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A B S T R A C T

Short-stroke reluctance actuators, such as electromechanical relays and solenoid valves, often experience strong
impacts at the end of standard switching operations, leading to problems like contact bounces, mechanical wear
or acoustic noise. This paper introduces a novel iterative learning controller for tracking the actuator position
during switching operations and ultimately decreasing the impact velocities. The control strategy is designed
based on a generalized dynamical description, allowing for its application to a broad range of actuators and
models. A highlight of the proposal is the absence of a real-time feedback controller, which eliminates the need
for real-time measurements. Another important feature is the adaptation of the learning control gain based on
a soft-landing performance index. The control performance is analyzed and validated in conjunction with an
offline position estimator through Monte Carlo simulations and experimental testing. The results show that the
position tracking remains accurate even in the presence of non-repeating perturbations and estimation errors,
leading to a substantial reduction in switching impacts.
1. Introduction

Reluctance actuators are electromagnetic devices that rely on
reluctance-based magnetic forces between ferromagnetic movers and
stators. Compared with voice coil actuators, they can produce larger
forces with less moving mass and power dissipation (Vrijsen et al.,
2010). Thus, there is an increasing interest in incorporating these
devices in many applications, e.g., fast tool servos for diamond turn-
ing (Lu & Trumper, 2005), propulsion systems for elevators (Lim
et al., 2008), beam pointing and stabilization in optical systems (Kluk
et al., 2012), anti-vibration systems (Bao et al., 2014), linear compres-
sors (Xue et al., 2018), or flexure-guided nanopositioning (Ito et al.,
2019).

More specifically, the devices under study in this paper are short-
stroke (switch-type) reluctance actuators, characterized by their con-
strained motion. They are mostly used for opening and closing electri-
cal, pneumatic or hydraulic circuits. For example, electromechanical re-
lays (Fig. 1) are utilized for power switching operations, while solenoid
valves (Fig. 2) are used for fluid flow regulation. A well-known problem
of the switching actuation is the strong landing impacts that cause
mechanical wear, bouncing and acoustic noise. These decrease the re-
liability of the actuators and narrow the range of suitable applications.
Thus, there is a great interest in the research of soft-landing controllers
to reduce the impact velocities at the end of switching operations.
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There is extensive literature that deals with the soft-landing con-
trol of reluctance actuators, although the majority of them focus on
more complex and expensive devices (e.g. with permanent magnets,
multiple coils and springs, or position sensors). The most conven-
tional and common approach is to track a desired position trajectory.
Many types of feedback controllers (FBC) have been proposed for
position tracking, such as linear–quadratic (Hoffmann et al., 2003; Tai
& Tsao, 2003), backstepping (Benosman & Atinç, 2015; Kahveci &
Kolmanovsky, 2010), sliding-mode (Di Bernardo et al., 2012; Moya-
Lasheras et al., 2020a), or flatness-based (Chladny & Koch, 2008;
Gill et al., 2015). Given the repetitive nature of the switching oper-
ations, some authors propose run-to-run learning-type controllers to
adjust the feedback or feedforward controller while optimizing an
auxiliary variable related to each commutation performance, e.g., final
tracking error (Benosman & Atinç, 2015; Mercorelli, 2012), impact
velocity (Di Gaeta et al., 2015; Yang et al., 2013), acoustic noise (Moya-
Lasheras & Sagues, 2020; Peterson & Stefanopoulou, 2004), or bounc-
ing duration (Ramirez-Laboreo et al., 2017). An alternative approach
for cycle-to-cycle adaptation is iterative learning control (ILC), which
is more effective than run-to-run strategies at controlling processes with
frequent measurements of the tracked variable (Wang et al., 2009). This
learning-type strategy has already been proposed for a different type of
https://doi.org/10.1016/j.conengprac.2024.106067
Received 16 October 2023; Received in revised form 22 August 2024; Accepted 23
vailable online 2 September 2024 
967-0661/© 2024 The Authors. Published by Elsevier Ltd. This is an open access 
c/4.0/ ). 
August 2024

article under the CC BY-NC license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/conengprac
https://www.elsevier.com/locate/conengprac
mailto:emoya@unizar.es
https://doi.org/10.1016/j.conengprac.2024.106067
https://doi.org/10.1016/j.conengprac.2024.106067
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


E. Moya-Lasheras and C. Sagues Control Engineering Practice 152 (2024) 106067 
Fig. 1. Electromechanical relay. (a) Photo. (b) Schematic diagram.

