

‖e−λtut(ϕ′
t)−γCϕt,γf‖X1 � e−Reλteεt|u1(1)(ϕ′

1(1))−γ |t = e(−Reλ+γ+α+ε)t, t ≥ 0.

Therefore, the integral 
∫∞
0 e−λtSω(t)f dt is Bochner-convergent in the Banach space X1, 

the equality Λλ,1
ω f =

∫∞
0 e−λtSω(t)f dt ∈ X1 holds and, in particular, Λλ,1

ω f ∈ X1.
Reasoning along similar lines, one obtains Λλ,−1

ω f ∈ X−1. Hence Λλ,1
ω f ∈ X since 

X = O(D) ∩X−1 ∩X1 (see condition (Gam3)), and the proof is finished. �
Remark 5.5. Under the conditions of Lemma 5.4, the kernel of the functional Lλ

ω is not 
the whole space X, i.e. Lλ

ω �= 0. Indeed, assume that Lλ
ω = 0, and let us see that we 

reach a contradiction.
Take a non-zero f ∈ X. Since |ω(z)| � |1 − z|−α+ε|1 + z|β+ε (Theorem 3.11) and 

f ∈ K−γ−ε(D) (Remark 2.4), one has that the function (1 −·)λ(1 +·)−λωf is a continuous 
function when restricted to the real interval [−1, 1]. By the density of polynomials in 
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C([−1, 1]) (the set of continuous complex-valued functions on [−1, 1]), it follows that 
the functional L : C([−1, 1]) → C given by g �→

∫ 1
−1 g(1 − ·)λ(1 + ·)−λωf is the zero 

functional, hence the function (1 −·)λ(1 + ·)−λωf is the zero function, which is nonsense.

Remark 5.6. Under the conditions of Lemma 5.4, fix f ∈ X. Using a similar reasoning as 
in the beginning of the proof of Lemma 5.4, one gets that the mapping from D∪{−1, 1}
to C given by

z �→
z∫

0

(1 − ξ)λ−1

(1 + ξ)λ+1 ω(ξ)f(ξ) dξ,

is continuous whenever z approaches −1, 1 via non-tangential paths.

6. Spectra of the generator

Let X be a hyperbolically DW -contractive γ-space, γ ≥ 0, and let S be a subset 
of O(D) such that (X, S) is a γ-pair. Let ω ∈ O(D) be non-vanishing, let (Sω(t))
be a weighted composition group as in Section 4, and let Δω denote its infinitesimal 
generator. The aim of this section is to describe the fine structure of the spectrum of 
Δω. For c, d ∈ R, we set |c, d| = {z ∈ C : min{c, d} ≤ Re z ≤ max{c, d}}.

Lemma 6.1 below can be considered standard. Recall that the function G(z) =
∂ϕt(z)

∂t

∣∣
t=0 = (1 − z2)/2, z ∈ D, is the generator of the hyperbolic flow (ϕt) given in 

(0.3).

Lemma 6.1. The infinitesimal generator Δω of the C0-group (Sω(t)) is given by the dif-
ferential operator

Δω(f) := ω′

ω
Gf + Gf ′, f ∈ D(Δω),

where D(Δω) = {f ∈ X : (ω′/ω)Gf + Gf ′ ∈ X}.

Proof. The proof mimics the one of an analogous result for Hardy spaces Hp(D) given 
in [35]. �
Lemma 6.2. The spectrum σ(Δω) of the infinitesimal generator Δω satisfies

σ(Δω) ⊆ |β − γ, γ + α|.

Moreover,

R(λ,Δω)f = Λλ,ι
ω f, f ∈ X, (6.1)

for ι = 1 if Re λ > max{β − γ, γ + α} and for ι = −1 if Re λ < min{β − γ, γ + α}.
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Proof. By the spectral mapping inclusion for C0-semigroups (see e.g. [18, Th. IV.3.6]) we 
have etσ(Δω) ⊆ σ(Sω(t)) for t ∈ R. Also, r(Sω(t)) ≤ emax{(β−γ)t,(γ+α)t} and r(Sω(t)−1) =
r(Sω(−t)) ≤ emax{−(β−γ)t,−(α+γ)t} by Proposition 4.2. Hence we obtain σ(Δω) ⊆ |β −
γ, γ + α| as claimed.

Let now Re λ > max{β− γ, γ +α}. Using the integral representation of the resolvent 
operator of Δω in terms of the semigroup (Sω(t))t≥0 (see e.g. [18, Th. II.1.10]) and 
Proposition 5.3(i), one has

R(λ,Δω)f =
∞∫
0

e−λtSω(t)f dt = Λλ,1
ω f, f ∈ X, Reλ > max{α + γ, β − γ}.

If Re λ < min{β − γ, γ + α}, it suffices to apply the integral representation of the 
resolvent of −Δω in terms of the semigroup (Sω(−t))t≥0 and Proposition 5.3(ii) to obtain 
the result. �

In the remainder of the section, we describe several spectral sets of Δω. For a suitable 
understanding of the arguments we divide the overall proof in a series of results and 
remarks.

Proposition 6.3. The point spectrum of the infinitesimal generator Δω is given by

σpoint(Δω) = {λ ∈ C : gλ ∈ X}, gλ(z) := 1
ω(z)

(
1 + z

1 − z

)λ

, z ∈ D.

The eigenspace of each λ ∈ σpoint(Δω) is one-dimensional and generated by gλ. If in 
addition ω−1 ∈ S, then σpoint(Δω) satisfies the following inclusions:

{λ ∈ C : β − γ < Reλ < α + γ} ⊆ σpoint(Δω) ⊆ {λ ∈ C : β − γ ≤ Reλ ≤ α + γ},

if β − α ≤ 2γ; and σpoint(Δω) = ∅ if β − α > 2γ.

Proof. The identity σpoint(Δω) = {λ ∈ C : gλ ∈ X} can be proved for arbitrary 
γ-spaces as it is proven in [35, Th. 3] for Hardy spaces.

By Theorem 3.11, for every ε > 0 we have

|1 − z|α+ε|1 + z|−β+ε � |ω(z)|−1 � |1 − z|α−ε|1 + z|−β−ε, z ∈ D.

Thus, for γ′ > γ,

|1 − z2|γ′ |gλ(z)| � |1 − z|γ′+α+ε−Reλ|1 + z|γ′−β+ε+Reλ, z ∈ D.

