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A B S T R A C T

Pediatric obesity can drastically heighten the risk of cardiometabolic alterations later in life, with insulin
resistance standing as the cornerstone linking adiposity to the increased cardiovascular risk. Puberty has been
pointed out as a critical stage after which obesity-associated insulin resistance is more difficult to revert. Timely
prediction of insulin resistance in pediatric obesity is therefore vital for mitigating the risk of its associated
comorbidities. The construction of effective and robust predictive systems for a complex health outcome like
insulin resistance during the early stages of life demands the adoption of longitudinal designs for more causal
inferences, and the integration of factors of varying nature involved in its onset. In this work, we propose
an eXplainable Artificial Intelligence-based decision support pipeline for early diagnosis of insulin resistance
in a longitudinal cohort of 90 children. For that, we leverage multi-omics (genomics and epigenomics) and
clinical data from the pre-pubertal stage. Different data layers combinations, pre-processing techniques (missing
values, feature selection, class imbalance, etc.), algorithms, training procedures were considered following good
practices for Machine Learning. SHapley Additive exPlanations were provided for specialists to understand both
the decision-making mechanisms of the system and the impact of the features on each automatic decision, an
essential issue in high-risk areas such as this one where system decisions may affect people’s lives. The system
showed a relevant predictive ability (AUC and G-mean of 0.92). A deep exploration, both at the global and
the local level, revealed promising biomarkers of insulin resistance in our population, highlighting classical
markers, such as Body Mass Index z-score or leptin/adiponectin ratio, and novel ones such as methylation
patterns of relevant genes, such as HDAC4, PTPRN2, MATN2, RASGRF1 and EBF1. Our findings highlight
the importance of integrating multi-omics data and following eXplainable Artificial Intelligence trends when
building decision support systems.
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1. Introduction

According to the World Obesity Atlas (WOA) 2023, published by
the World Obesity Federation, more than half of the global population
will be living with overweight or obesity by 2035 if the current trend
persists. In children and adolescents, the situation is even worse, with
obesity rates rising faster than in adults. Unless significant action is
taken, by 2035, WOA estimates obesity cases to reach 1.5 billion among
adults and nearly 400 million in children. Aside from the devastat-
ing population health impact, it is estimated that the total cost of
treating obesity-related illnesses will amount to $4 trillion per year,
representing almost 3% of worldwide gross domestic product

Obesity is associated with an increased risk of mortality, especially
if originated from the early stages of life [1,2]. Premature mortal-
ity in people with obesity is mainly caused by the appearance of
cardio-metabolic disturbances including cardiovascular diseases, Type
II Diabetes (T2D), and Metabolic Syndrome (MetS) [3–5]. Insulin Re-
sistance (IR), defined as a pathological condition in which cells become
less responsive to the effects of insulin on a systemic level, is the
metabolic comorbidity of obesity that shows the earliest appearance
in patients and represents a cornerstone linking adiposity to the rest of
cardiometabolic complications [6,7].

The onset of IR in patients with obesity usually occurs already from
the very early stages of life (∼10 years old) and can get worse with the
occurrence of key developmental events such as puberty [8]. During
puberty, a range of dynamic physiological changes take place (e.g., se-
cretion of sex steroids and accumulation of fat and lean mass) that
are related to distinct prognostics of IR, highlighting the importance of
this developmental stage for long-term health. Nevertheless, pubertal
alterations appear to impact individuals differently [9]. In healthy
normal-weight children, there is a physiological decrease in insulin sen-
sitivity during mid-puberty, which typically recovers by the end of the
pubertal period. However, evidence suggests that IR persists in children
with obesity as they enter puberty, leading to higher cardiometabolic
risk [6]. Consequently, puberty has been pointed out as a critical stage
upon which obesity-associated adverse cardiometabolic disturbances
are more difficult to revert [10]. In this regard, the early childhood
appears a magnificent window of opportunity for the implementa-
tion of preventive actions against obesity-associated IR worsening and
appearance [2,11].

The prediction of which pre-pubertal children will develop pubertal
IR, and will subsequently exhibit adverse cardiometabolic trajecto-
ries during adulthood is a challenging task. Nevertheless, translational
findings would improve the capacity for preventive care through the
prioritization of nutritional or lifestyle interventions for high-risk pre-
pubertal children [12]. Indeed, there is strong evidence that not all
children with obesity develop chronic IR after puberty, maintaining
a healthy metabolic status throughout their life (a condition known
as metabolically healthy obese) [13,14]. The totality of factors con-
ditioning the worsening of metabolic health and IR in children with
obesity are not fully understood yet, possibly involving complex inter-
actions between environmental and molecular factors. Consequently,
the metabolic evaluation of children at high risk currently relies on
classical biomarkers with limited predictive ability [15]. Therefore,
there is an emerging need to identify new biomarkers to incorporate
into predictive systems to help pediatricians accurately diagnose the
developing IR at an early stage. [16]. These clinical Decision Support
Systems (DSS) would enable pediatricians to estimate each child’s
metabolic risk and provide more effective and personalized treatments
in primary care [17].

Thanks to current technological advances and the increased use of
high-throughput molecular screening systems, large amounts of omic
data have increasingly become available for biological and clinical
research (e.g., genomics, epigenomics, transcriptomics, proteomics,

metabolomics), identifying novel and promising predictive biomarkers
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for many diseases, including IR [16,18]. The heterogeneous and com-
plex nature of the different types of omic biomarkers available demands
on the other hand the employment of advanced analysis techniques able
to jointly integrate all these multi-modal data if we want to build upon
them reliable and robust clinical DSS [19]. Likewise, the adoption of
longitudinal study designs is mandatory for this task [20,21], which al-
lows for building better systems by considering the intrinsic across-time
huge variation of this type of data in humans [6,9,22].

In this midst of this need, Artificial Intelligence (AI), and particu-
larly Machine Learning (ML) techniques, have been successfully applied
to predict the IR due to their ability to automatically integrate data
from different information sources in order to obtain descriptive or
predictive models that enable us to develop the inference engine of a
clinical DSS, helping pediatricians to detect and diagnose diseases in
an earlier and more accurate way. The authors of previous works [23,
24] used ML techniques to identify children and adolescents with or
without pre-diabetes from clinical or single-layer omic data belong-
ing to cross-sectional studies. However, these studies provide static
predictions without considering the dynamic physiological changes
that occur during puberty or the information available from other
omics. In addition, experts often do not trust the latest technical and
methodological approaches (e.g., Deep Learning), despite their high
accuracy, as they provide models for which it is not possible to explain
in a human-understandable way how they make their predictions [25].
Pediatricians do not trust the decisions generated by these models
unless they are accompanied by exhaustive and easily understandable
explanations since in many cases these models should be considered as
clinical DSS, being in many cases more important to understand ‘‘how
the decision was made’’ than the decision itself. A number of studies
have attempted to unravel the inner workings of complex systems and
offer explanations regarding their decisions, either by understanding
how the systems perform or by explaining their decisions. This new
trend is called eXplainable Artificial Intelligence (XAI) [26], which
recommends the use of transparent systems that by their nature are self-
explanatory and post-hoc explainability techniques that aim to provide
understandable information about how a complex system makes its
predictions for any given input. This transparency of the systems is
especially essential in high-risk areas, such as healthcare, in which the
output of predictive systems has an impact on the patient’s lives, so
experts will only deploy and use them if they can be trusted [27]. Due
to that, the European Commission has published the ‘‘Ethics Guidelines
for Trustworthy AI’’ and has recently accepted the first draft of an AI
law that promotes legal, lawful and robust AI.2

