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Abstract
Nonlinear materials are often difficult to model with classical state model theory because they have a complex and
sometimes inaccurate physical and mathematical description, or we simply do not know how to describe such materials
in terms of relations between external and internal variables. In many disciplines, neural network methods have emerged
as powerful tools to identify very complex and nonlinear correlations. In this work, we use the very recently developed
concept of physically guided neural networks with internal variables (PGNNIVs) to discover constitutive laws using a
model-free approach and training solely with measured force–displacement data. PGNNIVs make a particular use of the
physics of the problem to enforce constraints on specific hidden layers and are able to make predictions without internal
variable data. We demonstrate that PGNNIVs are capable of predicting both internal and external variables under
unseen load scenarios, regardless of the nature of the material considered (linear, with hardening or softening behavior
and hyperelastic), unravelling the constitutive law of the material hence explaining its nature altogether, endowing the
method with some explanatory character that distances it from the traditional black box approach.
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1. Introduction
Machine learning (ML) methods have become today one of the main tools in business, science, and technology.
These methodologies enable the extraction of information from data that would be intractable by means of
traditional methods [1]. In particular, a new discipline that has become very popular lately in the scientific
literature is scientific machine learning (SML) [2] or physics-informed machine learning (PIML) [3], where
data-driven methods are combined with the scientific knowledge about the system for different purposes, either
to gain interpretability and reliability, or to improve the performance of the different methods.

Indeed, ML has changed the way we conceive science. On one hand, it has been used to discover the hidden
physical structure of the data and unravel the equations of a system [4–6]. On the other hand, the tremendous
predictive power of ML has been blended with the scientific consistency of the explicit mathematical rep-
resentation of physical systems through the concept of data-driven models for simulation-based engineering
and sciences (SBES) [7]. The latter is usually performed by the combination of raw data and physical equa-
tions [8,9], by enforcing a metriplectic structure to the model, related with the fulfillment of thermodynamic
laws [2] or by defining the specific structure of the model [10,11]. These novel data-driven science approaches
arise therefore with the main purpose of turning apparently non-physically meaningful data-driven models,
where approaches such as artificial neural networks (ANNs) or in particular deep learning (DL) approaches
have excelled, into physics-aware models, taking advantage of the tremendous power of ANNs as universal
approximators [12–16].

Physically based model is not only useful for making predictions but also to help in acquiring new knowl-
edge by the interpretation of its structure, parameters, and mathematical properties. Physical interpretability is,
in most cases, at least as important as predictive performance. However, it is known that interpretability is one of
the main weaknesses of ANNs, as the acquired knowledge is encoded in the strength of multiple connections,
rather than stored at specific locations. That explains the huge efforts that are currently being made towards
“whitening” the “black-box” character of ANN [17, 18] in what has been coined as eXplainable artificial intelli-
gence (XAI) [19, 20]. In the context of data-driven simulationbased engineering and sciences (DDSBES) [21],
two ways of proceeding can be distinguished: building specific ANNs structures endowed with the problem
equations [22, 23], also known as the inductive bias approach, and/or by regularizing the loss function using the
physical information [24–26].

For computational mechanics, the approach to be followed depends decisively upon the data availability and
the way in which this data is used. If we follow a supervised approach, there are two possibilities.

• The first one assumes that we know the whole physics of the problem. In that situation, supervised ML
is used for the sake of computational requirements. In that sense, the ML models act as reduced order
models (ROMs) [27] or surrogates [28,29] that can be used as a surrogate in problems involving uncer-
tainty quantification [30], optimization [31], or control. In particular, ANNs have been extensively used
as surrogates in computational mechanics [32,33]. Hybridizing DL with physical information is a way of
improving standard DL methods in terms of data requirements, less-expensive training, or noise filtering
at the evaluation step, thanks to regularization [22,24,34]. Therefore, we are interested in the predictive
capacity of the approach.

• The second assumes that we know some of the physics of the problem. In that situation, we are interested
in knowing the hidden physics that remains unknown, expressed in terms of some model parameters [26]
or functional relations [35]. For that reason, we are rather interested in the explanatory character of the
method.

In other situations, we follow unsupervised approaches. This may be indeed due to two different possibilities:

• If we know the whole physics of the problem, the use of ML regression tools is merely instrumental and
is used as an alternative way of solving numerically some system of partial differential equations (PDEs)
that require an important computational effort [36]. In this case, we are taking advantage of the fact
that compositional function approximation (the one followed by ANNs) has surpassed additive function
approximation in terms of computational cost for back-propagation algorithms and similar [37].

• When some of the physics of the problem is unknown, the intrinsic variability of the data (for instance
when measuring spatial or temporal fields) may be exploited for an unsupervised discovery of some
unknown constitutive models [38,39]. This approach must be unsupervised because variables such as
stresses cannot be measured, but only certain integral representations, appearing in the integral expression
of the linear momentum balance equation (equilibrium) can be supervised.[AQ: 1]
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However, in the context of the Internet of Things (IoT), where data quantity generally dominates over data
quality, the data availability and variability is key, and it is difficult to guarantee whether, considering for instance
the specific case of computational solid mechanics, “the combination of geometry and loading generates suf-
ficiently diverse and heterogeneous strain states to train a generalizable constitutive model with just a single
experiment” [40]. Therefore, there are no other alternatives rather than introducing all the control or measurable
variables in the workflow, while maintaining the desirable properties of the PIML approach, namely, its ability
to get fast predictions in real time (for optimization and control issues) together with its explanatory capacity.

In this work, we demonstrate, how, in the context of computational solid mechanics, physically guided
neural networks with internal variables (PGNNIVs) [22, 35, 41] enable the compliance with these requirements
particularly well. PGNNIVs comprise ANNs that are able to incorporate some of the known physics of the
problem, expressed in terms of some measurable variables (for instance forces and displacements) and some
hidden ones (for instance stresses). Their predictive character, improving many of the features of conventional
ANN [22], allow for fast and accurate predictions. In addition, PGNNIVs are able to unravel the constitutive
equations of different materials from unstructured data, that is, uncontrolled test data obtained from system
monitorization. The method is illustrated for hyperelastic problems, although it can be generalized to more
complex problems, provided that part of the physical nature of the problem is known and the data are rich
enough to learn the unknown physics.

The content of this paper is structured as follows. First, an overview of PIML is presented, focused on
computational solid mechanics. Then, the methodology is described, including the use of PGNNIVs in com-
putational mechanics, the computational treatment of the physical tensorial fields and operators, as well as the
dataset generation and training process. Then, the main results are presented, of both the predictive and explana-
tory capacity of the method. Finally, conclusions are summarized, together with the main limitations and a brief
overview of future work.

2. PIML in computational solid mechanics
PDEs are the standard way to describe physical systems under the continuum setting thanks to their overarching
capacity to model extremely different and complex phenomena. However, closed-form solutions are not known
in general. That is the reason why numerical methods have become the universal tool to obtain approximate but
accurate solutions to PDEs. These methods consider a given discretization in space and time, which results in
an algebraic (in general nonlinear) system that is then solved by means of standard matrix manipulation.

In the last three decades, however, attempts to solve PDEs from a data-driven point of view have been
numerous. First tentatives [42,43] generalized earlier ideas for ordinary differential equations (ODEs). Since
then, many different approaches have been proposed, from collocation methods [44–46], variational/energy
approaches [47–49], loss regularization using physical or domain knowledge [25, 50–52], to the most recent
approaches using automatic differentiation [26]. The use of ANN technologies for solving PDEs related with
physical problems is nowadays known as physics-informed neural networks (PINNs). Other works have exten-
sively tried to address this challenge using the stochastic representations of high-dimensional parabolic PDEs
[37, 53, 54].

In order to provide the data-driven models with a meaningful physical character, remarkable efforts have
been made in the recent years to embed physical information into data-driven descriptions. The potential of
solving inverse problems with linear and nonlinear behavior in solid mechanics, for example, has been explored
using DL methods [55], where the forward problem is solved first to create a database, which is then used to
train the ML algorithms and determine the boundary conditions from assumed measurements. Other approaches
initially build a constitutive model into the framework by enforcing constitutive constraints, and aim at cal-
ibrating the constitutive parameters [56]. Nowadays, the use of DL models is being exploited intensively in
computational mechanics [57].