Hence supz∈D |1 − z2|γ′ |gλ(z)| = ∞ for some γ′ > γ, provided Re λ < β − γ or 
Re λ > α + γ. It follows that gλ /∈ K−γ′(D) and therefore gλ /∈ X, see Remark 2.4. This 
implies the inclusion σpoint(Δω) ⊆ {λ ∈ C : β − γ ≤ Re λ ≤ α + γ}.
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Now, fix λ ∈ C with β − γ < Re λ < α + γ. Then gλ ∈ S since, for any λ ∈ C, S is 
invariant by multiplication with the function z �→ (1 + z)λ(1 − z)−λ. Then Theorem 3.11
implies, for δ > 0 small enough, that |gλ(z)| � |1 − z2|−γ+δ, z ∈ D. Therefore, gλ ∈ X

by property (Gam6), so that λ ∈ σpoint(Δω). Thus {λ ∈ C : β − γ < Re λ < α + γ} ⊆
σpoint(Δω) as we wanted to prove. �

The assumption ω−1 ∈ S in Proposition 6.3 is superfluous when X = Hp(D), Ap
σ(D), 

K−γ
0 (D) for 1 ≤ p < ∞, σ > −1 and γ > 0, since in any of these examples S is the 

set O(D) of all holomorphic functions in the disc D. The next result shows that such an 
assumption is also redundant for the disc algebra A(D). We conjecture that there exist 
subsets S(Dp

σ), S(B1,0) such that (Dp
σ(D), S(Dp

σ)) and (B1,0(D), S(B1,0)) are γ-pairs 
and the assumptions ω−1 ∈ S(Dp

σ), S(B1,0) are redundant as well.

Proposition 6.4. Let (ut) be a DW -continuous cocycle for the flow (ϕt) on the disc algebra 
A(D) with weight ω, i.e. ut = (ω ◦ ϕt)/ω. Then ω−1 ∈ S(A).

Proof. Recall that S(A) is the subset of functions of O(D) which can be continuously 
extended to D \ {−1, 1}.

First note that ω can be extended to almost every point of T \ {−1, 1} via non-
tangential limits. Indeed, the holomorphic function z �→ (1 − z2)λω(z) lies in H∞(D)
for λ > 0 big enough by Theorem 3.11, thus (1 − (·)2)λω can be extended a.e. via non-
tangential limits to T (see for instance [26, p.38]), whence the same holds true for ω in 
T \ {−1, 1}. Moreover, such non-tangential limits are never equal to 0 by Theorem 3.11.

We claim that such limits exist for every point in T \ {−1, 1}. To see this, fix v ∈
T \{−1, 1} with Im v > 0 such that the (non-tangential) limit limz→v ω(z) exists. Notice 
that ut = (ω ◦ ϕt)/ω ∈ Mul(A(D)) = A(D) for each t ∈ R. Since ϕt ∈ Aut(D), it follows 
from ω ◦ ϕt = utω that the limit limz→ϕt(v) ω(z) exists, that is, ω has non-tangential 
limits at {ϕt(v) : t ∈ R} = {z ∈ T : Im z > 0}. After repeating the argument with 
v ∈ T such that Im v < 0, we obtain that ω has non-tangential limits at every point in 
T \ {−1, 1}.

Next we show that the extension of ω to D \ {−1, 1} via non-tangential limits is 
continuous when restricted to T \{−1, 1}. Note that the mapping t ∈ R �→ ut = Sω(t)1 ∈
A(D) is continuous, where 1 denotes the constant function 1(z) = 1. As a consequence, 
the mapping t �→ ut(v) is continuous for any v ∈ D. Hence the mapping t �→ ω(ϕt(v)) =
ut(v)ω(v) is also continuous. Note also that t �→ ϕt(v) is a homeomorphism from R to 
{z ∈ T : sgn Im z = sgn Im v} for every v ∈ T \ {−1, 1}. Thus ω is continuous on 
T \ {−1, 1}.

Taking λ as at the beginning of the proof, we obtain that the function (1 − (·)2)λω
is holomorphic and bounded on D, and that it can be extended to every point in D
via non-tangential limits, being such an extension continuous when restricted to the 
boundary T . Using the Poisson kernel, one gets (1 − (·)2)λω ∈ A(D). Since ω has no 
zeros in D \ {−1, 1}, we conclude that ω−1 ∈ S(A) and the proof is finished. �
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Remark 6.5. We now study the range space of the operator λ − Δω : D(Δω) → X for a 
fixed λ ∈ C. To begin with, a few computations show that all the solutions (gf,K)K∈C ∈
O(D) of the differential equation (λ −Gω′/ω)g −Gg′ = f , f ∈ O(D), are given by

gf,K(z) = 1
ω(z)

(1 + z)λ

(1 − z)λ

⎛⎝K − 2
z∫

0

(1 − ξ)λ−1

(1 + ξ)λ+1ω(ξ)f(ξ) dξ

⎞⎠ , z ∈ D,K ∈ C. (6.2)

Thus, we have by Lemma 6.1 that a function f ∈ X lies in the range of λ − Δω if and 
only if there exists some K ∈ C such that the function gf,K given in (6.2) belongs to X. 
Indeed, if this is the case, then gf,K ∈ D(Δω) and (λ − Δω)gf,K = f .

The lemma below gives the range space Ran(λ − Δω) when β − α �= 2γ. Notice 
that, by Lemma 6.2, λ − Δω is a surjective (moreover, invertible) operator whenever 
λ /∈ |β − γ, α + γ|.

Lemma 6.6. Let λ ∈ C. We have

Ran(λ− Δω) =
{
X, if β − α < 2γ, and β − γ < Reλ < α + γ,

kerLλ
ω � X, if β − α > 2γ, and α + γ < Reλ < β − γ.

Proof. Assume first β − α < 2γ and β − γ < Re λ < α + γ. Let m ∈ N be such that 
m ≥ 2(2γ + α− β). For f ∈ X, set

fj(z) := 2−m

(
m

j

)
(1 − z)j(1 + z)m−jf(z), z ∈ D, 0 ≤ j ≤ m. (6.3)

Notice that (1 + ιz)δ ∈ P ⊆ Mul(X) for all δ ≥ 0, ι ∈ {−1, 1} by (Gam2), so fj ∈ X

for all 0 ≤ j ≤ m. Moreover, fj ∈ X
β−α−2γ
−1 if j ≤ m/2, and fj ∈ X

β−α−2γ
1 otherwise. 

It follows from Proposition 5.3(iii) and (iv) that Λλ,cj
ω fj ∈ X for all j, where cj = −1 if 

j ≤ m/2 and cj = 1 otherwise. Set

Kj := −2
0∫

cj

(1 − ξ)λ−1

(1 + ξ)λ+1ω(ξ)fj(ξ) dξ, 0 ≤ j ≤ m.

Corollary 5.2 shows that the complex numbers Kj , 0 ≤ j ≤ m, are well defined 
and that gfj ,Kj

= Λλ,cj
ω fj ∈ X for all 0 ≤ j ≤ m. Hence, by Remark 6.5 we have 

gfj ,Kj
= Λλ,cj

ω fj ∈ D(Δω) and (λ − Δω)gfj ,Kj
= fj , that is fj ∈ Ran(λ − Δω) for all 

0 ≤ j ≤ m. Since f =
∑m

j=0 fj , it follows that f ∈ Ran(λ − Δω) and we conclude that 
Ran(λ − Δω) = X.