The use of these predictive tools from early ages could improve the
healthcare and knowledge of children having a high risk to develop
cardiometabolic alterations during adulthood. Accordingly, this paper
utilizes an XAI-based pipeline to generate an accurate and understand-
able DSS that enables the prediction of pubertal IR in children from
their pre-pubertal multi-omic information, to identify new molecular
mechanisms of IR in pediatric population and to report the most rele-
vant features to determine their potential future integration into clinical
practice. To this end, we employ multi-omic information (three lay-
ers: genetics variants, DNA methylation measures, and anthropometry,
biochemistry measurements and protein biomarkers) from the pre-
pubertal stage of a longitudinal cohort of 90 children. A methodology
based on ML good practices is followed, analyzing different resampling
techniques for class balancing and testing the results obtained by var-
ious ML algorithms for the early diagnosis of IR from the information
derived through different ways of joining data layers. To improve
comprehension of the working of the DSS, SHapley Additive exPla-
nations (SHAP) [28] were used to examine the impact of each omic
layer on longitudinal predictions using global explanations (feature
contributions for the whole system) and local explanations (feature
contributions for each specific instance). Both types of explanation are

2 https://www.europarl.europa.eu.

https://www.europarl.europa.eu
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Fig. 1. Summary of the experimental design. The longitudinal study consisted of pre-pubertal children who were followed into puberty three years later. The pre-pubertal information
was used as input to generate the classifiers and the output was the pubertal IR status. The analysis plan utilizes genomic (Gen), epigenomic (Epi), and clinical (Clin) data from
pre-pubertal children. The chosen data combination, algorithm, and resampling method are highlighted in red. Subsequently, we made pubertal predictions and analyzed the final
classifier’s behavior using post-hoc explainer. Abbreviations: Acc, Accuracy; BMI, Body Mass Index; EWAS, Epigenome-Wide Association Study; GWAS, Genome-Wide Association
Study; Sens, Sensitivity; Spe, Specificity; AUC, Area Under the ROC curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
effective to understand the performance of a wide range of ML systems
by supplying an importance value to each input feature for every
prediction, enhancing the reliability and transparency of the systems
through a deeper comprehension of the fundamental causes influencing
each prediction [28].

The proposed pipeline makes novel contributions, including the
importance of pre-processing in omic and clinical data, the evaluation
of different data layer fusion in combination with diverse resampling
methods and classification algorithms, a deep understanding of clinical
specialists of the DSS at the global level, and a better comprehension
of how the DSS stratifies children depending on clinical and omic char-
acteristics at the local level. With the aim of assessing the effectiveness
of our pipeline, we compared our proposal with other ML approaches
selected among the most accurate and the most interpretable or under-
standable ones from a comparative study [29], employing a stratified
repeated 5-fold cross-validation approach to assess our system’s per-
formance. Several metrics and nonparametric statistical test were con-
sidered to analyze the performance of the analyzed algorithms. Supple-
mentary material from this study has been included in a web page asso-
ciated with this article (i.e., https://sci2s.ugr.es/MultiOmics_IR_Pred).

The rest of this paper is structured as follows. Section 2 introduces
the datasets used and goes in-depth with technical details of the lon-
gitudinal multi-omic analysis performed. Section 3 presents the main
reported results from the longitudinal predictive analysis. Section 4
discusses and highlights some promising omic biomarkers in the pre-
diction of IR in pediatric population. Finally, Section 5 concludes the
paper.
3 
2. Material and methods

2.1. Overview of the analysis plan

The present work aimed to evaluate the ability of a group of systems
to predict the risk of developing pubertal IR in a longitudinal cohort of
Spanish children. For this purpose, we used three-layer input molecular
data (Gen, Epi and Clin data) derived from the pre-pubertal stage,
see Fig. 1. The analytic pipeline followed in this study included data
pre-processing, feature selection, construction of predictive systems
and interpretation of the best candidate. In order to carry out this
analysis, we had to face the inherent problems of omic data (biological
heterogeneity, background noise, missing values, high dimensionality,
etc.) [30,31]. During the construction of predictive systems, the differ-
ent layers of input predictors were used independently and combined
as described in Fig. 1.

The use of complex ML systems usually presents difficulties in
understanding the ethical implications of how decision-making could
affect patients’ lives. Consequently, health professionals prefer to rely
on interpretable systems instead of accurate ones [26]. Several inno-
vative techniques currently offer the possibility of opening the black
box and understanding its hidden mechanism. In this contribution,
we employ interpretable and complex systems that offer in the latter
case visualization and feature importance based on SHAP to clarify
the drivers of the final system and its predictive contribution [28].
A summary of the whole experimental design and approaches can be
found in Fig. 1.

https://sci2s.ugr.es/MultiOmics_IR_Pred
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2.2. Study population

The study population analyzed here comes from the ‘‘Puberty and
metabolic risk in obese children. Epigenetic alterations and pathophys-
iological and diagnostic implications’’ (PUBMEP) project. This project
is a longitudinal study based on the follow-up of a cohort of Span-
ish children who previously participated in the ‘‘Association between
genetic variants, biomarkers of oxidative stress, inflammation and car-
diovascular risk in obese children’’ (GENOBOX) project [6]. The main
objective of the project was to unveil the molecular mechanisms behind
the appearance of obesity and cardiometabolic complications such as IR
from the early stages of life. In the PUBMEP study, pre-pubertal boys
and girls initially enrolled in the GENOBOX study who had already
initiated puberty were invited to participate. During the PUBMEP study
(2015–2018), children underwent regular medical check-ups by the
same pediatricians. For this work, a sub-population derived from the
PUBMEP study composed of 90 children (43 males and 47 females) was
selected. Children were allocated into two classes according to their
IR status (26 IR and 64 non-IR) after the onset of puberty. The class
was defined by an IR measure frequently used by pediatricians called
Homeostatic Model Assessment - IR (HOMA-IR) [32]. The HOMA-IR
cut points were published in previous studies [33]. Input data sources
comprised three different molecular data layers (Gen, Epi and Clin data).
Gen and Epi data layers contained information about single nucleotide
polymorphisms (SNPs) and DNA methylation of CpG sites, respec-
tively. The Clin data layer comprised anthropometry, biochemistry,
clinical measures, cardiovascular/inflammatory protein biomarkers and
adipokines measured in blood samples.

2.3. Data extraction and quality control

To predict pubertal IR, we used Gen, Epi and Clin data collected at
he pre-pubertal stage. More details on each data layer can be found
elow.