In this context, clearly differentiating between external and internal variables becomes an important factor
when approaching complex physical problems, but this is disregarded most times from a data-driven viewpoint.
External variables are those observable, measurable variables of the system, which can be obtained directly
from physical sensors such as position, temperature, or forces; internal variables are non-observable (not directly
measurable) variables, which integrate locally other observable magnitudes and depend on the particular internal
structure of the system [41]. This is very important to consider in the ML framework since predictions associated
to an internal state model require explicitly the definition of the cloud of experimental values that identifies the
internal state model [58]. This implies “measuring”, or better, assuming values for non-observable variables
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[59, 60]. This is for example, the case of stresses in continuum mechanics that can be determined a priori
only after making strong assumptions such as their uniform distribution in the center section of a sample under
uniform tension.

An alternative is the use of PGNNIVs. This new methodological appraisal permits to predict the values of the
internal variables by mathematically constraining some hidden layers of a deep ANN (whose structural topology
is appropriately predefined) by means of the fundamental laws of the continuum mechanics such as conservation
of energy or mechanical momenta that relate internal non-measurable with external observable variables. With
this, it is possible to transform a pure ML-based model into a physics-based one without giving up the powerful
tools of DL, including the implicit correlation between observable data and the derived predictive capacity. This
way, not only the real internal variables of the problem are predicted but also the data needed to train the network
decreases, convergence is reached faster, data noise is better filtered, and the extrapolation capacity out of the
range of the training data-set is improved, as recently demonstrated [22], when compared to standard ANN. In
line with the terminology and general framework used in PIML [3], PGNNIVs showcase an intuitive interplay
between an inductive bias approach and a learning bias appraisal, where physical constraints are incorporated
by means of a physics-informed likelihood, that is, additional terms in the loss function.1

PGNNIVs are in essence a generalization of PINNs. In the latter, physical equations constrain the values
of output variables to belong to a certain physical manifold that is built from the information provided by
the data and the specific form of the PDE considered. One of the shortcomings of PINNs is that, in general,
only simple ordinary PDEs that contain a few free parameters and are closed-form can be considered [61]. In
contrast, PGNNIVs not only apply to scenarios where PDEs involve many parameters and have complex forms
but also to those where a mathematical description is not available. In fact, this new paradigm embodies a unique
architecture where the values of the neuron variables in some intermediate layers acquire physical meaning in
an unsupervised way, providing the network with an inherent explanatory capacity. Moreover, PGNNIVs offer
the possibility to train a model that is predictive for any specified boundary and initial conditions [35].

The main differentiating features that, up to the authors’ knowledge, constitute a relevant contribution to
the advances of data-driven physical modelling and its particular application to nonlinear mechanics are two-
folded: first, physical constraints are applied in predefined internal layers (PILs), in contrast to previous works
on PINNs. PILs are internal layers that acquire certain physical meaning, inasmuch the learning of the whole
system is driven towards the fulfilling of the governing equations. Second, and even most important, PGNNIVs
are able to predict and explain the nature of the system all at once, that is, predictability of the variables as
well as explainability of the constitutive law are ensured and learned altogether. In all related works, modeling
assumptions on the constitutive law of the correspondent materials are directly imposed, so that the material
response complies with certain constraints. On the contrary, PGNNIVs only enforce universal laws of the system
(e.g. balance equations) and no prior knowledge on the constitutive model is incorporated, except when specific
structural parameters are of real interest, in which case this information can also be included explicitly using
parametric expressions.

3. Methods
In this section, we describe the methods of this work. We follow an approach from the generalities to the details.
First, we briefly describe the general concept of PGNNIVs and its particularization to computational solid
mechanics, in particular, to solve hyperelasticity problems, and more specifically, a plane-stress case study.
Next, we elaborate the computational details about the methods, that is, how the different data structures and
operators are treated as well as the different algorithms used. Finally, we dedicate the last subsection to data
generation and training details to ensure reproducibility of the results.

3.1. PGNNIV in computational mechanics

3.1.1. Revisiting PGNNIVs. Classical deep neural networks (DNNs) are often represented as black boxes that the-
oretically can compute and learn any kind of function correlating the input and output data. In particular, they
perform very well in areas of science and technology where complex functions convey good approximations of
the governing phenomena. Although there exist some heuristic rules [62], these black boxes are usually trained
via trial and error. Adding a physical meaning to the hidden layers and constraining them by adding an extra
term to the cost function has already proven to have significant advantages such as less data requirements, higher
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accuracy, and faster convergence in real physical problems, as well as model unravelling capacities [22]. The
basic principles of PGNNIVs are briefly exposed in the next lines.

Let us consider a set of continuous PDEs of the form

F(u, v) = f , in �, (1a)

G(u, v) = g, in ∂�, (1b)
H(u) = v, in �, (1c)

where u and v are the unknown fields of the problem, F , and H are functionals representing the known and
unknown physical equations of the specific problem, G is a functional that specifies the boundary conditions,
and f and g are known fields.

The continuous problem has its analogous discretized representation in finite-dimensional spaces in terms of
vector functions F, G and H , and nodal values u, v, f , and g. Particularly, u are the solution field nodal values
and v are the unknown internal field variables at the different nodes.

A PGNNIV may be defined for a problem of type (1) in the following terms:

y = Y(x),
v = H(u),

x = I(u, f , g),
y = O(u, f , g),

R(u, v, f , g) = 0,

where:

1. u, f , and g are the measurable variables of the problem.
2. x and y are the input and output variables respectively and will be defined depending on which relation

x �→ y wants to be predicted.
3. I and O are functions that compute the input x and the output y of the problem from the measurable

variables. In other words, functions I and O define the data used as starting point to make predictions, x,
and the data that we want to predict, that is, y.

4. R are the physical constraints, related to the relations given by F and G.
5. Y and H are DNN models:

• Y is the predictive model, whose aim is to infer accurate values for the output variables for a certain
input set, that is, to surrogate the relation x �→ y.

• H is the explanatory model, whose objective is to unravel the hidden physics of the relation u �→ v.

3.1.2. PGNNIVs in computational solid mechanics. Our aim now is to reframe equation (1) in the context of solid
mechanics. To fix ideas, although it is not difficult to adapt the methodology to other constitutive models,
we restrict this analysis to hyperelastic solids with constant and known density ρ. First, we have to consider
equilibrium equations (momentum conservation) in the domain �.

In material coordinates, equilibrium reads

DIV(P) + ρB = 0, (3)

where P is the first Piola–Kirchhoff stress tensor, B is the reference volumetric body force field, and DIV is the
divergence operator in material coordinates.

If ξ = χ(�) is the deformation field that relates spatial (ξ ) and material (�) coordinates, we define the
deformation gradient tensor F as

F = GRAD(χ) = GRAD ⊗ ξ , (4)

where GRAD is the gradient operator in material coordinates. Equation (4) shows that F is a potential tensor
field so F must satisfy the following compatibility equation in each connected component of �:

CURL(F) = 0. (5)
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In the previous equations, we have used the different vector calculus operators in material coordinates, that
in Cartesian coordinates and using Einstein summation convention, are expressed as

[
GRAD

(
f
)]

k
= ∂f

∂�k
. (6a)

[
DIV (T)

]
k = ∂Fki

∂�i
. (6b)

[
CURL (T)

]
km

= εijk
∂Fmj

∂�i
. (6c)

For hyperelastic materials, the first Piola–Kirchhoff stress tensor P is related to the deformation gradient
tensor by means of the equation

P = ∂�

∂F
, (7)

where � is the strain energy function expressed as a function of the deformation state given by F, � = F(F).
Obtaining this particular function is the subject of research of material sciences and many approaches are
possible, ranging from phenomenological descriptions to mechanistic and statistical models.

Finally, equations (3), (4) or (5), and (7) must be supplemented with appropriate boundary conditions. We
distinguish here between essential boundary conditions and natural boundary conditions. The former define the
motion of the solid at some boundary points 	E ⊂ ∂�:

ξ = ξ̄ , (8)

whereas the latter define the traction vector at some other boundary points 	N ⊂ ∂�:

P · N = T̄ , (9)

where N is the material outwards normal vector and ξ̄ and T̄ are known values of the solid motion and material
traction forces respectively.