Assume now β−α > 2γ and α+γ < Re λ < β−γ. By Lemma 5.4, Lλ
ω is a continuous 

functional on X, and Λλ,1
ω f = Λλ,−1

ω f ∈ X if f ∈ kerLλ
ω. By Lemma 5.1,
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K := −2
0∫

−1

(1 − ξ)λ−1

(1 + ξ)λ+1ω(ξ)f(ξ) dξ

is well defined and gf,K = Λλ,−1
ω f ∈ X. By Remark 6.5, gf,K ∈ D(Δω) and (λ −

Δω)gf,K = f , so that f ∈ Ran(λ − Δω). Thus, kerLλ
ω ⊆ Ran(λ − Δω).

Let now f ∈ X \ kerLλ
ω. The mapping z �→

∫ z

0 (1 − ξ)λ−1(1 + ξ)−λ−1ω(ξ)f(ξ) dξ is 
continuous from D ∪ {−1, 1} to C, see Remark 5.6. Hence, for all K ∈ C,

K − 2
z∫

0

(1 − ξ)λ−1

(1 − ξ)λ+1ω(ξ)f(ξ) dξ −−−→
z→1

cK,+ ∈ C,

K − 2
z∫

0

(1 − ξ)λ−1

(1 − ξ)λ+1ω(ξ)f(ξ) dξ −−−−→
z→−1

cK,− ∈ C,

(6.4)

whenever z tends to −1, 1 non-tangentially. Since cK,+ − cK,− = −2Lλ
ωf �= 0, either 

cK,+ �= 0 or cK,− �= 0. By Theorem 3.11, we have for each ε > 0, |ω(z)−1| � |1 −z|α+ε|1 +
z|−β+ε for all z ∈ D. Applying this bound in (6.2) one gets that, for each K ∈ C, either 
|gf,K(x)| � |1 − x|−γ′ as x → 1 or |gf,K(x)| � |1 + x|−γ′ as x → −1, for some γ′ > γ. In 
any case, gf,K /∈ K−γ−δ(D) for some δ > 0 and therefore gf,K /∈ X, see Remark 2.4. As 
a consequence, f /∈ Ran(λ − Δω) by Remark 6.5. Thus Ran(λ − Δω) ⊆ kerLλ

ω, and the 
proof is finished. �

The following theorem gives the spectrum of the generator Δω.

Theorem 6.7. Let α and β be the exponents of ω, and suppose ω−1 ∈ S. Then

σ(Δω) = |β − γ, α + γ|.

Proof. First assume β − α �= 2γ. The inclusion σ(Δω) ⊆ |β − γ, α+ γ| is in Lemma 6.2. 
On the other hand, Int(|β−γ, α+γ|) ⊆ σ(Δω) by Proposition 6.3 in the case β−α < 2γ, 
and by Lemma 6.6 if β − α > 2γ. Therefore σ(Δω) = |β − γ, α + γ| since the spectrum 
of a closed operator is a closed subset of C.

In the case β − α = 2γ one cannot directly use the results obtained in Section 5. 
Instead, we use the invariance of ω in the sense of Lemma 3.8 to slightly modify the 
exponents α, β and then take advantage of what has been already proved for β−α �= 2γ.

As above, one has σ(Δω) ⊆ |β−γ, α+γ| by Lemma 6.2. To prove the reverse inclusion, 
take λ ∈ C in |α + γ, β − γ|, which is to say Re λ = α + γ = β − γ. Recall

gλ(z) = ω(z)−1(1 + z)λ(1 − z)−λ, z ∈ D.

If gλ ∈ X then λ ∈ σpoint(Δω) by Proposition 6.3, and we are done. Thus we assume 
gλ /∈ X and λ − Δω injective. Under this assumption we show next, by contradiction, 
that λ − Δω is not surjective, whence λ ∈ σ(Δω) and the proof will be finished.
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Thus suppose that λ − Δω is a surjective operator. As noticed in Remark 6.5, this 
implies that, for every f ∈ X, there exists K ∈ C for which the function gf,K in (6.2)
lies in X. Since gλ ∈ O(D) \X, we have that either gλ /∈ X1 or gλ /∈ X−1 (meaning that 
the restriction of gλ to D1 or D−1 is not in X1 or X−1 respectively), where X−1, X1 are 
the Banach spaces given in (Gam3).

Suppose gλ /∈ X−1 without loss of generality. For c > 0, set ωc(z) := ω(z)/(1 − z)c, 
z ∈ D, and vt := (ωc ◦ϕt)/ωc, t ∈ R. Then (vt) is a DW -continuous cocycle for the flow 
(ϕt) on X with exponents αc = α + c > α and βc = β, see Lemma 3.8. In particular 
βc −αc = 2γ− c < 2γ, so we conclude that σ(Δωc

) = |βc − γ, αc + γ| = |β− γ, α+ γ + c|
by the first part of this proof. In particular, λ ∈ σ(Δωc

) and so λ − Δωc
is either not 

injective or not surjective.
If λ −Δωc

is not injective Lemma 6.3 implies that the holomorphic function gλ(1 −(·))c
is in X, and therefore its restriction to D−1 is in X−1. However, the function (1 − (·))−c

is in Mul(X−1) since it is holomorphic in an open set containing D−1, see (Gam3). 
Hence we have gλ ∈ X−1, which is a contradiction since we have assumed the opposite. 
Therefore λ − Δωc

must be an injective operator, which implies in turn that λ − Δωc
is 

not surjective by the preceding paragraph. However, we shall show next that λ −Δωc
is 

also surjective, reaching again a contradiction.
By a similar trick as after (6.3), one gets X = X

−c
−1 + X

−c
1 , and then it is enough to 

show that X−c
−1 and X−c

1 are subspaces of Ran(λ −Δωc
). Take f ∈ X

−c
−1 = X

βc−αc−2γ
−1 . By 

Proposition 5.3(iv), Λλ,−1
ωc

f ∈ X and, as in the proof of Lemma 6.6, case β − α < 2γ, 
one obtains (λ − Δωc

)Λλ,−1
ωc

f = f . Thus f ∈ Ran(λ − Δωc
) and then it follows that 

X
−c
−1 ⊆ Ran(λ − Δωc

). Take now f ∈ X
−c
1 and define fc ∈ X by fc(z) = (1 − z)−cf(z)

for z ∈ D. As we have assumed λ − Δω is surjective on X, there exists K ∈ C such 
that gfc,K ∈ X, see Remark 6.5. Since (1 − (·))c ∈ P ⊆ Mul(X) by (Gam2) one has 
(1 − (·))cgfc,K ∈ X. Using again Lemma Remark 6.5 with the weight ωc instead ω one 
gets f ∈ Ran(λ− Δωc). So Xc

1 ⊆ Ran(λ− Δωc).
Therefore, λ −Δωc

is surjective, hence invertible, reaching the forecasted contradiction 
since λ ∈ σ(Δωc

). We finally conclude that our assumption λ /∈ σ(Δω) is incorrect, and 
the proof is finished. �

The overall discussion carried out in preceding places of this paper leads to the follow-
ing detailed description of σ(Δω). Recall that the approximate spectrum and residual 
spectrum of a closed operator A are denoted by σap(A) and σres(A) respectively.