.3.1. Genomic data
Firstly, all children were genotyped for ∼654.000 SNPs using In-

inium Global Screening Array-24 v3.0 Kit (Infinium HTS Assay plat-
orm) for the GWAS analysis. The genotype calls for all children were
btained using the GenomeStudio generating the standard format files
.ped and .map) in the GRCh38/hg38 reference genome. We encoded
hese files to binary formats (.bed, .bim and .fam) to save space and
peed up the subsequent analysis [34].

In the present work, we matched our SNPs (GRCh37/hg19 genomic
nnotation) with the latest reference panel of the Haplotype Refer-
nce Consortium to apply a genotype imputation using the Minimic
algorithm through the cloud-based interface of the Michigan Impu-

ation Server. An automated quality control analysis was performed
rior to genomic imputation following the default settings of Michigan
mputation Server.

Once the genomic imputation was performed, several commonly
sed standard quality control filters were applied: (1) filter SNPs that
ave a low minor allele frequency (𝑀𝐴𝐹 > 0.01), (2) discard the SNPs
hat were not in the Hardy–Weinberg equilibrium (𝐻𝑊𝐸 < 10−6)
nd (3) remove SNPs with poor imputation quality (𝑅2 > 0.9). Data
ere transformed to dosage format (.raw) according to the additive
enetic model. Consequently, 5,894,726 SNPs remained in the Gen
ataset. The quality control protocol, management and encoding of
en data were performed using bcftools and PLINK 1.9 command-line

rograms [34,35].

4 
able 1
he summary table shows the number of features before and after quality control and
eature selection.

Genomic data Epigenomic
data

Clinical
data

Initial features 651,563 866,091 48

Filtered features based on
quality control & missing
values

512,937 834,371 34

Feature selection method Expert
knowledge-based

Data-driven
(agnostic)

–

Final features after feature
selection

151 267 34

2.3.2. Epigenomic data
Epi data comprised DNA methylation values for ∼850.000 CpG

sites which were measured across the whole genome in buffy coat
with the Infinium Methylation EPIC (Illumina platform) generating
the raw data (IDAT files) for the EWAS analysis. We loaded the raw
data into the R environment utilizing the minfi package. We employed
Beta-Mixture Quantile (BMIQ) intra-array normalization to eliminate
undesirable variability across and within samples [36]. Moreover, low-
performing probes were excluded based on established criteria: probes
with a detection 𝑝-value greater than 0.01 in over 10% of samples (230
probes), probes affected by SNPs (30,432 probes), cross-reactive probes
mapping to several locations (25,570 probes), and probes situated on
the Y chromosome (246 probes). A total of 834.371 probes remained
in the Epi dataset. To determine the methylation at each CpG site Beta
and M values were calculated. For the purposes of this paper, M values
are used due to their statistical robustness [37–39].

2.3.3. Clinical data
In addition to anthropometrical, biochemical and clinical measures,

Clin data layer included cardiovascular/inflammatory protein biomark-
ers and adipokines data. Cardiovascular/inflammatory biomarkers and
adipokines were measured in blood samples through XMap technology
on the Luminex Corporation platform, utilizing human monoclonal
antibodies (Miliplex Map Kit). These data were measured as published
elsewhere [6,33].

Due to the presence of missing values, we performed an exploratory
analysis of the missing values patterns in the Clin dataset to check the
random structure of the missing values. It is important to consider that
the percentage of missing values in the Clin dataset was less than 1%
after removing the features that contained 5 or more missing values.
The final number of features in this layer was 34. Therefore, we decided
to use a non-parametric method imputation known as missForest. It has
advantages over other imputation methods in that it only generates a
unique imputed dataset and also its performance is quite robust, as it
does not require a tuning parameter stage [40].

2.4. Feature selection

Omic data are inherently complex due to their high dimensional-
ity. This complexity often leads to challenges in ML, as algorithms
may struggle with high-dimensional datasets, producing inaccurate and
unrobust models of lower quality. The issue, known as the ‘‘curse of
dimensionality’’, involves an increased likelihood of finding spurious
statistical associations in large datasets, impacting the quality of the
models developed. This is aggravated by the small sample sizes that
are common in molecular epidemiological and longitudinal studies,
where data is limited and complex to collect over time. To address this
issue, a feature selection process is necessary to reduce the number
of variables by choosing an optimal subset of variables [30,31]. This
process is an important pre-processing step in ML, enabling more
accurate and robust feature selection and more trustworthy application
of ML techniques [41].
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In this context, numerous methods for feature selection have been
suggested, including data-driven approaches based on the use of spe-
cialized analytical tools, as well as a priori strategies based on expert
knowledge. In our study, we employed different approaches depending
on the data layer, in order to ensure the most optimal selection of
markers likely to be involved in the outcome of our study, particularly
in our population. For the Gen dataset, we relied on expert knowledge
informed by existing literature, a technique endorsed in molecular
epidemiology as a credible method [42,43]. Conversely, for the Epi
data, given its unique characteristics as elaborated subsequently, we
implemented a data-driven approach. The particularities considered
in the feature selection of each data layer included in this study are
described in the following subsections [38,44]. Table 1 presents the
number of features in each dataset before and after quality control and
feature selection.

2.4.1. Genomic data
A search of literature and databases (GWAS and PGS catalog) [45,

46] focusing on IR studies within large European populations enabled
the selection of three articles [47–49]. We selected a subset of SNPs
tested in studies with a large sample size guaranteeing substantial
statistical power to identify the small size effects that a SNP may
influences have on a phenotype. Among the 258 SNPs associated with
IR from previous studies, 151 were present in our Gen dataset.

2.4.2. Epigenomic data
Regarding the Epi dataset, we performed a data-driven selection

here CpG sites differentially methylated and linked to IR were iden-
ified across the genome without prior hypotheses. This process was
erformed in longitudinal and cross-sectional approaches from an in-
ependent population study, which is part of the PUBMEP project. In
his case, we considered that agnostic selection was a better choice
ue to environment-dependent epigenetic variability, in contrast to
eature selection on Gen data. From this strategy, we selected 267 CpG

sites. More details regarding the selection of candidate CpGs can be
found elsewhere [18]. The choice to perform data-driven selection on
the phenotype of interest (IR) rather than selecting features based on
literature findings, as in the case of the Gen dataset, was motivated
by the fact that epigenetic findings are strongly related to population-
specific environmental exposures. In this regard, choosing CpG sites
from the same sample used to build the system, sharing characteristics
with the current study cohort, proved to be a more advantageous
option than selecting CpG sites based on other European studies, where
research on children is limited [50].

The associated web page contains comprehensive information on
the variables used in each of the datasets (see Table S1). The distri-
bution of clinical features are shown in Table S2.