Let us assume that it is possible to measure (for instance using digital image correlation techniques [63]) the
system response in terms of its motion given by the map ξ = χ(�), that is, ξ is a measurable variable. Let us
also assume that we can measure the volumetric loads, B = B(ξ ), as well as the prescribed traction forces T̄.
Therefore, using equations (4) and (7), it is possible to express:

F = A(ξ ), (10a)

P = B(�, ξ ), (10b)

for some appropriate differential operators A and B. Therefore, we can recast hyperelastic solid mechanics as

DIV(P(�, ξ )) = −ρB in �, (11a)

ξ = ξ̄ in 	E, (11b)

P · N = T̄ in 	N , (11c)
� = F(F(ξ )) in �. (11d)

Groupping equations (11b) and (11c), it is clear that we can express computational solid mechanics for
hyperelastic materials as

F(ξ , P) = B, in �, (12a)

G(ξ , σ ) = (ξ̄ , T̄) in ∂�, (12b)

H(ξ ) = P, in �, (12c)

that is in the form of equation (1) with u = ξ , v = P, f = B, and g = (ξ̄ , T̄).
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In small strains solid mechanics, it is common to work with the displacement field U = ξ −� and to define
the displacement-gradient tensor J = GRAD(U). In that case, the constitutive equation is formulated as

σ = G(ε), (13)

where σ is the Cauchy stress tensor and ε the Cauchy small strain tensor

ε = symgrad(U) = 1

2
(J + Jᵀ), (14)

and G is a tensor map. With these considerations, the equations of the problem are now written as

F(U , σ ) = B, in �, (15a)

G(U , σ ) = (Ū ; T̄), in ∂�, (15b)

H(U) = σ , in �, (15c)

again in the form of equation (1) with u = U , v = σ , f = B and g = (Ū , T̄).
Once we have discretized the problem, our aim is to predict a motion field ξ (or a displacement field U)

from a particular load case, expressed in terms of the volumetric loads and the natural boundary conditions,2 T̄ .
Therefore x = I(u, f , g) = (f , g) = (B, T̄) is the input vector variable and y = O(u, f , g) = u = ξ the output
vector variable. With these last remarks, the PGNNIV problem is stated for finite solid mechanics as

ξ = Y(T̄), (16a)
P = H(KIN(ξ )), (16b)

x = (T̄ , B), (16c)
y = ξ , (16d)

R(ξ , P, T̄) = (DIV(P) − ρB; P · N − T̄; ξ − ξ̄ ). (16e)

where KIN(ξ ) is a selected kinematic descriptor of the strain state, such as the deformation gradient F =
GRAD(ξ ), the right Cauchy–Green deformation tensor C = FᵀF, or the Green–Lagrange strain tensor E =
1
2 (C − I), among others. For small strains solid mechanics, the methodology simplifies to

U = Y(T̄), (17a)

σ = H(symgrad(U)), (17b)

x = (T̄ , B), (17c)

y = U , (17d)

R(U , σ , T̄) = (div(σ ) − ρB; σ · N − T̄; U − Ū). (17e)

The appropriate structure and architecture of H and Y depend on the complexity of the material in hands,
which is discussed later. It is appropriate to point out that all the discussion uses material coordinates and fields,
although the same approach can be formulated for spatial coordinates and fields, by adapting the pertinent
equations.

3.1.3. Case study: geometry and external forces. For illustration purposes, the case study considered in this work
consists in a non-uniform biaxial test on a rectangular plate of height L1 = 16 cm and width L2 = 20 cm, under
plane stress. No volumetric loads are incorporated, that is, B = 0. We impose a certain arbitrary compression
load profile p = p(s) (where s is the coordinate along the right and top contour). To accelerate computations, we
consider a load profile that is symmetric with respect to the vertical and horizontal axis and acts perpendicularly
to the plate contour, as shown in Figure 1. The symmetry of the problem allows therefore for the analysis of an
equivalent problem by extracting the upper-right portion of the plate and applying the corresponding symmetry
boundary conditions. For the discretization, we considered a mesh of nx × ny = 11 × 9 nodes.



8 Mathematics and Mechanics of Solids 00(0)

Figure 1. Dimensions and representation of the non-uniform biaxial test on a 2D plate. Load p = p(s) acting perpendicularly to
the contour is arbitrary, provided that it is compatible with the symmetry of the problem. We locate the origin (x, y) = (0, 0) at the
geometrical center of the plate.

3.2. Data and operator representation

In this section, we discuss how the different mathematical objects in our use case problem (scalar, vectorial, and
tensorial fields and operators) are represented. First, we describe how the different fields are encoded and related
to the measured data. Then, we explain how the different operators involved are built. This includes both the
known operators (equilibrium and compatibility) as well as the unknown relationships comprising the predictive
and explanatory networks, Y and H respectively. Then, we discuss how physical constraints are hardwired into
the ANN, so that the built PGNNIV is tailored towards the discovery of constitutive models that comply with the
physics of the solid mechanics problem in the context of elastic and hyperelastic theory, constraining therefore
the learning space and bypassing the parametrization of the constitutive law.

3.2.1. Data structures. The data that contain the nodal and element-wise variables (that is, displacements and
stresses/strains respectively) is stored in array structures. Now we introduce the notation that will be used for
referring to a given tensor field, that is represented by an array I containing the information of the tensorial
field itself. The different dimensions of the data are represented using the indexation I[I|J |K], where I is a
multi-index associated with the discretization of the problem, J with the tensorial character and K with the
data instance, that is, the piece of data (including all scalar, vectorial and tensorial fields) corresponding to
one specific load case. Thus, considering that we have a dataset of size N and a discretization of size nx × ny,
the displacement field is represented by U[i, j|k|l] where i = 1, . . . , nx, j = 1, . . . , ny, and where k = 1, 2 (2D
problem) and l = 1 . . . , N , so that

U[i, j|k|l] = u(l)
k (xi, yj)

is the k component of the displacement field evaluated at (xi, yj) (that is, the node (i, j)) corresponding to the data
l. Analogously, the strain and stress fields are represented respectively by E[i, j|k, l|m] and S[i, j|k, l|m], where
i = 1, . . . , nx − 1, j = 1, . . . , ny − 1, k, l = 1, 2, and m = 1 . . . , N , such that, for instance,

E[i, j|k, l|m] = E(m)
kl

(
1

2
(xi + xi+1),

1

2
(yj + yj+1)

)

is the k, l component of the strain tensor evaluated at the element (i, j) corresponding to the data m.

Finally, the traction forces, T̄
top

and T̄
right

, which are treated as the inputs of our problem (provided the
volume forces are not considered), are represented by Ttop[i|j|k] where i = 1, . . . , nx, j = 1, 2, and k = 1 . . . , N ,
so that

Ttop[i|j|k] = T top,(k)
j (xi, L1/2),
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and Tright[i|j|k] where i = 1, . . . , ny, j = 1, 2, and k = 1 . . . , N , so that

Tright[i|j|k] = T right,(k)
j (L2/2, yi),

both associated with the data instance k.
Note that the computational details of the method do not depend on whether the finite or infinitesimal

framework is used. We only need to adapt the interpretation of the strain and stress fields, E and S, accordingly
and adapt the definition of E in terms of the displacement field U, E = KIN(U).

3.2.2. Operator construction. In this section, we specify the details to build the predictive and explanatory networks
(Y and H), as well as the constraint operator R. The definition of the complexity of a PGNNIV adapted to solid
mechanics stems from the architecture of the predictive and explanatory networks, Y and H, as they must be
able to learn the nonlinearities between variables t̄ �→ U or t̄ �→ ξ and E �→ P (or ε �→ σ ).