Theorem 6.8. Let γ ≥ 0 and let X be a γ-space which is hyperbolically DW -contractive, 
and let S be such that (X, S) is a γ-pair. Let (ut) be a hyperbolically DW -continuous 
cocycle for (ϕt), so that (utCϕt

) is a C0-group in B(X). Let α, β be the exponents of 
(ut), and let ω be an associated weight to (ut). Let Δω be the infinitesimal generator of 
(Sω(t)) := (utCϕt

), and assume ω−1 ∈ S. Then one has the following.

i) The full spectrum σ(Δω) of Δω is the strip |α + γ, β − γ|.
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ii) The essential spectrum of Δω is the boundary of σ(Δω), that is, σess(Δω) = ∂(|α+
γ, β − γ|).

iii) The approximate spectrum of Δω is given by

σap(Δω) =
{
|α + γ, β − γ|, if β − α ≤ 2γ;
∂(|α + γ, β − γ|), if β − α > 2γ.

iv) The point spectrum σpoint(Δω) of Δω satisfies

{λ ∈ C : β − γ < Reλ < α + γ} ⊆ σpoint(Δω) ⊆ {λ ∈ C : β − γ ≤ Reλ ≤ α + γ}.

The eigenspace of λ ∈ σpoint(Δω) is the one-dimensional subspace Cgλ.
v) The residual spectrum σres(Δω) of Δω on X satisfies

{λ ∈ C : α + γ < Reλ < β − γ} ⊆ σres(Δω), β − α > 2γ;

σres(Δω) ⊆ {λ ∈ C : Reλ = α + γ or Reλ = β − γ}, β − α ≤ 2γ.

Proof. i) This is Theorem 6.7.
ii) Let λ ∈ σ(Δω) = |α+ γ, β − γ|. The kernel of λ −Δω is at most one-dimensional by 

Proposition 6.3, so dim(ker(λ − Δω)) < ∞. In addition, if λ ∈ Int(|α + γ, β − γ|), 
then dim(X/Ran(λ − Δω)) ≤ 1 < ∞ by Lemma 6.6, so we conclude that Int(|α +
γ, β − γ|) ∩ σess(Δω) = ∅.
Now let λ ∈ ∂(|α + γ, β − γ|). By item i), λ is an accumulation point of both the 
resolvent set ρ(Δω) and the spectrum σ(Δω). As a consequence, λ ∈ σess(Δω), see 
for example [16, Th. I.3.25].

iii) First, the inclusion ∂σ(A) ⊆ σap(A) holds for an arbitrary closed operator A, see 
for example [18, IV.1.10]. Now take λ ∈ Int(σ(Δω)) = Int(|β − γ, α + γ|). Then 
Ran(λ −Δω) is a closed subspace by Lemma 6.6, and λ −Δω is not injective if and 
only if β − α < 2γ, see Proposition 6.3.

iv) This is Proposition 6.3.
v) This is a direct consequence of Lemma 6.6. �
Remark 6.9. (1) From item i) in the theorem above, (6.1) gives the resolvent R(λ, Δω)
for all λ ∈ ρ(Δω).

(2) For Hardy spaces, weighted Bergman spaces, Little Korenblum spaces, and the 
disc algebra, condition ω−1 ∈ S in Theorem 6.8 is superfluous, in view of Proposition 6.4
and the comment prior to Proposition 6.4.

7. Spectra of weighted hyperbolic composition groups

Let ω, (Sω(t)) be as in Section 4. The spectral analysis of the infinitesimal generator 
Δω given in Theorem 6.8 is here transferred to the group (Sω(t)).
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Theorem 7.1. Let X, S and Sω(t) be as in Theorem 6.8. Let t ∈ R \ {0}. Then

i) The full spectrum of Sω(t) is the annulus

σ(Sω(t)) = {λ ∈ C : emin{(α+γ)t,(β−γ)t} ≤ |λ| ≤ emax{(α+γ)t,(β−γ)t}}.

ii) The essential spectrum of Sω(t) coincides with the full spectrum, i.e.,

σess(Sω(t)) = σ(Sω(t)).

iii) The point spectrum σpoint(Sω(t)) of Sω(t) satisfies

Int(σ(Sω(t))) ⊆ σpoint(Sω(t)), if β − α < 2γ;

σpoint(Sω(t)) = ∅, if β − α > 2γ.

Moreover, the eigenspace of λ is:

span{gμ : μ ∈ Wλ}, if λ ∈ Int(σpoint(Sω(t)))

and

span{gμ : μ ∈ Wλ and gμ ∈ X}, if λ ∈ ∂(σpoint(Sω(t))),

where Wλ = {μ ∈ C : eμt = λ}.
iv) The residual spectrum σres(Sω(t)) of Sω(t) on X satisfies

Int(σ(Sω(t))) ⊆ σres(Sω(t)), if β − α > 2γ;

σres(Sω(t)) ⊆ ∂(σ(Sω(t))), if β − α ≤ 2γ.

If λ ∈ Int(σres(Sω(t))) then Ran(λ − Sω(t)) ⊆
⋂

μ∈Wλ
kerLμ

ω.