2.5. Set-ups and imbalance considerations

As we have introduced, an ideal investigation would employ a
joint approach in which omic data could be integrated. To elucidate
the predictive information attributed to each omic layer, we propose
to understand and evaluate the predictive information of omic data
both separately and together [51]. This strategy generates many layers
and combinations of information data: (1) Gen dataset generated from
GWAS analysis, (2) Epi dataset generated from EWAS analysis, (3) Clin
dataset, (4) fusion of Gen and Epi datasets (Gen+Epi), (5) fusion of
Gen and Clin datasets (Gen+Clin), (6) fusion of Epi and Clin datasets
Epi+Clin) and fusion of all datasets (Gen+Epi+Clin = All). See Fig. 1,

which shows the different approaches followed in this study [30,31].
A stratified 5-fold cross-validation, repeated 5 times for a total

of 25 executions, was chosen to assess the predictive ability of each
approach. This approach is appropriate for scenarios in which the
population size is limited, decreasing estimation errors, achieving a
good balance between bias and variance, and minimizing the influence
5 
of the chosen seed by dividing the population into the training and test
sets [30,31,52].

Since the population derived from the PUBMEP study is significantly
imbalanced (26 IR and 64 non-IR), we analyzed the performance of
different sampling methods (oversampling and undersampling) to avoid
biasing the learning algorithms towards the majority class (non-IR),
which would result in a higher misclassification rate for the minority
class (IR) [53]. In this study, we have considered 6 resampling methods
available in the R Themis package: SMOTE, SMOTE-NC, ADASYN,
ROSE, NearMiss and TomeK. Note that these resampling methods have
only been applied to the training set of each fold, so the test sets
were not affected and maintained their original values and proportions.
Additional information on resampling methods can be found on the
associated website. In this paper, we will analyze the results obtained
with the NearMiss class balancing method, whose method generated
the classifiers with the best performance. The results obtained with the
rest of resampling methods are available in the Table S3-S7 (see the
supplementary material in the associated web page) [54].

The classification algorithms analyzed have been selected among
the most accurate and the most interpretable or understandable from
the comparative study presented in [29], in which the performance
of 179 classifiers from 17 families was evaluated. From these, we
have analyzed: a decision tree algorithm (C4.5 [55]), two ensembles
algorithms (Random Forest (RF [56,57]), eXtreme Gradient Boosting
(xgBoost [58]), a support vector machine (svmRadialCost [59,60]), and
a neural network (avNNet [61]). Further information about algorithms
can be found on the associated webpage. All of these algorithms are
available in the R Caret package and their parameters have been set to
their default values, following the recommendations indicated by their
authors when they were published in order to facilitate comparisons
and take advantage of the use of configurations that work well in most
cases [62].

To assess the performance of the classifiers, we used some clas-
sification metrics extensively described in the literature (Accuracy,
Sensitivity, Specificity, AUC, and G-mean). Some of these metrics,
such as sensitivity and specificity, allow us to analyze their predictive
ability on a specific class. Other metrics, such as G-mean, have been
designed to combine the predictive ability of the algorithm on both
classes searching for a balance between the majority and minority
classes. The G-mean measure represents the geometric mean between
sensitivity and specificity. Thus, in our population, a low performance
in predicting non-IR cases will imply a low value for the G-mean metric
even if all cases with IR are correctly classified. These metrics help us
to avoid overfitting the majority class and underfitting the minority
group. Another interesting analysis is to perform an in-depth study
of the performance of the methods in multiple groups of predicted
risk, or in groups of true-positive rate or false-positive rate, when the
population size allows it [63]. More details about the classification
metrics can be found in the supplementary material on the associated
web page [64,65].

2.6. Model explanations

In this paper, we have used both interpretable ML algorithms and
others that fall into the black box category, in which it is difficult
to understand the decision-making mechanisms given its complexity.
In order to understand the mechanism underlying complex systems,
we use SHAP explainers to calculate feature contributions for each
prediction.

SHAP is an algorithm based on the cooperative game theory concept
of Shapley values [28]. This approach allows for the explanation of
predictions by assigning a contribution value to each feature for a
specific prediction. We have used SHAP to calculate the attribution
of each predictor, which allows experts to understand the mechanisms
behind each of those predictions. Our systems employed the inputs to
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Table 2
Classification metrics for classification algorithms.
Fus. Methods Classification metrics

Accuracy Sensitivity Specificity AUC G-mean

Gen RF 0.55 (0.09) 0.51 (0.17) 0.56 (0.12) 0.54 (0.10) 0.53 (0.10)
xgBoost 0.51 (0.11) 0.48 (0.23) 0.53 (0.14) 0.50 (0.12) 0.48 (0.12)
C4.5 0.49 (0.09) 0.43 (0.27) 0.51 (0.12) 0.47 (0.12) 0.42 (0.19)
svmRadial 0.48 (0.16) 0.55 (0.25) 0.45 (0.23) 0.50 (0.14) 0.45 (0.17)
avNNet 0.58 (0.11) 0.56 (0.22) 0.59 (0.14) 0.57 (0.13) 0.55 (0.16)

Epi RF 0.57 (0.12) 0.57 (0.20) 0.57 (0.14) 0.57 (0.12) 0.56 (0.13)
xgBoost 0.57 (0.09) 0.61 (0.21) 0.55 (0.13) 0.58 (0.10) 0.56 (0.11)
C4.5 0.56 (0.13) 0.50 (0.22) 0.58 (0.17) 0.54 (0.13) 0.52 (0.14)
svmRadial 0.50 (0.16) 0.51 (0.21) 0.50 (0.21) 0.51 (0.16) 0.44 (0.23)
avNNet 0.55 (0.24) 0.78 (0.29) 0.46 (0.42) 0.62 (0.14) 0.38 (0.36)

Clin RF 0.61 (0.08) 0.78 (0.16) 0.54 (0.14) 0.66 (0.07) 0.64 (0.08)
xgBoost 0.61 (0.10) 0.71 (0.23) 0.57 (0.14) 0.64 (0.10) 0.62 (0.11)
C4.5 0.59 (0.12) 0.60 (0.20) 0.58 (0.16) 0.59 (0.11) 0.57 (0.13)
svmRadial 0.53 (0.13) 0.70 (0.23) 0.46 (0.17) 0.58 (0.14) 0.55 (0.14)
avNNet 0.35 (0.14) 0.69 (0.37) 0.21 (0.30) 0.45 (0.10) 0.13 (0.21)

Gen RF 0.60 (0.10) 0.62 (0.16) 0.60 (0.14) 0.61 (0.10) 0.60 (0.10)
+ xgBoost 0.62 (0.07) 0.61 (0.17) 0.62 (0.11) 0.62 (0.08) 0.61 (0.08)
Epi C4.5 0.53 (0.08) 0.48 (0.20) 0.55 (0.11) 0.51 (0.10) 0.48 (0.17)

svmRadial 0.55 (0.15) 0.56 (0.24) 0.55 (0.17) 0.56 (0.16) 0.54 (0.17)
avNNet 0.68 (0.08) 0.06 (0.14) 0.93 (0.15) 0.02 (0.07) 0.08 (0.17)