Fig. 2. Solenoid valve. (a) Photo. (b) Schematic diagram.

reluctance actuators, specifically double-coil and double-spring valves
for camless engines (Hoffmann et al., 2003; Tai & Tsao, 2003).

One important drawback of FBC and ILC tracking controllers is
their need of position measurements or estimates within the switching
intervals. The utilization of position sensors, while ideal, proves unfea-
sible or cost-prohibitive in numerous scenarios, particularly for small,
fast, and economical actuators. The cost of accurate and sufficiently
rapid sensors can be several orders of magnitude higher than that
of the devices themselves. An alternative is position estimation from
other measurable variables, such as coil voltage and current. Different
types of observers have been proposed for reluctance actuators, such
as extended Kalman filters (Pedersen et al., 2022), unscented Kalman
filters (Moya-Lasheras et al., 2017), sliding-mode observers (Braun
et al., 2019), or open-loop techniques with no output-based correc-
tion (Katalenic et al., 2016). However, these approaches are impractical
in many applications, because the dynamics are very complex (models
are highly nonlinear) and fast (commutations typically last few mil-
liseconds). Furthermore, they are quite sensitive to modeling errors,
which is very difficult to overcome when there is a high variability
between units and fine-tuning the model parameters for every device
is not feasible.

An unexplored third approach is the offline estimation of position
trajectories, which is easier to implement than its real-time counterpart
and, most importantly, it is more accurate (Moya-Lasheras et al., 2022).
ILC solutions can use offline estimators, but previous ILC implementa-
tions (Hoffmann et al., 2003; Tai & Tsao, 2003) also rely on FBC and
thus on online position sensing or estimation. Note also that run-to-
run controllers may also be designed for taking advantage of offline
position estimators, but previous approaches have been implemented
and tested with simulated position (Moya-Lasheras & Sagues, 2020)
or measured position (Yang et al., 2013). There are ILC proposals
for various applications without real-time FBC (some recent examples
are Sa-e et al. (2020), Upadhyay and Schaal (2020) and Ketelhut et al.
(2019)). However, to the best of the authors’ knowledge, it has not yet
been successfully designed and implemented for the studied class of
actuators.

In general, for highly nonlinear and uncertain systems, simple first-
order linear ILC laws, also known as proportional-type ILC, are remark-
ably effective (Xu, 2011). Moreover, to better deal with uncertainties,
adaptation laws can be incorporated. Most adaptation proposals are
based on conventional adaptation laws for real-time feedback con-
trollers, modifying model parameter estimates that are used in the
ILC control law (Chien & Tayebi, 2008; Huang et al., 2021; Li et al.,
2019). However, there are other methods for adapting the control
2 
Fig. 3. Schematic representation of single-coil reluctance actuators.

law, focusing on improving robustness or performance, such as time-
varying Q-filter (Bristow & Alleyne, 2008; Rotariu et al., 2008), time-
varying control gain (Moore et al., 2005), or iteration-varying control
gain (Owens & Munde, 1998).

This paper presents the design of an ILC for position tracking
and soft landing of short-stroke reluctance actuators. The approach
is based on a generalized dynamical description of reluctance actua-
tors, derived from the continuous-time version presented in a previous
work (Moya-Lasheras et al., 2022). It has been extended to allow for
an arbitrary number of core parts, each with different shapes and
magnetomotive forces, thus broadening the applicability of the control
technique. Additionally, the ILC does not rely on any real-time FBC,
making it compatible with offline estimators or sensors. The paper
proposes methods to overcome the limitations imposed by the lack of
FBC, in particular the novel concept of adapting the ILC gain using a
performance index aligned with the ultimate goal of soft landing. An
additional contribution is the use of the controller combined with an
offline position estimator, which is analyzed through simulation and
experimentation. It is also the first validation of this position estimator
in the context of control.

2. General dynamical description

The devices under study are simple low-cost actuators, with a single
coil and no permanent magnets. For example, Fig. 3 depicts schematic
representations of some of these actuators. For each one, the magnetic
core is divided into two parts: a fixed part (stator) and a movable
part (mover or armature). The air gaps between the core parts depend
on the position of the mover 𝑧, which is restricted between a lower
and an upper limit. The motion may be linear (Figs. 3(a) and 3(b)) or
angular (Fig. 3(c)). The electrical current through the coil 𝜄coil generates
a magnetic flux 𝜙 through the core parts and the air gaps between
them, which results in a magnetic force. There are two asymmetrical
operation types: closing and opening, in the direction of the magnetic
force or other passive forces, respectively.