Proof. i) We have etσ(Δω) ⊆ σ(Sω(t)) for any t ∈ R by the spectral mapping inclusion 
for C0-semigroups, see [18, IV.3.6]. Thus the inclusion ⊇ of the statement follows 
from Theorem 6.8. The reverse inclusion ⊆ follows from the spectral radius theorem 
together with the asymptotic bounds for ‖Sω(t)‖B(X) given in Proposition 4.2.

ii) If λ ∈ ∂(σ(Sω(t))), then item i) shows that λ is an accumulation point of both the 
resolvent set ρ(Sω(t)) and the spectrum σ(Sω(t)). As a consequence, λ ∈ σess(Sω(t)), 
see [16, Th. I.3.25].
Now let λ ∈ Int(σ(Sω(t))). One can assume β − α �= 2γ since otherwise 
Int(σ(Sω(t))) = ∅ by item i). If β − α < 2γ then dim(ker(λ − Sω(t))) = ∞, as 
we see below in the proof of item iii), so λ ∈ σess(Sω(t)). On the other hand, if 
β − α > 2γ, then
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Ran(λ− Sω(t)) ⊆ ∩μ∈Wλ
Ran(μ− Δω) = ∩μ∈Wλ

kerLμ
ω, (7.1)

by [18, Equation (IV.3.14)] and Lemma 6.6.
Moreover, {Lμ

ω} is linearly independent in the dual space of X since Lμ
ω is an eigen-

vector associated to the eigenvalue μ of the adjoint operator of Δω, see Lemma 6.6. 
Therefore the subspace ∩μ∈Wλ

kerLμ
ω has infinite codimension [34, Lemma 3.9], and 

we conclude that λ ∈ σess(Sω(t)), as we wanted to prove.
This proves the claim made at iv) about Ran(λ −Sω(t)) since Ran(μ −Δω) = kerLμ

ω

for all μ ∈ Wλ by Lemma 6.6.
iii) & iv) We have σpoint(Sω(t)) = etσpoint(Δω) and σres(Sω(t)) = etσres(Δω), t ∈ R, see 

for instance [18, Th. IV.3.7]. Thus the given inclusions for the respective spectra are 
immediate consequences of Theorem 6.8. The claim about the eigenspaces follows 
from the fact that the kernel of λ − Sω(t) is the closure of the linear span of the 
eigenspaces of μ − Δω, where μ ∈ Wλ, see e.g. [18, Corollary IV.3.8]. The claim 
made about Ran(λ − Sω(t)) follows from (7.1). �

As a consequence of Theorem 7.1, one obtains the fine spectrum of weighted compo-
sition groups of the form (vtCψt

) where (ψt) is an arbitrary hyperbolic flow.

Theorem 7.2. Let (X, S) be a γ-pair with γ ≥ 0 such that X is hyperbolically DW -
contractive. Let (ψt) be a hyperbolic flow with DW -points a (attractive), b (repulsive) 
∈ T , and let (vt) be a DW -continuous cocycle for (ψt) on X. Let � be such that vt =
(� ◦ ψt)/� and assume �−1 ∈ Cφ(S), where φ ∈ Aut(D) is such that φ(a) = 1, 
φ(b) = −1. Then, for t ∈ R \ {0},

i) The full spectrum of vtCψt
is the set

σ(vtCψt
) =

{
λ ∈ C : min

{
|vt(a)|
ψ′
t(a)γ

,
|vt(b)|
ψ′
t(b)γ

}
≤ |λ| ≤ max

{
|vt(a)|
ψ′
t(a)γ

,
|vt(b)|
ψ′
t(b)γ

}}
.

ii) The essential spectrum of vtCψt
coincides with its full spectrum, i.e., σess(vtCψt

) =
σ(vtCψt

).
iii) The point spectrum of vtCψt

satisfies

Int(σ(vtCψt
)) ⊆ σpoint(vtCψt

), if |v1(b)|
ψ′

1(b)γ
<

|v1(a)|
ψ′

1(a)γ
;

σpoint(vtCψt
) = ∅, if |v1(b)|

ψ′
1(b)γ

>
|v1(a)|
ψ′

1(a)γ
.

Moreover, the eigenspace of λ is:

span{g̃μ : μ ∈ W̃λ}, if λ ∈ Int(σpoint(vtCψt
)),

where g̃μ(z) := 1 (b−z)μ
μ , z ∈ D, and
�(z) (a−z)
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span{g̃μ : μ ∈ W̃λ and g̃μ ∈ X}, if λ ∈ ∂(σpoint(vtCψt
)),

where W̃λ = {μ ∈ C : ψ′
t(a)μ = λ−1}.

iv) The residual spectrum of vtCψt
satisfies

Int(σ(vtCψt
)) ⊆ σres(vtCψt

), if |v1(b)|
ψ′

1(b)γ
>

|v1(a)|
ψ′

1(a)γ
;

σres(vtCψt
) ⊆ ∂(σ(vtCψt

)), if |v1(b)|
ψ′

1(b)γ
≤ |v1(a)|

ψ′
1(a)γ

.

If λ ∈ Int(σres(vtCψt
)), then Ran(λ − vtCψt

) ⊆ ∩
μ∈W̃λ

ker L̃μ
�, where L̃μ

� : X → C

is the continuous functional on X given by

L̃μ
�f =

a∫
b

(a− ξ)μ−1

(b− ξ)μ+1 �(ξ)f(ξ) dξ, f ∈ X. (7.2)

Here, we can take any simple integration path in D from b to a such that approaches 
both b, a non-tangentially.

Proof. There is c > 0 such that vtCψt
= Cφ(uctCϕct

)Cφ−1 , t ∈ R, where (ut) := (vc−1t ◦
φ−1) is a DW -continuous cocycle for (ϕt), see the end of Section 1. Therefore, it is 
enough to obtain the spectral sets for the operator uctCϕct

.
It is readily seen that ut = ((� ◦ φ−1) ◦ ϕt)/(� ◦ φ−1). Hence utCϕt

= Sω(t), t ∈ R, 
in the notation of Section 6, where ω := � ◦ φ−1. Thus ω−1 ∈ S and we have that the 
hypotheses of Theorem 7.1 are satisfied.

Therefore we can apply Theorem 7.1 to Sω(ct). So all that we have to prove is 
e(α+γ)ct = |vt(a)|ψ′

t(a)−γ and e(β−γ)ct = |vt(b)|ψ′
t(b)−γ , where α, β are the exponents 

of the DW -continuous cocycle (ut), see Lemma 3.5. From here, our claims regarding the 
spectra of uctSω(ct) follow immediately. Let us see.

On the one hand, eαct = eα(ct) = limz→1 |uct(z)| = limz→a |vt(z)| = |vt(a)|. On the 
other hand, ψ′

t(a) = (φ−1 ◦ϕct ◦ φ)′(a) = ϕ′
ct(1) = e−ct, t ∈ R, and then ecγt = ψ′

t(a)−γ . 
Thus e(α+γ)ct = |vt(a)|ψ′

t(a)−γ . The identity e(β−γ)ct = |vt(b)|ψ′
t(b)−γ can be obtained 

analogously.
Next we prove the claim made on the eigenspaces of vtCψt

. Let λ∈Int(σpoint(vtCψt
))=

Int(σpoint(Sω(ct))). By Theorem 7.1, the eigenspace of Sω(ct) associated with the eigen-
value λ is span{gν : (ψ′

t(a))ν = λ−1} = span{gν : ν ∈ W̃λ}. Therefore the eigenspace of 
vtCψt

associated to the eigenvalue λ is span{gν ◦φ : ν ∈ W̃λ}. It is readily seen that the 
linear fractional mapping (1 + φ)/(1 − φ) has one zero at z = b and one pole at z = a, 
so that it is equal to (b − (·))/(a − (·)) up to a constant. Thus Cg̃ν = C(gν ◦ φ), that is, 
the eigenspaces of vtCψt

are as claimed in the statement. The case λ ∈ ∂(σpoint(vtCψt
))

runs similarly.
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It only remains to prove the claim made about the range space Ran(λ − vtCψt
). 