Gen RF 0.61 (0.10) 0.70 (0.20) 0.58 (0.14) 0.64 (0.10) 0.62 (0.11)
+ xgBoost 0.61 (0.11) 0.70 (0.23) 0.58 (0.15) 0.64 (0.12) 0.62 (0.13)
Clin C4.5 0.58 (0.14) 0.62 (0.20) 0.57 (0.18) 0.59 (0.13) 0.58 (0.13)

svmRadial 0.48 (0.17) 0.57 (0.26) 0.45 (0.45) 0.51 (0.15) 0.44 (0.20)
avNNet 0.44 (0.17) 0.58 (0.43) 0.39 (0.40) 0.49 (0.07) 0.17 (0.21)

Epi RF 0.70 (0.11) 0.73 (0.23) 0.69 (0.14) 0.71 (0.12) 0.69 (0.13)
+ xgBoost 0.64 (0.09) 0.71 (0.19) 0.61 (0.12) 0.66 (0.10) 0.64 (0.10)
Clin C4.5 0.61 (0.12) 0.67 (0.21) 0.59 (0.16) 0.63 (0.13) 0.61 (0.13)

svmRadial 0.52 (0.18) 0.59 (0.27) 0.49 (0.23) 0.54 (0.18) 0.50 (0.21)
avNNet 0.56 (0.17) 0.37 (0.28) 0.64 (0.32) 0.51 (0.09) 0.33 (0.24)

All RF 0.67 (0.10) 0.71 (0.20) 0.66 (0.41) 0.68 (0.10) 0.67 (0.10)
xgBoost 0.64 (0.10) 0.67 (0.22) 0.62 (0.13) 0.64 (0.11) 0.63 (0.12)
C4.5 0.58 (0.11) 0.61 (0.20) 0.57 (0.12) 0.59 (0.12) 0.58 (0.12)
svmRadial 0.49 (0.17) 0.59 (0.27) 0.45 (0.23) 0.52 (0.17) 0.46 (0.22)
avNNet 0.58 (0.14) 0.33 (0.30) 0.68 (0.27) 0.51 (0.10) 0.33 (0.25)
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generate a binary output between 0 (non-IR) and 1 (IR). Thanks to us-
ing SHAP, we can compute the individual variable effect or SHAP value
for each feature in each prediction (instance-based or local explana-
tions). Likewise, SHAP values can be understood as the contribution of
each predictor in the final decision of each prediction. This innovative
method can provide reliable explanations to researchers or physicians
in each case of study, making them feel more comfortable with the
decision-making process [28]. In this work, we calculate the SHAP
values, as shown in Eq. (1), where 𝜙(𝑗) is the SHAP value for feature
𝑗, 𝑆 represents a subset of features excluding feature j, 𝐹 encompasses
the entire set of features, 𝑓𝑆∪{𝑗} denotes the system trained with the
inclusion of feature 𝑗, 𝑓𝑆 indicates the system trained without feature
𝑗, and 𝑥𝑆 reflects the input feature values within subset 𝑆.

The overall importance of each feature was calculated as the mean
f the SHAP values for each feature across all samples associated with
specified dataset. As illustrated in Eq. (2), 𝐼𝑗 is the importance

or feature j, where n is the sample size and 𝜙(𝑖)
𝑗 is the SHAP value

or sample 𝑖 and feature 𝑗 [28,66]. In other words, the SHAP value
f a feature is calculated as the difference in prediction with and
ithout that feature in each child. In order to do this, the system is

e-trained with all possible subsets of features from the complete set of
eatures [67].

𝑗 =
∑

𝑆⊆𝐹⧵{𝑗}

|𝑆|! ⋅ (|𝐹 | − |𝑆| − 1)!
|𝐹 |!

[𝑓𝑆∪{𝑗}(𝑥𝑆∪{𝑗}) − 𝑓𝑆 (𝑥𝑆 )] (1)

𝐼𝑗 =
1
𝑛

𝑛
∑

𝑖=1
|𝜙(𝑖)

𝑗 | (2)
6 
. Results

Predictive ability for all assessed systems and combinations of data
ayers are shown in Table 2; this table shows the average classification
etrics over test folds with the highest values highlighted in bold.
verall, the algorithms that obtain the lowest classification metrics are

hose corresponding to the Gen data layer. The Epi data layer provides
ore predictive capacity to the algorithms than the Gen data layer

but less than the Clin data layer. The results obtained are better when
the algorithms extract integrated information from different layers
of information. Of all the data combinations, the fusion of the Epi
data layer and Clin provides the classifiers with the best predictive
performance; the Epi + Clin combination enabled 3 of the 5 algorithms
to obtain their best results. Fig. 2 shows an overview of the results
obtained.

For this reason, we analyze the differences in the results of the
classifiers generated with the Epi+Clin data fusion by means of the
Friedman test. The Friedman ranking non-parametric test was applied
to each pair of classifiers to compare their overall performance. The
results showed that RF was the best classifier according to 4 of the 5
metrics; see the top of Table 3 where the algorithm that achieved the
highest position is highlighted in bold.

Then, we considered conducting pairwise comparisons between
classifiers and calculated the adjusted p-values. The numerical outputs
for the comparisons are shown at the bottom of Table 3. We rejected
the equality hypothesis with greater than 95% confidence in most
measures. For measures where RF is the best performing method,
significant differences of at least 0.05 are found with svmRadial and
avNNet in 4 of 5 measures and with C4.5 in 2 of 5 measures. As
for the sensitivity measure, where xgBoost is the best-ranked method
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Fig. 2. G-mean is shown in the 𝑦-axis and sensitivity and specificity are shown in the
label for the employed classifiers across the combinations of data layers. According to
the predictive metrics, Epi+Clin data fusion is the most accurate data combination in
3 of the 5 algorithms.

Table 3
Comparison of classification algorithms.

Methods Friedman ranking

Accuracy Sensitivity Specificity AUC G-mean

RF 2.02 2.48 2.43 1.98 1.98
xgBoost 2.66 2.42 3.02 2.56 2.36
C4.5 3.22 2.66 3.26 3.10 2.88
svmRadial 3.70 3.22 3.72 3.54 3.32
avNNet 3.40 4.22 2.66 3.82 4.46

Methods Adjusted p-values by Holm’s procedure

Accuracy Sensitivity Specificity AUC G-mean

RF – 1.18 – – –
xgBoost 0.15 – 0.25 0.19 0.39
C4.5 0.01 1.18 0.11 0.02 0.08
svmRadial <0.01 0.22 <0.01 <0.01 <0.01
avNNet <0.01 <0.01 0.47 <0.01 <0.01

according to Friedman procedure, we found no significant differences
between them, revealing that both methods show similar behavior in
the minority class (IR). On the other hand, no significant statistical
differences are observed between RF and xgBoost, but we stated that
the metrics of the RF method were the highest in this data combination.
Based on the statistical results obtained, we can see how RF is the ML
technique that obtains the models with the best statistical results on
the test sets.

With the aim of interpreting RF and extracting useful biological
insights from it, RF was trained with the whole population (N =
90), combined with an undersampling strategy. Table 4 shows the
values obtained by the model learned on the whole population for
the best data combination following the Nearmiss undersampling. It
is noteworthy that RF obtained values of 0.90, 1, and 0.92 in the

Accuracy, Sensitivity, and G-mean metrics with the whole dataset,
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Table 4
Predictive ability of the final classifier.

