000144872 001__ 144872
000144872 005__ 20240912134241.0
000144872 0247_ $$2doi$$a10.1002/smsc.202400206
000144872 0248_ $$2sideral$$a139607
000144872 037__ $$aART-2024-139607
000144872 041__ $$aeng
000144872 100__ $$0(orcid)0000-0003-4874-6672$$aGarcia-Peiro, Jose I.$$uUniversidad de Zaragoza
000144872 245__ $$aThe Pattern of Copper Release in Copper-Based Nanoparticles Regulates Tumor Proliferation and Invasiveness in 3D Culture Models
000144872 260__ $$c2024
000144872 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144872 5203_ $$aCancer is a leading cause of death worldwide. Glioblastoma (GBM) is a major challenge in oncology due to its highly invasive nature and limited treatment options. GBM's aggressive migration beyond tumor margins and rapid tumor growth hinders success in patient treatment. Localized therapeutic delivery, such as the use of transition metals like copper, is highlighted as a novel therapeutic agent for many potential biomedical applications. Herein, it is aimed to study the effects of Cu release on the proliferation and invasiveness of cancer cells. To this end, novel copper‐based nanostructures with different release patterns are designed. Using a complex 3D cell culture model to mimic the tumor microenvironment, it is shown that different patterns of copper ion release have a strong impact on GBM progression and invasiveness. The findings highlight the importance of optimizing localized copper release patterns to tailor different tumor treatment strategies. They also show the potential and suitability of 3D microchips as instruments to study the behavior of tumor spheroids. In spite of their limitations, these 3D microdevices enable a controlled and close monitoring of the influence of environmental factors (such as the presence of Cu ions) on the proliferation and invasiveness of the cells, with a better approach to reality compared to 2D models and with a more controlled environment, compared to an in vivo model.
000144872 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000144872 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144872 700__ $$aGuerrero-López, Paula$$uUniversidad de Zaragoza
000144872 700__ $$aHornos, Felipe
000144872 700__ $$0(orcid)0000-0002-4546-4111$$aHueso, Jose L.$$uUniversidad de Zaragoza
000144872 700__ $$0(orcid)0000-0002-9864-7683$$aGarcia-Aznar, J. Manuel$$uUniversidad de Zaragoza
000144872 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, Jesus$$uUniversidad de Zaragoza
000144872 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000144872 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000144872 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000144872 773__ $$g(2024), e2400206 [13 pp.]$$tSmall Science$$x2688-4046
000144872 8564_ $$s8205583$$uhttps://zaguan.unizar.es/record/144872/files/texto_completo.pdf$$yVersión publicada
000144872 8564_ $$s2389225$$uhttps://zaguan.unizar.es/record/144872/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144872 909CO $$ooai:zaguan.unizar.es:144872$$particulos$$pdriver
000144872 951__ $$a2024-09-12-13:06:12
000144872 980__ $$aARTICLE