When knowing the input data structure, the predictive network must be able to represent the data variability,
so typically it has an autoencoder-like structure. Its complexity is therefore associated with the latent dimen-
sionality and structure of the volumetric loads and boundary conditions. If not, a deep-enough ANN is able
to reproduce the input–output relation as a universal approximator. Here we build an ANN that is sufficiently
accurate when predicting the output from a given input.3

Thus, since we consider a biaxial quadratic load applied to the plate, the complexity of the network depends
on the data variability. For non-uniform loads, the values of the elemental loads are the input of a vanilla DNN
whose output are the nodal displacements. For the uniform load, we use an autoencoder-like DNN.4

Now we discuss the architecture of the explanatory network. As in this work, we restrict ourselves to the elas-
tic regime, the input variable is the given strain state at an arbitrary node E[i, j|k, l|m] (E represents the Cauchy
deformation tensor for infinitesimal theory and the Green–Lagrange deformation tensor for finite strains the-
ory), and the output variable is the associated stress state at that same element, S[i, j|k, l|m] (again, S represents
the Cauchy stress tensor or the first Piola–Kirchhoff tensor depending on whether we are in the infinitesimal or
finite strains theory). Note that under the homogeneity assumption (and postulating that the stress state depends
only on the value of the deformation at the same point), the explanatory network is a nonlinear map R

3 → R
3,

due the symmetry of both tensors, which may be expressed symbolically as

S[i, j|·, ·|m] = H
(
E[i, j|·, ·|m]

)
.

In particular, H has to be able to capture the highly nonlinear dependencies that may exist between variables.
This is in theory possible thanks to the universal approximation theorem (see the introduction section for some
references): by adding more internal layers (also known as hidden layers) to the DNN model, we can provide the
network with the learning capability and complexity that a particular nonlinear constitutive law might require.
The implementation of the explanatory network for homogeneous materials is efficiently implemented using a
pointwise nonliner operator, that is, a DNN to move across the domain element by element, but expanding the
features in a higher dimensional spaces, as illustrated in Figure 2. We call this type of architecture a moving
multilayer perceptron (mMLP).5

For the very particular case of linear elasticity, we can explicitly parameterize the explanatory network,
H(σ ) = H(σ ; D), where D is the elastic tensor and σij = Dijklεkl. Using Voigt convention, the tensor D is
expressed, under plane stress conditions and in the most general case, as a 3 × 3 matrix.

D =
⎛
⎝ d11 d12 d13

d12 d22 d23
d13 d23 d33

⎞
⎠ , (18)

where dij are free model parameters, whereas for an isotropic elastic material, we have

D = E

1 − ν2

⎛
⎝ 1 ν 0

ν 1 0
0 0 1 − ν

⎞
⎠ , (19)

where the elastic modulus E and the Poisson ratio ν are the only free fitting parameters learned during the
training process.
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Figure 2. Representation of the explanatory network for the 2D plane stress problem. On the left, the strain field computed from
the displacement field predicted by Y is represented on the plate. In an homogeneous material, the DNN is fed with the strain state
on each element, and the correspondent stresses are obtained. The set of weights of this DNN moves across the elements of the
plate and updates after each iteration of the optimization (see Figure 3 for the whole picture), similar to a 2D-convolutional filter. We
call this type of architecture a moving multilayer perceptron (mMLP).

Table 1. Detailed architecture of the PGNNIV for the different illustrated cases.

Small strains problem

Network Class of architecture Detailed layers (input and output neurons included)

Predictive network Y MLP 36/50/tanh/50/tanh/50/tanh/50/tanh/198
Explanatory network H mMLP 3/100/tanh/100/tanh/100/tanh/100/tanh/100/tanh/100/tanh/100/tanh/3

Large strains problem

Network Class of architecture Detailed layers (input and output neurons included)

Predictive network Y autoencoder 18/9/tanh/3/tanh/3/tanh/9/tanh/198
Explanatory network H mMLP 3/60/ReLU/60/ReLU/60/ReLU/60/ReLU/60/ReLU/3

An analogous reasoning holds for more complex parametric dependencies. It is possible to express the
explanatory network H as a parametric model relating the strain and the stress states, that is

S[i, j|·, ·|m] = H
(
E[i, j|·, ·|m]; �

)
.

where � are some pre-defined fitting parameters that are learned during the training step. In particular, an
homogeneous material is described as

S[i, j|·, ·|m] = H
(
E[i, j|·, ·|m]; �ij

)
.

Table 1 shows the architecture details for the unique PGNNIV trained on the linear, softening and hardening
materials in small strains theory and the unique PGNNIV trained on the Ogden material in finite strain theory,
in both cases when the parametric structure of the constitutive equation is not prescribed. When the constitutive
equation is prescribed, the explanatory network is replaced by the constitutive relation expressed in terms of
the different parameters. For the small strains case, the Y network layer includes empty elements (null value)
corresponding to the most general natural boundary conditions where shear loads are applied on the contour.
Therefore, the input layer comprises 2 × (nx − 1) × (ny − 1) = 2 × (10 + 8) = 36 neurons. The number of
neurons of the output layer corresponds to 2 × nx × ny = 2 × 11 × 9 = 198.
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3.2.3. Coupling the two networks using physical constraints. The definition and subsequent formulation of the PGN-
NIV framework implies that the loss function includes a term proportional to the quadratic error between the
predictions and true values of the output variable (minimization of the maximum likelihood of the data given
the parameters) and other penalty terms related to some (physical) equations, that is, equilibrium constraints.
Therefore the different terms involved are as follows:

1. Loss term associated with the measurement of the displacement field:

MSE = 1

N

N∑
i=1

||Ū (i) − Y(t(i))||2, (20)

where Ū
i
is the observed displacement corresponding to sample i.

2. Constraint associated with the equilibrium equation.

∇ · P = 0, or ∇ · σ = 0. (21)

3. Constraint associated with the compatibility in the domain.

E − 1

2

(
FᵀF − I

) = 0, or ε − symgrad(U) = 0. (22)

4. Constraint associated with the equilibrium of the stresses in the boundary.

P · N − T = 0, in 	N . (23)

5. Constraints associated with the compatibility of the displacements in the boundary.

Ux(x = 0, y) = 0, Uy(x, y = 0) = 0. (24)

The global cost function (which turns out to be a virtual physics-informed likelihood in a Bayesian for-
mulation or, equivalently, a regularized cost function in the most common terminology) can be computed as a
weighted sum of MSE and PEN, with PEN referring to the physical terms, that is, equations (21), (22), (23), and
(24). As equation (22) may be expressed as an explicit relation between E (or ε) and U , it is directly embedded
in the network architecture, as illustrated in Figure 3. Therefore, the loss is expressed as:

CF = MSE + PEN, (25)

where

MSE = 1

N

N∑
i=1

[
p1‖Ū

(i) − Y
(

T̄
(i)

)
‖2

]
, (26)

and

PEN = 1

N

N∑
i=1

[
p2‖∇ · P(i)‖2

]

+ 1

N

N∑
i=1

[
p3‖P(i) · N − T̄

(i)‖2
]

+ 1

N

N∑
i=1

[
p4

(
‖U (i)

x (0, y)‖2 + ‖U (i)
y (x, 0)‖2

)]
,

(27)

where with the superscript (i), we refer to the ith piece of data, and pj, j = 1, 2, 3, 4 are penalty coefficients that
account for the relative importance of each term in the global CF (and may be seen as Lagrange multipliers
that softly enforce the constraints). Recall that no penalty for the compatibility in the domain is included since
E − 1

2 (FᵀF − I) (or ε − 1
2 (∇ ⊗ U + U ⊗ ∇)) is identically 0.
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Figure 3. Graphical representation of the designed 2D-planar stress PGNNIV. All significant tensorial fiels of the problem are
represented: the input variables (top and right tractions and volume forces, where the latter are assumed to be null so removed
formally from the input), the output variables (displacement field at each nodal value), as well as the internal variables of the problem
(stress and strain fields, represented in Voigt notation).

The ANN minimization problem reads therefore:

min
W

CF(E ; W ), (28)

where W are the network parameters and E = {T̄ i
, Ū

i|i = 1, · · · , N} is a given training data-set. By minimizing
this function (and assuring that not overfitting is observed by examining the predictions for test data), we will
obtain predictions of displacement, stresses, and strains. For simplicity, Algorithm 1 details a stochastic gradient
descent version of the optimization, even if in this work we always used the Adam optimizer.