Method Classification metrics

Accuracy Sensitivity Specificity AUC G-mean

RF 0.90 1.00 0.85 0.92 0.92

respectively. Sensitivity is defined as the ratio of true positives to
false negatives. A sensitivity value of 1 indicates that the system has
correctly predicted all true positives, without any false negatives (see
Performance measures in the supplementary material on the associated
web page).

Next, we uncovered the hidden mechanism behind our final clas-
sifier using the SHAP values. These values, properly visualized, are
really useful for the identification of the most important features used
by the system as predictors and the directionality of the association
(e.g. higher values of a certain variable incline the system to classify an
individual as part of the IR class). Interestingly, these values can be ex-
tracted at the level of the whole study population (global explanations),
which gives us an idea of the overall structure of the system, as well
as at the level of groups of individuals (local explanations), which is
very useful for identifying whether the system is using different features
to predict class in different subgroups. For these reasons, SHAP values
have been postulated as a promising tool to open black box systems
such as RF with clinical applications [28,66].

Fig. 3 illustrates a visual representation of the feature importance
of our top 20 predictors based on their predictive importance in our
final system. The features are arranged according to their overall
contribution. Each dot signifies the contribution of a predictor to the
classifier’s prediction for an individual child. The color of the dot
corresponds to the value of the feature, with pink indicating high values
and blue indicating low values. We generated a dot plot by class to
study the impact of the features in the final output. The graph on the
left shows the more relevant features for discriminating the negative
class (Non-IR), while the graph on the right shows those corresponding
to the positive class (IR). Figures S2a-S2b (see supplementary material
on the associated web page) show a dot plot and a violin plot with
the contribution of each feature to all samples, without distinguishing
between different classes.

In general, the contributions of each feature had a small effect in
each example; see Tables S8-10 (see supplementary material on the
associated web page). The complementariness of information between
both data layers seems to have a strong influence on the strength
of the prediction. We found that DNA methylation patterns along
with adipokines, anthropometric, and biochemical measures were im-
plicated in the predictive ability of the classifier. Interestingly, the
analysis of the SHAP values shows that the variables with the greatest
contribution to the predictive work belong to the Epi data layer. It
is quite relevant that the patterns used by the system to differentiate
between the positive and negative classes are slightly different.

4. Discussion

In this work we built a that, using different types of omic data from
pre-pubertal children aged to 6–12 years old, is able to predict the
future IR status of children when they reach the pubertal stage (3 years
later). This approach is an unprecedented work that shows how Epi and
Clin information contains significant predictive power for predicting
longitudinal trajectories of metabolic diseases. As a main conclusion,
our work demonstrates that to achieve this it is necessary to combine
the different data layers, which justifies their integration in this type of
system beyond their use as individual factors.

To develop this work we fixed an ambitious objective and analyzed
heterogeneous omic data from several platforms and technologies.
Thus, we show how it is possible to perform a single-omic and multi-
omic analysis with ML pipeline to evaluate the predictive ability of
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Fig. 3. The SHAP analysis was conducted for our final system to provide global explanations. The top 20 features, ranked by their contributions, are presented separately for
Non-IR (left) and IR children (right). Each point represents the contribution of a specific child and feature to the system. The color of the point indicates the value of the feature,
with pink representing high values and blue representing low values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
each dataset. It is readily apparent from this multi-omic study that the
genetic data layer does not provide the algorithms with extra predictive
information. The invariant nature of the SNPs could explain the result
obtained, as they have a small cumulative effect size and need to
be transformed into genetic risk scores to predict obesity risk more
successfully [68]. It was not surprising that the Clin dataset provided
the most predictive information individually because it contains anthro-
pometric, biochemical, and adipokine variables, which are commonly
used markers of cardiometabolic risk. The Epi dataset, which reflects
a molecular signature of environmental exposures or disease changes,
ranks in an intermediate position in terms of predictive utility [69].

The chosen strategy consists of analyzing each data layer separately
and fusing the layers to interpret the results, demonstrating the need
to develop intelligent data integration methods [70–72]. In general,
we can highlight that data fusion has generated classifiers with better
predictive performance than individual data layers, especially if Gen
data is excluded. Particularly, systems use the complementarity be-
tween molecular information from Epi data and Clin data to achieve
better predictive performance. For this reason, we hypothesized that
the Clin data layer could provide a real-time metabolic signature,
e.g., adipokines concentration (leptin and adiponectin) correlated with
adiposity levels, BMI z-score and other biochemical blood parameters
such as HDL (High Density Lipoprotein) and iron levels, which provide
valuable information to the classifier regarding the children’s metabolic
status at the precise moment of risk estimation. Meanwhile, the Epi
data layer offered a molecular signature that is a consequence of the
long-term and medium-term lifestyle such as diet and physiological
conditions of the children. Thus, these layers of omic data could provide
distinct temporary molecular information that explains the predictive
effectiveness of their combination.

The algorithm with the best predictive performance (0.90, 1 and
0.92 as Accuracy, Sensitivity and G-mean values, respectively), sum-
marized by G-mean values (see Table 4), in the best data fusion was
RF, an algorithm widely used in the area of bioinformatics due to
its robustness and its great capacity to work with datasets with class
imbalance or high dimensionality problems [73]. However, it is an
ensemble method that has a major drawback for research and clinical
use, as it is a black box system [26]. To overcome this limitation of RF,
post-hoc explainers have been proposed to interpret and understand the
8 
classifier by visualizing the impact of each variable on decision-making.
The SHAP values stand out because they provide researchers with
global explanations about the influence of each feature on the whole
system, and with local explanations of the effect that each feature has
in classifying a specific child. This approach makes it possible to study
of the impact of all variables on the overall prediction of the system.
The utilization of SHAP values enables us, like classical approaches,
to determine the ranking of the most significant variables. However, it
also allows us to identify the directionality of the statistical association
and the complementariness between features in the decision-making
process. Due to their characteristics, SHAP values might prove to have
great prospects in the medical area with respect to the diagnosis,
monitoring, prognosis and treatment of various pathologies [28,66].

4.1. Global explanations

We analyzed SHAP values to have an idea of the general behavior
of the final system, identiying some potential biomarkers for IR risk
estimation. Leveraging averaged SHAP values for each feature across
individuals, we built a ranking of feature importance. The top im-
portant feature of the classifier was the DNA methylation of a CpG
site (cg11762807) annotated in the HDAC4 (Histone Deacetylase 4)
gene and several CpG sites related to PTPRN2 (Protein Tyrosine Phos-
phatase Receptor Type N2) gene along with leptin/adiponectin ratio
and BMI z-score, among others features, see Fig. 3. Surprisingly, the
DNA methylation levels of the HDAC4 and PTPRN2 genes might be
a robust biomarker from the pre-pubertal stage to predict the puber-
tal IR due to homogeneous behavior in all individuals independently
of the adipokine levels or BMI z-score. However, it is important to
note that each variable’s contribution had a small effect. In other
words, the system’s prediction for each child is the sum of all variable
contributions.