Take λ ∈ Int(σres(vtCψt
)). By Theorem 7.1, Ran(λ − vtCψt

) = Cφ(Ran(λ − Sω(ct))) ⊆
Cφ(kerLμ

ω) = ker(Lμ
ωCφ−1) for all μ ∈ W̃λ, where Lμ

ω is a continuous functional on X, 
see Lemma 5.4. Now, we are going to prove that L̃μ

� = kLμ
ωCφ−1 for some k ∈ C \ {0}, 

and the proof will be done.
Recall that Ψ denotes the generator (ψt). One has Ψ(z) = c

a−b (a − z)(b − z) =
G(φ(z))/φ′(z) for z ∈ D, see [5, Th. 1.6]. As a consequence, the change of variable 
z = φ−1(ξ) in the integral below yields

Lμ
ωCφ−1f =

1∫
−1

(1 − ξ)μ−1

(1 + ξ)μ+1ω(ξ)(f ◦ φ−1(ξ)) dξ

= k

a∫
b

(a− z)μ−1

(b− z)μ+1 �(z)f(z) dz = k L̃μ
�f, f ∈ X,

as we wanted to prove. �
Remark 7.3. (1) As it has been shown in Section 2, Section 3 and Section 6, spaces 
Hp(D), Ap

σ(D), K−γ
0 (D), A(D), Dp

σ(D) and B1,0(D), for p ≥ 1, σ > −1, γ > 0, satisfy 
the conditions assumed on X in Theorem 7.2. Furthermore, for Hp(D), Ap

σ(D), K−γ
0 (D)

and A(D) the hypothesis �−1 ∈ Cφ(S) is superfluous, see Remark 6.9(2). For Dp
σ(D), 

we conjecture that there exist a subset S(Dp
σ) defined in terms of Carleson measures 

such that (Dp
σ(D), S(Dp

σ)) is a γ-pair and that the assumption �−1 ∈ Cφ(S(Dp
σ)) is 

redundant as well.
(2) Theorem 7.2 answers in the positive the conjectures established in [8,17,27] about 

the spectrum of a weighted hyperbolic invertible operator vCψ on γ-spaces in the case 
that v can be embedded in a cocycle for (ψt), where ψ1 = ψ (see the Introduction).

Remark 7.4. Nonseparable Korenblum spaces, H∞ in particular, and Bloch spaces are 
not under the scope of the paper since weighted composition groups are not strongly 
continuous on them. These cases will be specifically approached in a forthcoming paper.

8. Weighted averaging operators

Here, we make use of the theory developed in the preceding sections to study the 
boundedness and spectral sets of two families of weighted averaging operators acting on 
γ-spaces. Throughout all this section, (X, S) denotes a γ-pair for some γ ≥ 0 such that 
X is hyperbolically DW -contractive and such that the constant function 1 lies in S. In 
particular, it applies to any of the γ-spaces listed in the examples of Subsection 2.1.

From now on, we denote by B(·, ·), Γ(·) the Beta function and the Gamma function 
respectively. The following estimate for the Gamma function will be used in the sequel.
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For λ ∈ C, one has

Γ(z + λ)
Γ(z) = zλ

(
1 + λ(λ + 1)

2z + O(|z|−2)
)

= zλ
(
1 + O(|z|−1)

)
, z ∈ C, |z| → ∞,

(8.1)
whenever z �= 0, −1, −2, ... and z �= −λ, −λ − 1, −λ − 2..., see [40] for more details.

8.1. Siskakis type operators

Let μ, ν, δ ∈ C. Here we analyze the weighted averaging operators given by

(J μ,ν
δ f)(z) = 1

(1 + z)ν+δ(1 − z)μ+δ

1∫
z

(1 + ξ)ν(1 − ξ)μ(ξ − z)δ−1f(ξ) dξ, z ∈ D.

(8.2)

Proposition 8.1. Let Re μ − γ + 1 > 0, γ − Re (ν + δ) > 0 and Re δ > 0. Let ω(z) =
(1 + z)ν+δ(1 − z)μ+1 for z ∈ D. Then,

J μ,ν
δ f = 2−δ

∞∫
0

(1 − e−t)δ−1Sω(t)f dt, f ∈ X, (8.3)

where the integral is Bochner-convergent. In particular, J μ,ν
δ is a bounded operator on 

X.

Proof. Set (ut) = ((ω ◦ ϕt)/ω), so (ut) is a DW -continuous cocycle for the hyperbolic 
flow (ϕt) on X with exponents α = −Re μ − 1, β = Re (ν + δ), see Lemma 3.8. By 
Proposition 4.2, for every ε ∈ (0, min{Re μ − γ +1, γ−Re (ν + δ)}), there exists Kε > 0
such that

‖Sω(t)‖B(X) ≤ Kεe
−tmin{γ−Re (ν+δ),Reμ−γ+1}+εt, t ≥ 0.

Hence, ∥∥∥∥∥∥
∞∫
0

(1 − e−t)δ−1Sω(t) dt

∥∥∥∥∥∥
B(X)

≤ Kε

∞∫
0

(1 − e−t)Re δ−1et(ε−min{γ−Re (ν+δ),Reμ−γ+1}) dt

= KεB(Re δ,min{γ −Re (ν + δ), Reμ− γ + 1} − ε) < ∞.
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As a consequence, the integral 
∫∞
0 (1 − e−t)δ−1Sω(t)dt is strongly convergent in the 

Bochner sense and it defines a bounded operator on X. Moreover, for f ∈ X and z ∈ D,

∞∫
0

(1 − e−t)δ−1(Sω(t)f)(z) dt

=
∞∫
0

(1 − e−t)δ−1
(

1 + ϕt(z)
1 + z

)ν+δ (1 − ϕt(z)
1 − z

)μ+1

f(ϕt(z)) dt

= 2δ

(1 + z)ν+δ(1 − z)μ+δ

1∫
z

(1 + ξ)ν(1 − ξ)μ(ξ − z)δ−1f(ξ) dξ = 2δ(J μ,ν
δ f)(z),

where we used the change of variable ξ = ϕt(z), and the proof is done. �
Theorem 8.2. Let Re μ −γ+1 > 0, γ−Re (ν + δ) > 0 and Re δ > 0. Then the spectrum, 
essential spectrum and point spectrum of J μ,ν

δ on X are

σ(J μ,ν
δ ) =

{
2−δB(δ, λ) : λ ∈ |γ −Re (ν + δ), Reμ− γ + 1|

}
∪ {0},

σess(J μ,ν
δ ) =

{
2−δB(δ, λ) : Reλ = γ −Re (ν + δ) or Reλ = Reμ− γ + 1

}
∪ {0},

σpoint(J μ,ν
δ ) =

{
2−δB(δ, λ) : λ ∈ C such that

[
ξ �→ (1 + ξ)λ−ν−δ(1 − ξ)μ−λ+1] ∈ X

}
.