From the theoretical point of view, equation (28) presents a complex constrained optimization problem that
has been widely studied in the context of applied mathematics, i.e., Langrange multipliers. However, when NNs
come into play along with PDEs, the optimization becomes more involved because the complex nature of the
Pareto front, extensively studied for PINNs [64], determines that the optimum is a state where an individual
loss cannot be further decreased without increasing at least one of the others, and therefore, the optimal set
of weighting hyperparameters pj cannot be inferred in advance. This weighting hyperparameters pj, commonly
referred as penalties, arise in a natural way if they are regarded as real numbers scaling the covariance matrix of
the variables’ virtual maximum likelihood probability distribution. This concept was introduced in the context
of state-space particle dynamics [65,66].

Figure 3 shows a graphical representation of the different structures involved (tensorial fields) and the links
between them (known and unknown operators) for finite strains solid mechanics.

3.2.4. Details about the discretization. The discretization of both space and time domains lies on the basis of numer-
ical methods. In the particular case of solid mechanics under the hypotheses considered here, time discretization
turns out not to be relevant for the overall computations because loads are applied in a quasi-static way, and the
sole discretization of the geometry provides a very good approximation of how the continuum solid behaves.

Traditional FEMs follow a matrix-based approach to have algebraic systems whose solution is an approxi-
mate solution. By subdividing the whole domain into small parts (finite elements), PDEs governing the physical
phenomena occurring in the particular geometry can be approximated by means of computable functions to gen-
erate algebraic systems even for complex geometries. However, FEMs require exact knowledge of the properties
of the material and are usually time-consuming.

On the contrary, PGNNIVs require no information about the material properties since these are learned
during the training process of the network, and the calculation time for the forward problem is reduced to
seconds at prediction time in the online loop. The discrete nature of methods such as FEM, which subdivide
the spatial domain in small elements, very closely resembles that of PGNNIVs, which comprise a number of
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Algorithm 1: PGNNIV learning algorithm
Input: PGNNIV architecture, batch size nb, penalties pk, k = 1, 2, 3, 4, and number of iterations

M ;
Data: external forces T̄(k), measured displacements Ū(k), k = 1, . . . , N ;
Initialization of PGNNIV parameters, w = w0, j = 0;
repeat

for i = 1, . . . , nb do
U(i) ← Y

(
T̄(i);w

)
;/* Predictive network */

E(i) = KIN
(
U(i)

)
;/* Green-Lagrange or Cauchy strain tensor */

S(i) ← H
(
E(i);w

)
;/* Explanatory network */

end
R

(i)
1 =

∑nb

i=1 ‖Ū(i) − U(i)‖2;
R

(i)
2 =

∑nb

i=1 ‖DIV(S(i))‖2;
R

(i)
3 =

∑nb

i=1 ‖S(i) ·N − T̄(i)‖2;
R

(i)
4 =

∑nb

i=1 ‖U(i)x (0, y)‖2 + ‖U(i)y (x, 0)‖2;
CF = p1R

(i)
1 + p2R

(i)
2 + p3R

(i)
3 + p4R

(i)
4 ;

w ← w −∇wCF; /* Stochastic gradient descent step */
j ← j + 1;

until j = M ;
Output: Optimal parameters w∗ = w for Y and H;

discrete units (neurons) to represent field variables. Moreover, commonly used differential operators in these
methods are also subject of a suitable description in the PGNNIV framework using convolutional filters.

In particular, as illustrated in Figure 3, each neuron of the input or output layers of the predictive network
corresponds to a node in the FEM framework, such that the specific layer is built by the concatenation of the
neurons corresponding to the value of the variable in different discretization nodes and associated with the
different spatial dimensions (x and y in that case). This way, data can be naturally considered in the neural
structure and flow throughout the different models and loss functions. Similarly, the neurons in Figure 2 are
associated with the values of strains and stresses in the different elements (with an identical structure, but this
time using Voigt notation for tensor representation). The value of each neuron associated with a given element
may be derived, using an appropriate convolution filter, from the values of the neurons associated to the element
nodes.

For instance, it is possible to define the discrete gradient filter GRAD acting on the nodes for obtaining values
on the elements or acting on the elements for obtaining values on the nodes. For example, if W = GRAD ⊗ U,
then, for k = 1, 2,

W[i, j|k, 1|m] = 1

2hx

(
�xU[i, j + 1|k|m]+

+ �xU[i, j − 1|k|m]
)

,

W[i, j|k, 2|m] = 1

2hy

(
�yU[i + 1, j|1|m]+

+�yU[i − 1, j|1|m]
)

,

where
�xU[i, ·|1|m] = U[i + 1, ·|1|m] − U[i − 1, ·|1|m],

and
�yU[·, j|1|m] = U[·, j + 1|1|m] − U[·, j − 1|1|m].
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Analogously, if R = GRAD · T, for k = 1, 2,

R[i, j|k|m] = 1

2hx

(
�xT[i, j + 1|k, 1|m]+

+ �xT[i, j − 1|k, 1|m]
) +

+ 1

2hy

(
�yT[i + 1, j|k, 2|m]+

+ �yT[i − 1, j|k, 2|m]
)

.

Now we can define the different discretized differentials. For instance the 2D-discretized gradient of a vector
field V , represented by the array V, is DV = GRAD⊗V, where GRAD is the discrete gradient operator. Therefore,
we compute DU = GRAD ⊗ U and for large strains, we have E = 1

2 (DU + DUᵀ + DUᵀDU) and for small strains
E = 1

2 (DU + DUᵀ).
Similarly, the 2D-discretized divergence of a tensor field T , represented by T, is defined as: DIV(T) = GRAD·

T, so we can express the equilibrium equation both in infinitesimal as well as finite strains theory as DIV(σ ) = 0
or DIV(P) = 0, respectively.

3.3. Data generation and training process

In this work, we generate synthetic data although the methodology is the same for real experimental data.
Synthetic data generation is more practical, as it allows for error validation by comparing to the real solu-
tions and inexpensive, given that an accurate numerical solution is available via FEM analysis. Therefore, each
instance has to be interpreted as a particular load case sampled randomly and independently, following a given
multivariate distribution.

3.3.1. Small strains: linear, softening, and hardening elastic materials. For the creation of the linear, softening, and hard-
ening materials, we used Matlab, in co-simulation with Abaqus CAE/6.14-2. Matlab was used to automatically
and iteratively generate an Abaqus input file that contained the geometry and load profiles. Once each numer-
ical simulation is completed, the results are stored back into Matlab. For all the test cases, the geometry is the
same, whereas the variability in the data-set is achieved by randomly changing the load profiles so that all the
examples correspond with different experiments. For this first example, the load profiles are parabolic and are
generated for both the right and top contours.

We consider three elastic materials with different constitutive laws. On one hand, we choose an isotropic
linear elastic material with elastic modulus E = 1000 Pa and Poisson’s coefficient ν = 0.3. On the other
hand, we considered two nonlinear materials, one with softening properties and another one with hardening
properties.6 A relation of the type σ = Kεn was used, with K = 1.869 × 101 Pa and n = 0.45 for the softening
material and K = 1.869×1012 Pa and n = 3.5 for the hardening material. The data-set comprises N = 103 FEM-
simulations for the linear material and N = 104 FEM-simulations for the hardening and softening materials.
The details about the different data-sets used are summarized in Table 3.

3.3.2. Finite strains: Ogden-like hyperelastic material. For the finite strains case, an incompressible Ogden-like hypere-
lastic material of order 3 is used for the dataset generation. The incompressible Ogden [67] hyperelastic material
of order m is defined in terms of its strain-energy density function:

�(C) = �(λ1, λ2, λ3) =
m∑

i=p

μp

αp

(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)

. (29)

For reproducibility purposes, in Table 2, we report the material parameters used for the data generation. For
this second example, we produce N = 104 examples corresponding to uniform biaxial tests (Table 3), where
λ1, λ2 ∈ [1; 1.10]. For an incompressible membrane under biaxial deformation, assuming a plane stress state, the
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Table 2. Parameter values for the Ogden hyperelastic material.

Parameter Value Units

μ1 281 Pa
μ2 −280 Pa
μ3 0.31 Pa
α1 1.66 -
α2 1.61 -
α3 38.28 -

Table 3. Summary of the different data-sets used.