HDAC4 is a crucial participant in a complex regulatory network of
gene expression in several tissues related to IR such as the adipose
tissue or pancreas. Importantly, the researchers observed a HDAC4 hy-
permethylation in adipose tissue samples in response to a six-month ex-
ercise intervention, corresponding to reduced HDAC4 gene expression
after exercise [74]. Furthermore, HDAC4 was differentially methylated
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Fig. 4. The heatmap displays clusters of children (rows) and variables (columns) based on their SHAP values. Clustering was only performed on the children used to generate the
inal classifier (RF) and the fifteen variables that contributed the most to the system based on their SHAP values. The legend shows that red and green represent children who
ere in IR and non-IR in pre-pubertal and pubertal states, respectively. Blue and red represent the non-IR and IR predictions of RF, respectively. The identification number of each

hild is displayed on the right-hand side. The visualization displays four clusters of children and variables. The initial cluster of variables comprises solely HDAC4 methylation,
while the following two clusters consist of methylation of the main genes and the last cluster of variables comprises clinical variables such as BMI z-score and leptin/adiponectin
ratio together with other methylation patterns. The first, second, third, and fourth clusters of children are composed of the following individuals with IDs from child 3 to child 16,
from child 34 to child 37, from child 23 to child 38 and from child 27 to child 50, respectively It is worth noting that the first and second clusters of children can be distinguished
by their HDAC4 methylation pattern, while the last two clusters are characterized by their heterogeneity. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
in both visceral and subcutaneous adipose tissue samples before and af-
ter gastric bypass surgery and was also associated with weight loss. The
study also identified strong correlations between HDAC4methylation in
subcutaneous adipose tissue and fasting glucose levels [75]. According
to studies conducted on mice and culture media, HDAC4 appears to
play a key role in the differentiation of insulin-producing beta cells in
the pancreas [76]. Similar to our findings, differential methylation of
the HDAC4 gene in white blood cells was found between controls and
children with obesity from a cohort of Spanish children aged around
10 years [77]. Subsequently, another study confirmed the relationship
between childhood obesity and DNA methylation patterns in other
CpG sites of the HDAC4 gene in peripheral blood leukocytes [78]. Re-
cently, a meta-analysis of four European cohorts studied the association
between DNA methylation in peripheral blood and T2D, once again
highlighting a CpG site of the HDAC4 gene, which was also related to
gender, age, glucose tolerance and the C-reactive protein [79]. On the
other hand, a proteomic study in peripheral blood mononuclear cells
found that HDAC4 was down-regulated in individuals with obesity and
induced by physical exercise. HDAC4 levels were positively correlated
with maximum oxygen consumption and negatively correlated with
BMI and the inflammatory chemokine RANTES. For these reasons,
HDAC4 has been proposed as a therapeutic target for the control and
management of excess adiposity and IR due to its protective role against
obesity [80].

It should be noted that this study casts a new light on the predictive
importance of DNA methylation patterns of the PTPRN2 gene as there
are 3 Cpg sites of this gene that are among the top 20 in our final
system. Previous studies have already demonstrated the association
between PTPRN2 and Insulinoma and T2D. Also, it is known that this

gene encodes the major auto-antigen in Type I Diabetes and is involved
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in pathways related to the Immune System and PAK signaling [81,
82]. Differential methylation in PTPRN2 CpG sites in blood samples
were reported in previous studies dealing with childhood obesity [83],
childhood adiposity [84], newborn adiposity [85] and gestational dia-
betes [84,86,87]. Other highlighted CpG sites are annotated in genes,
such as MATN2 (Matrilin 2), RASGRF1 (Ras Protein Specific Guanine
Nucleotide Releasing Factor 1) and EBF1 (Early B Cell Factor 1), which
seem to be associated functionally with the pubertal IR. Additional
information regarding the molecular pathways of the most significant
genes at the predictive level is available on the associated web page.

The study of SHAP values and their relationship to the most im-
portant variables shed some light on how RF makes predictions (see
interactive Figure S3-S4 of the supplementary material on the associ-
ated web page). For instance, the system distinguishes individuals with
hypermethylated or hypomethylated HDAC4 gene by using a cut-off
point of 5.15. Children with hypomethylated HDAC4 (below 5.15) have
positive SHAP values that classify them as positive (IR), while those
with hypermethylated HDAC4 (above 5.15) have negative SHAP values.
Another interesting insight from the use of SHAP values in our system
was the identification of a cut-off point of 0.8 in the leptin/adiponecting
ratio domain, which could have some clinical utility. Thus, the classifier
assigns positive SHAP values to children with a leptin/adiponectin ratio
higher than 0.8, placing them in the positive class (IR). Conversely,
individuals with a leptin/adiponectin ratio below 0.8 are assigned neg-
ative SHAP values, pushing them into the negative class (non-IR). This
ratio of adipokines is a well-known marker of IR and cardiometabolic
risk [88].

Also, low values of Iron and HDL blood levels were associated with
the positive class (IR) in both cases. This result made biological sense

because a decrease in HDL is linked to a worse metabolic state leading
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Fig. 5. The heatmap displays clusters of children (rows) and variables (columns) based on their SHAP values. Clustering was only performed on the excluded children during the
undersampling procedure and the fifteen variables that contributed the most to the system based on their SHAP values. The legend shows that red and green represent children
who were in IR and non-IR in pre-pubertal and pubertal states, respectively. Blue and red represent the non-IR and IR predictions of RF, respectively. The visualization displays
three clusters of children and variables. The first cluster of variables is formed only by HDAC4 methylation, as in Fig. 4. The first, second and third clusters of children are
composed of the following individuals with IDs from child 58 to child 81, from child 67 to child 56 and from child 78 to child 79, respectively. Thus, the children highlighted
in pink are examples where RF failed in its prediction. It is noteworthy that all of these children belong to the second cluster, which is characterized by positive SHAP values for
the first and third clusters of variables. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
to IR and MetS, while reduced iron levels have been associated with
obesity over recent years. Significantly, there is a complex bidirectional
relationship between iron metabolism and body fat, glucose and lipid
metabolism. Alterations in iron status altered the distribution and
deposition of body fat and metabolic risk. Similarly, systemic glucose,
lipid and insulin are involved in the iron-regulatory pathways [89]. On
the other hand, high levels of blood proteins appear to be associated
with the positive class (IR), as indicated by positive SHAP values for this
variable. This variable might provide information about the functional-
ity of adipose tissue, because when the adipose tissue is hypertrophied
and dysfunctional a multitude of adipokines and inflammatory factors
of protein nature are released into the bloodstream [9]. Additional
information on how the values of different features contribute to the
final system with positive or negative SHAP values can be found
interactively in Figure S3-S4 of the supplementary material on the
associated web page.

Finally, the predictive ability of the final system depends on several
predictors included in both datasets. Although RF uses certain variables
more frequently than others to make predictions, it is important to
note that the sum of small SHAP values of all variables determines the
prediction towards one class or another. Therefore, the final prediction
is the sum of the small contributions of several features. Further details
regarding the influence of each variable on the final prediction can be
found in Figures S3-S4 of the supplementary material on the associated
web page.