In particular,

{2−δB(δ, λ) : Reμ− γ + 1 < Reλ < γ −Re (ν + δ)} ⊆ σpoint(J μ,ν
δ ),

if Re (μ + ν + δ) < 2γ − 1,

and

σpoint(J μ,ν
δ ) = ∅, if Re (μ + ν + δ) > 2γ − 1.

Proof. Set ρ = Re (ν + δ − μ − 1)/2 and ω(z) = (1 + z)ν+δ(1 − z)μ+1 for z ∈ D. By 
Proposition 8.1, one has

J μ,ν
δ = 2−δ

∞∫
0

(1 − e−t)δ−1Sω(t) dt =
∞∫

−∞

e−ρtSω(t) dμ̃(t),

where dμ̃(t) = eρt2−δ(1 − e−t)δ−1χ(0,∞)(t) dt.
By Proposition 4.2 and Lemma 6.1, the infinitesimal generator Δω−ρ of the C0-group 

(e−ρtSω(t)) is bisectorial-like of angle π/2 and half-width c, for each c > |Re (μ + ν +
δ) −2γ+1|/2; see for instance [23, Subsection 2.1.1]. Moreover, c can be taken such that ∫∞

ec|t| |dμ̃|(t) < ∞ (see the proof of Proposition 8.1).
−∞
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Define f ∈ O(D) by

f(z) = Lb(μ̃)(−z) =
∞∫

−∞

eztdμ̃(t) = 2−δ

∞∫
0

(1 − e−t)δ−1e(z+ρ)t dt = 2−δB(δ,−z − ρ),

for all z ∈ C with |Re z| < c. Note that f can be analytically extended to the bisector 
BSθ,c for any θ ∈ (0, π/2). Also, by (8.1),

f(z) = 2−δ Γ(δ)Γ(−ρ− z)
Γ(δ − ρ− z)

= 2−δΓ(δ)(−ρ− z)−δ(1 + O(|z + ρ|−1))−1, |z| → ∞ (z ∈ BSθ,c).

Thus, f has regular limit (equal to 0) at ∞ satisfying (1.7), which implies f ∈ E(Δω−ρ). 
Hence, we can apply Theorem 1.4 to get σ̃(J μ,ν

δ ) = f(σ̃(Δω − ρ)), σ̃ess(J μ,ν
δ ) =

f(σ̃ess(Δω − ρ)) and σpoint(J μ,ν
δ ) = f(σpoint(Δω − ρ)). Now, it suffices to apply Propo-

sition 6.3 and Theorem 6.8 to obtain the claim. (Note that ∞ ∈ σ̃ess(Δω − ρ) since 
σ̃ess(A) is a closed subset of the Riemann sphere C ∪ {∞} for any closed operator A
with non-empty resolvent, see for instance [31].) �

We depict in Fig. 1 the spectrum and essential spectrum of two Siskakis type operators 
acting on two different γ-Banach spaces.

Fig. 1. Spectral pictures for two Siskakis type operators. The bold lines depict the essential spectrum.
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Corollary 8.3. Let 0 < γ < 1. The Siskakis operator J is a bounded operator on X, and 
the following holds true.

• σ(J ) is the region between the circles C1 := {z ∈ C : |z + 1/γ| = 1/γ} and 
C2 := {z ∈ C : |z + 1/(1 − γ)| = 1/(1 − γ)}.

• σess(J ) = C1 ∪ C2.
• If γ > 1/2, then Int(σ(J )) ⊆ σpoint(J ). If γ < 1/2, then σpoint(J ) = ∅.

8.2. Reduced Hilbert type operators

Let μ, ν, δ ∈ C. In this subsection, we study the spectrum of the multiparameter 
family of operators (Hμ,ν

δ ), with

(Hμ,ν
δ f)(z) = 1

(1 + z)ν−δ+1(1 − z)μ−δ+1

1∫
−1

(1 + ξ)ν(1 − ξ)μ f(ξ)
(1 − zξ)δ dξ, z ∈ D.

(8.4)
The next result gives sufficient conditions on μ, ν, δ for the boundedness of Hμ,ν

δ on 
X.

Proposition 8.4. Assume Re μ > γ−1, Re ν > γ−1, Re (δ−μ) > 1 −γ and Re (δ−ν) >
1 − γ. Set ω(z) = (1 + z)ν+1(1 − z)μ−δ+1 for z ∈ D. Then

Hμ,ν
δ f =

∞∫
−∞

2δ−1

(1 + et)δ Sω(t)f dt, f ∈ X,

where the integral is Bochner-convergent. In particular, Hμ,ν
δ is a bounded operator on 

X.

Proof. The proof is similar to the proof of Proposition 8.1.
Here, the DW -continuous cocycle ((ω ◦ϕt)/ω) has exponents α = Re (δ−μ) − 1, β =

Re ν +1. Fix ε > 0 small enough, and set ρ := ε +max{Re ν− γ +1, Re (δ−μ) + γ− 1}
and ρ̃ := ε + max{Re (δ− ν) + γ − 1, Re μ − γ + 1}. Then, there exists Kε > 0 such that

∥∥∥∥∥∥
∞∫

−∞

1
(1 + et)δ Sω(t) dt

∥∥∥∥∥∥
B(X)

≤ Kε

⎛⎝ ∞∫
et(ε+max{β−γ,α+γ}

(1 + et)Re δ
dt +

0∫
e−t(ε+max{γ−β,−α−γ})

(1 + et)Re δ
dt

⎞⎠

0 −∞
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= Kε

⎛⎝ ∞∫
1

xρ−1

(1 + x)Re δ
dx +

∞∫
1

xρ̃−1

(1 + x)Re δ
dx

⎞⎠ < ∞,

where we have used Re δ > max{ρ, ̃ρ} in the last step, and we have used the change of 
variables et = x and e−t = x, respectively in each integral sign, in the second-to-last 
step. We conclude that 

∫∞
−∞(1 + et)−δSω(t) dt is Bochner-strongly convergent, whence 

it defines a bounded operator. Similar computations as in the proof of Proposition 8.1
give us

∞∫
−∞

2δ−1

(1 + et)δ (Sω(t)f)(z) dt

=
∞∫

−∞

2δ−1

(1 + et)δ

(
1 − ϕt(z)

1 − z

)μ−δ+1 (1 + ϕt(z)
1 + z

)ν+1

f(ϕt(z)) dt

= 1
(1 + z)ν−δ+1(1 − z)μ−δ+1

1∫
−1

(1 + ξ)ν(1 − ξ)μ f(ξ)
(1 − zξ)δ dw

= (Hμ,ν
δ f)(z), z ∈ D, f ∈ X,

and the proof is finished. �
Now, we obtain the spectra of operators Hμ,ν

δ . First, we prove the following lemma.