Problem Load profile N Train/test

Small strains (linear) Parabolic 103 80%/20%
Small strains (hardening) Parabolic 104 80%/20%
Small strains (softening) Parabolic 104 80%/20%
Large strains (Ogden) Uniform 104 80%/20%

solution of the problem using an Ogden’s strain-energy function has analytical solution [68]. The deformation
field corresponding to uniform biaxial deformations is

ξ1 = χ1(�1, �2, �3) = λ1�1,
ξ2 = χ2(�1, �2, �3) = λ2�2,

ξ3 = χ3(�1, �2, �3) = 1

λ1λ2
�3,

where we have denoted (�1, �2, �3) = (X , Y , Z) and (ξ1, ξ2, ξ3) = (x, y, z) according to the previously
introduced notations, so, the non-vanishing components of the Green–Lagrange deformation tensor, E, are

Exx = 1

2
(λ2

1 − 1),

Eyy = 1

2
(λ2

2 − 1),

Ezz = 1

2
((λ1λ2)−2 − 1).

As we assume plane stress, (σzz = σxz = σyz = 0), the non-vanishing components of the first-order Piola–
Kirchhoff stress tensor are

Pxx = 1

λ1

3∑
k=1

μk

(
λ

αk
1 − (λ1λ2)−αk

)
,

Pyy = 1

λ2

3∑
k=1

μk

(
λ

αk
2 − (λ1λ2)−αk

)
.

3.3.3. Training process. For the evaluation of the methodology, we have trained different PGNNIVs corresponding
to four cases. Each case is presented as a different numerical experiment (E).

• Linear material with parametric explanatory network (anisotropic (E1) and isotropic (E2)).
• Linear (E3), softening (E4), and hardening (E5) materials with non-parametric explanatory network.
• Ogden-like material with parametric explanatory network (E6).
• Ogden-like material with non-parametric explanatory network (E7).
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Table 4. Value of the hyperparameters for all the training processes.

Description Experiment Loss function coefficients Learning algorithm
p1 p2 p3 p4 Learning rate α Batch size nb

Linear (anisotropic model) E1 1 × 103 1 × 10−3 1 × 10−3 1 × 103 5 × 10−5 100
Linear (isotropic model) E2 1 × 103 1 × 10−3 1 × 10−3 1 × 103 5 × 10−5 100
Linear (model-free) E3 1 × 103 1 × 10−3 1 × 10−3 1 × 103 5 × 10−5 100
Softening (model-free) E4 1 × 103 1 × 10−3 1 × 10−3 1 × 103 5 × 10−5 100
Hardening (model-free) E5 1 × 104 1 × 10−8 1 × 10−8 1 × 104 5 × 10−4 100
Ogden (model-free) E6 1.0 × 100 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 128
Ogden (model-based) E7 1.0 × 100 1 × 10−3 1 × 10−3 1 × 10−3 1 × 10−3 128

For all the datasets considered, there is a number of hyperparameters that have been tuned for obtaining the
proceeding results with the different networks, namely the learning rate β and the four penalty coefficients pj,
j = 1, . . . , 4. For reproducibility purposes, Table 4 shows a summary of the hyperparameters that were found to
give optimal results for the optimization process.

4. Results
When used as forward solvers, PGNNIVs can either predict measurable variables if force–displacement data
are available, for example, through digital image correlation (DIC) techniques, or explain the internal state of
the solid if this is needed for a certain application. In this section, we validate the performance of PGNNIVs
acting as a forward-solver against standard FEM solutions for the plate using the different materials proposed
and also as a method for constitutive equation discovery.

4.1. Predictive capacity

4.1.1. Infinitesimal strains case. We first evaluate the prediction capacity of PGNNIVs for the different tested mate-
rials under random parabolic loads. For a quantitative evaluation of the predictive capacity of the PGNNIV, we
define the relative error (εr) of an array field I as:

εr(I) =
∑

I ,J ,K

(
Î[I|J |K] − I[I|J |K]

)2

∑
I ,J ,K I[I|J |K]2

, (30)

where Î is the predicted value, and I is the value obtained using FEM. For instance, for the displacement field
U represented by the array U:

εr(U) =

√√√√∑
i,j,k,l

(
Û[i, j|k|l] − U[i, j|k|l])2

∑
i,j,k,l U[i, j|k|l]2

, (31)

or using standard field notation:

εr(U) =

√√√√√
∑

i,j,k,l

(
Û (l)

k (xi, yj) − U (l)
k (xi, yj)

)2

∑
i,j,k,l(U

(l)
k (xi, yj))2

, (32)

where U (l)
k (x, y) represents the value of Uk(x, y) corresponding to the data sample l. Table 5 shows the relative

error obtained by the PGNNIV for the softening, hardening, and linear materials. We observe predictive errors
below 6% for all the cases.

4.1.2. Finite strains case. We evaluate now the Ogden material under finite strains. Table 6 shows the relative error
obtained by the PGNNIV for the Ogden material, resulting in that case in errors below 2% (due to the lower
dataset variability).
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Table 5. PGNNIV predictive errors for the linear, softening, and hardening materials (experiments E3, E4 and E5).

Type of material εr(U) εr(σ ) εr(ε)

Linear 0.0053 0.0321 0.0361
Softening 0.0092 0.0207 0.0455
Hardening 0.0117 0.0448 0.0551

Table 6. PGNNIV predictive errors for the hyperelastic material (experiments E6 and E7).

Type of material εr(U) εr(σ ) εr(ε)

Ogden material 0.0034 0.0156 0.0037

It should be noted that, unlike other methods such as PINNS or the EUCLID method, the error has been
calculated for variable and varying boundary conditions.

4.2. Explanatory capacity

The explanatory capacity of the method is evaluated here in two levels: parametric identification and state model
unveiling.7

4.2.1. Infinitesimal strains. First, we train and evaluate a linearized version of the PGNNIV (where Y and H are
replaced with weight matrices with no activation functions) with the dataset corresponding to the isotropic linear
elastic material parametrized with elastic modulus E and Poisson ratio ν. It is possible to evaluate the relative
error when learning an elastic tensor D by means of

εr(D) = ‖D̂ − D‖F

‖D‖F
, (33)

where D̂ is the predicted value, D the real one, and ‖ · ‖F depicts the Fröbenius norm, ‖A‖F = √
A : A. For

assessing the identifiability of the structural parameters , it is possible to evaluate the prediction of the model
parameters associated with equations (18) and (19) by computing the relative errors for a given parameter λ,
that are defined as:

εr(λ) = |λ̂ − λ|
λ

, (34)

where λ̂ and λ are the predicted and real values, respectively. The learned anisotropic and isotropic tensors, up
to a precision of 1 Pa are:

Daniso =
⎛
⎝1099 330 0

330 1099 0
0 0 511

⎞
⎠ ,

Diso =
⎛
⎝1098 331 0

331 1098 0
0 0 767

⎞
⎠ .

The errors of the elastic tensor when using the anisotropic or the isotropic elastic material model are respec-
tively εr(Daniso) = 0.0144 and εr(Diso) = 0.002, i.e, when the assumed hypotheses are true, the explanatory
capacity of the network increases. Notwithstanding, the general anisotropic model has a certain explanatory
capacity, as we may detect the supplementary structural symmetries in the resulting elastic tensor, that is,
d13, d23 
 d11, d12, d22, d33, d11 � d22. The last symmetry condition d33 = d11 − d12 is not fulfilled (and
the value of the parameter d33 itself is not accurately predicted), as the dataset is not sufficiently rich in large
pure shear-stress states, so the model is not able to detect this symmetry. This last remark is important and
illustrates one of the weaknesses of the method (indeed, of any ML approach): an excess of model degrees of
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Table 7. Predicted and real values of the model parameters (experiments E1 and E2).

Parameter, λ Relative error, εr(λ)

Anisotropic model
d11 0.0002
d12 0.0008
d13 ∞
d22 0.0002
d23 ∞
d33 0.3359

Isotropic model
E 0.0020
ν 0.0052

Table 8. Explanatory errors for the H model subjected to uniform uniaxial test (experiments E3, E4, and E5).