4.2. Local explanations

Clustering was performed to group the children and the variables
based on their SHAP values. The clustering was initially performed only
in the children used to generate the final system (RF). Clustering on
SHAP values allowed us to identify subgroups of both variables and
individuals. Children clustering enables the grouping of children who
are predicted similarly, with comparable SHAP value patterns. Variable
clustering helps to identify which variables have similar patterns of
contributions to predicting whether a child is IR or non-IR. Examin-

ing Fig. 4, four clusters of children are identifiable. Further, it appears

10 
that the first two children clusters can be distinguished by the SHAP
values corresponding to HDAC4 methylation. The first cluster pertains
to IR children, while the second cluster includes non-IR children. The
second cluster emphasizes the predictive significance of HDAC4 methy-
lation and other methylation patterns by improving the accuracy of the
final classifier (RF). These methylation patterns improve the accuracy
of the prediction by refining it; because relying solely on anthropomet-
ric (BMI z-score) and adipokine information (leptin/adiponectin ratio)
would not result in accurate predictions in the children belonging to
the second cluster. The predictive enhancement of the methylation
patterns is due to the presence of children with a high BMI z-score and a
high leptin/adiponectin ratio. Consequently, the children in the second
cluster exhibit positive SHAP values, for their anthropometric (BMI
z-score) and adipokine information (leptin/adiponectin ratio), despite
belonging to the negative class (non-IR). The behavior of the next two
minority and heterogeneous clusters is challenging to explain.

During the undersampling process to generate the final classifier,
certain negative class examples were excluded. As a result, the final
classifier failed to predict nine out of the thirty-eight children that
were set aside during undersampling. To study RF behavior in children
who did not participate in the training process, the SHAP values were
clustered similarly in these children to observe similarities among them.
Fig. 5 shows the results, which reveal three distinct clusters of children.
Intriguingly, the second and third clusters of children in Fig. 4 appear
to be similar to the first and third clusters of children in Fig. 5. These
nine children, who were predicted incorrectly by RF and belong to
the second cluster of children, are characterized by positive SHAP
values for the first and third clusters of variables. The first cluster of
variables is formed by HDAC4 methylation, while the second one is
formed by leptin/adiponectin ratio, BMI z-score, leptin, and RASGRF1
and PTPRN2 methylation.

To comprehend why RF was unsuccessful in predicting the puber-
tal IR status of these children, who have positive SHAP values on
the mentioned variables, we analyzed the phenotypic traits of these
children. Curiously, these nine children had a high BMI z-score and
unhealthy adipokines profile, some of them were even IR, in their pre-
pubertal stage. They experienced an observable weight loss in their
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BMI z-scores during puberty, thus improving their IR parameters, see
Fig. 6. However, these children present HOMA-IR index values that
are close to the established cut-off point for IR. Therefore, they are
individuals with a high metabolic risk and they might likely develop IR
over time if they remain in the same metabolic condition, see Figure
S5-S8 of the supplementary material on the associated web page. To
explore our hypothesis more deeply, we generated local explanations
for one of the nine children. The local explanations revealed that the
variables contributing significantly to the system’s prediction were the
leptin/adiponectin ratio and BMI z-score, see Fig. 7.

With these examples, we show how using SHAP values enables us
to gain a better understanding of our final system’s behavior and why
it makes errors in specific cases. The identification of misclassified
children as at-risk individuals underscores the final classifier’s useful-
ness. In future works, it would be beneficial to explore the information
provided by SHAP explanations in conjunction with other explanations,
such as counterfactual. These explanations may help human experts
to become familiar with unknown processes by understanding the
hypothetical input conditions under which the model’s prediction for
a patient changes [90,91].

The principal strengths of our study lie in our ability to generate
a system with a relevant predictive ability and in our comprehensive
exploration of both global and local levels, which has led to the
identification of promising biomarkers of IR in our population. The
system highlights the predictive importance of classical markers, such
as BMI z-score or leptin/adiponectin ratio, and novel ones such as
methylation patterns of IR-relevant genes, such as HDAC4, PTPRN2,
ATN2, RASGRF1 and EBF1. Our findings highlight the importance of

ntegrating multi-omics data and following XAI trends when building
linical DSS [92].

As a main limitation, we have been unable to use automatic fea-
ure selection methods, which has been a methodological limitation
rgued in our limited sample size. It is also necessary to validate the
redictive capacity of the system used through a validation study in an
ndependent population. Furthermore, our system uses omic features
hat are not easily quantifiable in the clinical setting due to their
igh cost (e.g., DNA methylation), which hinder its straightforward
mplementation as a clinical DSS. Noteworthy, this work supports the
redictive utility of using epigenetic features in clinical settings. In the
uture, the development of high-throughput technology may result in
ower costs and greater clinical accessibility to epigenetic data.

. Conclusions

There is an urgent need to implement early life prediction programs
hat include the use of DSS to address childhood obesity early on to
revent the worsening of health status, before pubertal IR occurs. In
his sense, this study presents an accurate and understandable system
erived from a longitudinal cohort of 90 children to predict pubertal IR
ccording to multi-omic and clinical data from the pre-pubertal stage.

comprehensive analysis of global and local explanations produced
rom the SHAP values has allowed us to identify the variables with
he greatest influence on the system’s predictions, to determine the
irection of association of each of them, and to differentiate subgroups
f children according to the risk factors they present. This analysis
as highlighted the relevance of contrasted markers such as BMI z-
core and leptin/adiponectin ratio along with emerging epigenetic
iomarkers such as HDAC4 and PTPRN2 methylation. In the future, it
ould be of great interest to identify the exposures responible for these
ethylation patterns, by adding a new layer of environmental data

nto the classifier. Likewise, future research should investigate the pre-
ictive utility of promising transcriptomic, proteomic or metabolomic
ignatures individually or in combination with other omics for the
rediction of pubertal IR.

Our approach denotes the potential of XAI techniques to address
he challenges of multi-omic analysis, improving the understanding of
11 
isease pathophysiology by enabling predictive analysis using different
ayers of information. This scientific and technological advancement
nto expected to lead to the integration of omic platforms in clinical
ractice, along with the use of clinical DSS co-managed by physicians.
n the long term future, the responsible use of clinical DSS that inte-
rates multiple data layers could become a standard monitoring tool
or the clinical management of childhood obesity, approaching the
veryday clinical practice to a more precise medicine.
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Fig. 6. The violin plots display BMI z-score along the x-axis and pubertal prediction along the y-axis, where blue indicates non-IR and pink denotes IR. As a result, nine misclassified
children are highlighted in pink. Fig. 6A and B differentiate BMI z-scores for pre-pubertal and pubertal stages, correspondingly. The difference between the two pink lines, which
indicates the average pre-pubertal and pubertal BMI z-score, suggests weight loss as the average BMI z-score decreases. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 7. Force plot of a child belonging to the nine children misclassified as IR (local explanation). The most influential variables in the final prediction are labeled, such as
leptin/adiponectin ratio and BMI z-score among others.
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