Lemma 8.5. Assume Re μ > γ−1, Re ν > γ−1, Re (δ−μ) > 1 −γ and Re (δ−ν) > 1 −γ. 
Then Hμ,ν

δ is an injective operator on X.

Proof. Let f ∈ X, put g(ξ) := (1 + ξ)ν(1 − ξ)μf(ξ) for ξ ∈ (−1, 1), and fix ε > 0 small 
enough. Then |f(ξ)| � (1 − ξ2)−γ−ε for all ξ ∈ (−1, 1) by Remark 2.4. Hence

1∫
−1

|g(ξ)| dt �
1∫

−1

(1 + ξ)Re ν−γ−ε(1 − ξ)Reμ−γ−ε dt < ∞,

that is, g ∈ L1(−1, 1).
Now, assume furthermore f ∈ kerHμ,ν

δ , and let Kδ(n), n ∈ N0 be such that (1 −z)−δ =∑∞
n=0 K

δ(n)zn, z ∈ D. One has

(Hμ,ν
δ f)(z) =

1∫
(1 + ξ)ν(1 − ξ)μ f(ξ)

(1 − zξ)δ dξ =
1∫

g(ξ)
(1 − zξ)δ dξ
−1 −1
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=
1∫

−1

g(ξ)
∞∑

n=0
Kδ(n)(zξ)n dξ =

∞∑
n=0

znKδ(n)
1∫

−1

ξng(ξ) dξ = 0, z ∈ D,

where have used Fubini’s theorem since

∞∑
n=0

1∫
−1

∣∣Kδ(n)znξng(ξ) dξ
∣∣ ≤ ‖g‖L1(−1,1)(1 − |z|)δ < ∞.

As a consequence, Kδ(n) 
∫ 1
−1 ξ

ng(ξ) dξ = 0, n ∈ N0, which implies 
∫ 1
−1 ξ

ng(ξ) dξ = 0, 
n ∈ N0 (note that Re δ > 0 by the hypotheses assumed and so Kδ(n) �= 0, n ∈ N0). In 
short, g = 0, thus f = 0 and our claim follows. �
Theorem 8.6. Assume Re μ > γ−1, Re ν > γ−1, Re (δ−μ) > 1 −γ and Re (δ−ν) > 1 −γ. 
Then the spectrum, essential spectrum and point spectrum of Hμ,ν

δ are

σ(Hμ,ν
δ ) = {2δ−1B(z, δ − z) : z ∈ |Re ν − γ + 1,Re (δ − μ) + γ − 1|} ∪ {0},

σess(Hμ,ν
δ ) = {2δ−1B(z, δ − z) : Re z = Re ν − γ + 1 or Re z = Re (δ − μ) + γ − 1}

∪ {0},
σpoint(Hμ,ν

δ )

= {2δ−1B(z, δ − z) : z ∈ C such that
[
ξ �→ (1 + ξ)z−ν−1(1 − ξ)μ−δ−z+1] ∈ X}.

In particular,

{2δ−1B(z, δ − z) : Re ν − γ + 1 < Re z < Re (δ − μ) + γ − 1} ⊆ σpoint(Hμ,ν
δ ),

if Re (μ + ν − δ) < 2(γ − 1),

and

σpoint(Hμ,ν
δ ) = ∅, if Re (μ + ν − δ) > 2(γ − 1).

Proof. The proof runs along similar lines as Theorem 8.2.
For ρ = Re (ν + δ − μ)/2, we have Hμ,ν

δ =
∫∞
−∞ e−ρtSω(t) dμ̃(t), where dμ̃(t) =

2δ−1eρt(1 + et)−δ dt for t ∈ R, see Proposition 8.4. On the other hand, it follows by 
Proposition 4.2 and Lemma 6.1 that, for all c > |Re (δ − μ − ν) + 2(γ − 1)|/2, the 
infinitesimal generator Δω − ρ of (e−ρtSω(t)) is bisectorial-like of angle π/2 and half-
width c, see [23, Subsection 2.1.1].

Define f ∈ O(D) by

f(z) = (Lbμ̃)(−z) =
∞∫

eztdμ̃(t) = 2δ−1
∞∫

e(z+ρ)t

(1 + et)δ dt
−∞ −∞
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= 2δ−1B(z + ρ, δ − z − ρ), |Re z| < c.

Note that f can be analytically extended to a bisector BSθ,c for any θ ∈ (0, π/2). We 
claim that there exists K > 0 for which |f(z)| � e−K|z| as z → ∞ through BSθ,c. This is 
true if δ = 1 since in this case f(z) = π

sinπ(z+ρ) for all z ∈ C \{−ρ, −ρ −1, −ρ −2, ...; ρ −
1, ρ − 2, ...}, and | sin π(z + ρ)| � eπ sin θ|z| as z → ∞ through BSθ,c. If δ �= 1, note that

f(z) = B(z + ρ, δ − z − ρ) = Γ(δ − z − ρ)
Γ(δ − 1)Γ(1 − z − ρ)

π

(δ − 1) sin π(1 − z − ρ) ,

for all z ∈ C \ {−ρ, −ρ − 1, −ρ − 2, ...; ρ − 1, ρ − 2, ...}. Thus, it follows by (8.1) that

f(z) = (−z − ρ)δ−1

Γ(δ − 1)
π

(δ − 1) sin π(1 − z − ρ) (1 + O(|z + ρ|−1))−1, z ∈ BSθ,c,

obtaining the fore-mentioned inequality. Thus f is regular at ∞ with f(∞) = 0, f ∈
E(Δω−ρ) and the hypotheses of Theorem 1.4 are satisfied. As a consequence, σ̃(Hμ,ν

δ ) =
f(σ̃(Δω − ρ)), σ̃ess(Hμ,ν

δ ) = f(σ̃ess(Δω − ρ)) and f(σpoint(Δω − ρ)) ⊆ σpoint(Hμ,ν
δ ) ⊆

f(σpoint(Δω − ρ)) ∪ {0}. The statement follows since Hμ,ν
δ is injective by Lemma 8.5, 

and the different spectra of Δω were given in Theorem 6.8. �
We provide in Fig. 2 the spectral picture of two reduced Hilbert type operators acting 

on two different γ-Banach spaces.

Fig. 2. Spectral pictures for two reduced Hilbert type operators. The bold lines depict the essential spectrum.
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