Type of material εr(H)

Linear 0.0302
Softening 0.0096
Hardening 0.0592

freedom (parameters) can result in poor explanatory capacity especially if the dataset does not have sufficient
variability [69].

Moving to specific structural parameter identification, Table 7 describes how the model is able to predict
accurately the different elastic parameters. As commented before, the worst prediction is observed for the
anisotropic model and the parameter that correlates shear stresses and strains. If, using the anisotropic model, we
were interested in finding the value of the isotropic model parameters E and ν, it is possible to compute ν using
the relations ν = d12

d11
= d12

d22
, and then to compute E using E = d11(1−ν2) = d22(1−ν2) = d12

1−ν2

ν
= d33(1+ν).

Of course, we obtain a different accuracy for each of these expressions.
Using the anisotropic model, we obtain values of 0.001 and 0.001 for εr(ν) and values of 0.0004, 0.0004,

0.004, and 0.34 for εr(E), in agreement with the previous observations.
While the predictive capacity of PGNNIVs does not necessarily surpass that of a classical (unconstrained)

NN, the significant improvement is visible when assessing the explanatory capacity of the PGNNIV, which can
be evaluated by its ability to learn the material constitutive law. This also distinguishes the proposed method
from others such as using PINNs for parameter identification. We perform a virtual uniaxial test using the
explanatory network, which corresponds to the functional representation of σxx = H1(ε, 0, 0) for ε ∈ [εmin; εmax]
and we compare the PGNNIV predictions with a virtual uniaxial test produced with FEM. Results are shown in
Figure 4 and Table 8.

The explanatory error is quantified as the normalized area confined between the real uniaxial test curve and
the PGNNIV-predicted one in Figure 4. It is expressed as:

εr(H) =
√√√√

∫ εmax

εmin
(σ̂xx(ε) − σxx(ε))2 dε∫ εmax

εmin
σ 2

xx(ε) dε
, (35)

where σ̂xx and σxx are the predicted and FEM stresses, respectively, which result from strains ε ∈ [εmin; εmax].

4.2.2. Finite strains. We explore now the explanatory capacity for the finite strains case. If λ ∈ [λmin; λmax] is the
longitudinal stretch, λ1, the relative explanatory errors for a given transversal stretch λ2 are defined as:

εr,ij(H) =
√√√√

∫ λmax

λmin
(P̂ij(λ, λ2) − Pij(λ, λ2))2 dλ∫ λmax

λmin
P2

ij(λ, λ2) dλ
. (36)
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(a) (b)

(c)

Figure 4. PGNNIV prediction versus FEM solution of the uniaxial test curve for the different datasets (experiments E3, E4, and E5).
We observe good agreement between the FEM solution (continuous line) and the PGNNIV prediction (dashed line), for the softening
(a), linear (b), and hardening (c) materials.

Note that, as the roles of x and y (represented by i and j) are symmetrical in the considered biaxial test, the
indicated errors are sufficient for illustrating the explanatory capacity of the method. For structural parameter
identification, the formula used for error quantification is equation (34).

As explained previously, we first explicitly state the parametric shape of the constitutive equation, that is, we
prescribe the material to be Ogden-like. Under these assumptions and for the uniform biaxial test considered,
the constitutive relation writes

Pxx = 1√
2Exx + 1

3∑
p=1

μk

[
(2Exx + 1)αk/2 − κ−αk/2

]
,

Pyy = 1√
2Eyy + 1

3∑
p=1

μk

[(
2Eyy + 1

)αk/2 − κ−αk/2
]

.

where κ = (2Exx+1)(2Eyy+1). Therefore, the parameters αk , μk , k = 1, 2, 3 are, in principle, the ones that ought
to be learned by the explanatory network. We obtain values for the parameters of μ1 = 276 Pa, μ2 = −277 Pa,
μ3 = 0.31 Pa, α1 = 1.53, α2 = 1.47, and α3 = 38.32. The relative errors for the different parameters are
shown in Table 9. It is important to note that there are some parameters that are more accurately predicted than
others, i.e., they are superfluous. This fact relies on the capacity of each of the parameters for explaining the
material response, as observed in Figure 5, where we compare the theoretical constitutive relation with the one
obtained using the learned parameters. The explanatory errors are reported in Table 10, adding evidence of the
explanatory power of the method despite the discrepancies in some parameters.

We now evaluate the model discovered by the PGNNIV with a virtual biaxial test using the explanatory
network. The functional representation is now (Pxx, Pyy, Pxy) = H(Exx, Eyy, 0) for Exx.Eyy ∈ [Emin; Emax], and we
compare the PGNNIV predictions with the model used for the data generation. The results are shown in Figure
6 for three different values of λ2, and the errors, computed according to equation (36) are displayed in Table 11.
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(a) (b)

Figure 5. Parametric PGNNIV prediction (experiment E6) versus analytic solution of the uniform biaxial test curve for the Ogden
material. We observe good agreement between the analytical solution (continuous line) and the PGNNIV prediction (dashed line),
for the different values of λ2. This indicates that the network has a good explicability capacity even though some superflous model
parameters are not accurately fitted. (a) Component yy. (b) Component xx.

Table 9. Predicted and real values of the model parameters for the Ogden material (experiment E6).

Parameter, λ Relative error, εr(λ)

μ1 0.017
μ2 −0.011
μ3 0.005
α1 0.077
α2 0.086
α3 0.001

Table 10. Explanatory errors εr,ij(H) for the finite strains problem subjected to uniform biaxial test (parametric discovery,
experiment E5).

Y stretch ratio Relative error, εr(H)

εr,xx εr,yy

λ2 = 1.02 0.0098 0.0265
λ2 = 1.05 0.0115 0.0193
λ2 = 1.08 0.0132 0.0110

Table 11. Explanatory errors εr,ij(H) for the finite strains problem subjected to uniform biaxial test (non-parametric discovery,
experiment E7).

Y stretch ratio Relative error, εr(H)

εr,xx εr,yy

λ2 = 1.02 0.0034 0.0357
λ2 = 1.05 0.0033 0.0177
λ2 = 1.08 0.0039 0.0152

5. Discussion, conclusions, and future work
Throughout this work, we have presented the mathematical foundations of PGNNIVs in the field of com-
putational solid mechanics, which demonstrates to be a particularly interesting niche for the use of such
methodology. We have demonstrated that PGNNIVs have both predictive and explanatory capacity:
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(a) (b)

Figure 6. Non-parametric PGNNIV prediction (experiment E7) versus analytic solution of the biaxial test curve for the Ogden
material. We observe good agreement between the FEM solution (continuous line) and the PGNNIV prediction (dashed line), for the
different values of λ2. (a) Component xx. (b) Component yy.

• Predictive capacity: PGNNIVs are able to accurately predict the solid response to new external stimuli in
real time, something fundamental for optimization, control and probabilistic problems. They are also able
to predict not only the solid response in terms of displacement field but also the deformation and stress
fields, without the need of any extra post-processing. This has been demonstrated in when evaluating
predictive capacity, where we have obtained relative errors always below 10%. Controlling non-primary
fields is sometimes important in engineering problems, as high stresses cause damage, plasticity, or struc-
tural failure. As the explanatory network, once trained, encodes all the information about the material
properties, it can be used for the prediction of stresses directly from the displacement fields, if necessary.

• Explanatory capacity: PGNNIVs are able to unveil hidden state model equations, that is, the constitutive
equations of computational solid mechanics. First, for parameter identification and fitting, PGNNIV are
able to identify inherent material symmetries (such as isotropy) and also to predict the value of the struc-
tural model parameters with high accuracy. In the latter, PGNNIVs are in a certain sense an alternative to
conventional least-square minimization problems [70] (e.g. using standard methods such as Levenberg–
Marquardt algorithm) but making use of the software and hardware tools associated with ANN technology:
graphical processor units (GPUs) and tensor processor units (TPUs), distributed and cloud computation,
scalability, transfer, and federate learning strategies among others. In addition, PGNNIVs address the more
challenging problem of model-free unravelling of nonlinear materials constitutive laws. We have demon-
strated the explanatory capacity of PGNNIVs both for parameter identification and state model discovery
with many examples (linear and nonlinear materials both in the infinitesimal and finite strains frame-
work). The relative error when predicting structural parameters is always below 2% except if the dataset
does not contain information about the material response to stimuli associated with a certain parameter or
the parameter itself has not a direct impact in the explanatory capacity (superfluous parameters). Besides,
the explanatory relative error is also below 10% for all the cases analyzed.

One important characteristic of PGNNIVs related to this double capacity is the fact that it is possible to
decouple two sources of variability in the data obtained from a mechanical system that can be measured using
any kind of sensor, namely, the stimuli variability and the variability related to system response.

• The stimuli variability is stored in the predictive network, which acts as an autoencoder. The encoder is
able to map data that lives in a space of dimension D, to a latent space of dimension d 
 D. The size of
the latent space is therefore informative about the data variability, and the values of the latent variables
are a compressed representation of data. For instance, in the large deformations problem, the data input
was in a space of dimension D = 18 (see Table 1), whereas the latent space has dimension d = 3. In
principle, with a latent space of dimension d = 2 would have been enough, as the data variability has
two components (horizontal and vertical pressure), but we kept a different latent space for illustrating
that the methodology would be satisfactory for any d greater than this intrinsic number of degrees of
freedom, generally unknown. In addition to theoretical considerations, this fact has important practical
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consequences: if we know the sources of variability of our system, it is possible to design the predictive
network accordingly.

• The physical interpretable knowledge, that is, the constitutive equation of the material, is delocalized,
spread and diluted in the weights of the predictive network but is also encoded in the relation ε �→ σ or
E �→ P that is learned by the explanatory network, in a much more structured way. Indeed, if it is intended
to identify and adjust some structural parameters, this is possible. Otherwise, the constitutive model as a
whole may be also unravelled using the expressiveness of ANN methods.

In that sense, PGNNIVs are knowledge generators from data as most of ML techniques are, with the dif-
ference that for this particular method, the physical knowledge is directly distilled in a separated component.
This particularity is what makes the difference between PINNs and PGNNIVs. In PINNs, data and mathemat-
ical physics models are seamlessly integrated for solving parametric PDEs of a given problem [3, 26], but,
by construction, the information cannot be extrapolated to other situations. Which means that, in the context
of solid mechanics, the network trained for a given problem using PINNs cannot be used for predicting the
response of the system under different volume loads or boundary conditions, which greatly weakens its ability
as a predictive method. PGNNIVs overcome this difficulty precisely by distilling the physical information from
the intrinsic variability of the stimuli.

There is another paramount characteristic of PGNNIVs for computational solid mechanics that has been
largely discussed and has explained their emergence. There is no need to have access to the values of internal
variables, that are, strictly speaking, non-measurable as they are mathematical constructs coming from a scien-
tific theory. In that sense, even if the bases for thermodynamically appropriated ANN for constitutive equations
in solid mechanics have been investigated [71], it is important to recall that stress fields, such as P or σ are not
accessible without the need of extra hypothesis (geometry or load specific configurations). This fundamental
issue should not be overlooked and many recent works have worked for this purpose. Efficient Unsupervised
Constitutive Law Identification and Discovery (EUCLID) method is one of the most acclaimed efforts in that
direction, either using sparse identification [38, 72, 73], clustering [74], Bayesian methods [75], or ANN [40].
However, EUCLID paradigm relies on the fact that the geometry and loads are appropriate enough to ensure
strain-stress fields variability in a single specimen. When the geometry or the data acquisition capabilities do
not satisfy this requirement, the only possibility is to take action on the dataset or the network, or at least to
track the different load conditions and incorporate them to the computational pipeline.

Finally, among the different PIML methods, PGNNIVs are more transparent than other approaches that
have demonstrated to be very performant for computing the evolution of dynamical systems by incorporating
thermodynamical constraints. Structure preserving neural networks enforce first and second laws of thermody-
namics as regularization term [76]. Even if in the cited work the GENERIC structure allows for a split between
reversible and non-reversible (dissipative) components, the physical information is again diluted in all the net-
work weights, rather than in some specific components. A dimensionality reduction of the dynamic data was also
explored [77]. This may be interpreted also as an information reduction to distil physical knowledge, although
the interpretability is still dark. In PGNNIVs, however, interpretable physical information (that is, knowledge)
is located in specific ANN components or, if explicit parametric relations are formulated, in specific model
parameters.

Nevertheless, the presented methodology still has some limitations and there exists room for exploration in
several directions:

1. The data requirements for the problem in hands are high. In this work, we have generated data synthetically,
but in reality, sensors usually collect noisy data from experimental tests and there exist also important
limitations concerning the size of the datasets. A probabilistic (Bayesian) viewpoint will enable a new
interpretation of PGNNIVs in the small data regime, although this methodology is rather thought for
systems where intensive data mining is possible, in which data quantity prevails over data quality.

2. Defining a suitable architecture for the Y and H networks is not a simple task and requires an iterative
process, including the tuning of many hyperparameters. In addition, PGNNIVs require extra hyper-
parameters, i.e., penalty coefficients pi, making the process even more involved and time consuming.
We have presented some insights into to the complexity and architecture of both predictive and explana-
tory networks, related with both their prediction and explanation character but either a great intuition for
network design, or time-intensive trial-and-error iterative testing are needed.
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3. In this work, we have made used of relatively coarse discretizations, but finer meshes will result in more
expensive training processes due to the exponentially larger number of parameters required. More pow-
erful computational strategies (distributed computing, parallelization) as well as more advanced hardware
(GPUs and TPUs) will enable the acceleration of the PGNNIVs training processes although the problem
of dealing with multidimensional and unstructured meshes still remains open.

Many challenges lie ahead of the development of a more general PGNNIV framework. Next lines of research
will address the formulation of PGNNIVs under finite strain assumptions using a much more theoretical basis,
such as the presented in some recent works [71, 78, 79], leveraging its predictive and explanatory power. Fur-
thermore, extensions of the 2D planar stress architecture to general 3D problems with more complex geometries
and load scenarios as well as to more complex constitutive laws that might depend on time (visco-elasticity), or
heterogeneous conditions, still pose major challenges for the future.

Finally, the usage of real data from sensors, for example, through digital image or volume correlation tests
(DIC, DVC) [63] or even more advanced methods such as finite-element model updating (FEMU) [80] or virtual
fields methods (VFM) [81] will put to the test the applicability of PGNNIVs to real scientific problems in the
field of engineering.

In conclusion, we have demonstrated that in the context of computational solid mechanics, PGNNIVs are
a family of ANN for accurately predicting measurable and non-measurable variables such as displacement and
stress fields, in real time, and are also able to describe or unravel the constitutive model with high accuracy for
different linear and nonlinear (hyper-)elastic materials. Even if this work is preliminary, the ingredients that it
comprises correspond to a general approach and the methodology can be applied to cases of scientific interest
with the necessary adaptations of the network architectures.
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Notes

1. These terms are also known as as collocation or regularization losses in the scientific literature.
2. It is important to recall that, as essential boundary conditions can be measured as an output variable, it is not necessary to include

them as inputs of our problem.
3. More sophisticated approaches coming from Manifold Learning theory are possible for analyzing data dimensionality and

structure [82], but this is not the main interest of this work and therefore is out of the scope of this particular study.
4. It is important to note that a single, complex enough, autoencoder-like DNN would be able to represent the data variability even

in the more complex scenario (the case with the largest latent space in the process of data generation). However, we have decided
to use two different network architectures for illustrating this particular feature of PGNNIV: the predictive network is associated
to data variability, rather than data nature. Therefore, we can adapt the network architecture to our problem characteristics, aiming
either at a better network performance (avoiding overfitting) or at a lower computational cost.

5. Note that, in TensorFlow framework, this function was implemented as a convolutional filter using a window of size 1, for the
sake of computational efficiency.

6. In Abaqus, they were modeled as plastic materials with no discharging effects caused by the removal of the load and strain ranges
confined within very small values, that allowing for the compliance of the nonlinear constitutive law with the infinitesimal strains
hypothesis.
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7. As discussed later, even if parametric identification can be achieved with classical fitting methods, optimization algorithms are
not robust when dealing with noisy and unstructured data, and ANN-specific hardware and software tools are not available.
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