We present a generalized dynamical description that serves as the
basis of the control design. For clarity, the system is separated into the
electromagnetic and mechanical parts.

2.1. Electromagnetic dynamics

The electromagnetic system is governed by two main equations. The
first one is the electrical circuit equation of the coil,

𝜐coil = 𝑅 𝜄coil +𝑁 𝜙̇, (1)

where 𝜐coil, 𝑅 and 𝑁 are the coil voltage, resistance and number
of turns, respectively. The second equation is Ampère’s circuital law,
which relates the current passing through a surface with the magne-
tomotive force across the closed boundary curve from said surface. By
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defining the curve as the path of the magnetic flux (see each actuator
represented in Fig. 3), the derived equation is

𝑁 𝜄coil + 𝜄eddy = c + g, (2)

here 𝜄eddy is the net eddy current through the core, and c and g are
he magnetomotive forces of the core and gap.

To characterize the eddy currents, it is assumed that the magnetic
lux is uniform within the cross section of the core. This results in the
ollowing relation:

eddy = −𝑘eddy 𝜙̇, (3)

here 𝑘eddy is a positive constant that depends on the geometry and
onductivity of the core (Ramirez-Laboreo, 2019).

Moreover, the gap magnetomotive force can be directly related
o the magnetic flux based on the magnetic reluctance definition.
pecifically,

g =
∑

𝑖
g𝑖(𝑧)𝜙 = g(𝑧)𝜙, (4)

here g𝑖 denotes the magnetic reluctance of each gap, and g the
esulting total reluctance. Note that it depends on the gap length that,
n turn, depends on the actuator position 𝑧 (see Fig. 3).

In contrast, the relation between the core magnetomotive force
nd the magnetic flux presents a hysteretic behavior. Thus, the reluc-
ance approximation can only be applied if the magnetic hysteresis
henomenon is neglected. As a more comprehensive approach, the pro-
osed characterization uses a differential counterpart of the reluctance,
hich is defined differently for increasing and decreasing magnetic

lux. Firstly, the total magnetomotive force is divided into an arbitrary
umber of terms 𝑖, corresponding to several core parts which may
ave different shapes. It can be expressed as follows:

c =
∑

𝑖
𝑖,  =

[

1 2 ⋯
]𝖳 . (5)

hen, a differential reluctance for each core part 𝛥𝑖 is formally defined
s a piece-wise function,

𝛥𝑖(𝑖, 𝜙, 𝜙̇) =
d𝑖
d𝜙

=

{

+
𝛥 𝑖(𝑖, 𝜙), if 𝜙̇ ≥ 0

−
𝛥 𝑖(𝑖, 𝜙), if 𝜙̇ < 0.

(6)

This proposed approach is general enough to encompass certain hys-
teresis models, e.g. Jiles–Atherton (Moya-Lasheras et al., 2021); and
non-hysteretic reluctance-based ones, in which case +

𝛥 𝑖 = −
𝛥 𝑖.

Finally, substituting (3)–(5) into (2), and isolating the magnetic flux
derivative, the following differential equation is derived:

𝜙̇ = −
g(𝑧)𝜙 +

∑

𝑖 𝑖

𝑘eddy
+ 𝑁

𝑘eddy
𝜄coil, (7)

here the current 𝜄coil would act as the input. However, it is more
ommon to control the actuators with the voltage 𝜐coil as the input.
hen, from (1) and (7), the corresponding differential equation is
efined as

̇ = −
𝑅
(

g(𝑧)𝜙 +
∑

𝑖 𝑖
)

𝑁2 + 𝑅𝑘eddy
+ 𝑁

𝑁2 + 𝑅𝑘eddy
𝜐coil. (8)

Regardless of the chosen input 𝑢, the dynamics of the magnetic flux is
given by an input-affine nonlinear function,

𝜙̇ = 𝑓𝜙(𝑧, 𝜙, ) + 𝑔𝜙 𝑢. (9)

onsequently, the dynamics of core magnetomotive force can be rep-
esented with a vector function of the same variables,

̇ = 𝒇 (𝑧, 𝜙, , 𝑢), (10)

here each scalar component is given by (6) and (9),
( ̇ ) ̇ ̇
𝑖

(𝑧, 𝜙, , 𝑢) = 𝛥𝑖 𝑖, 𝜙, 𝜙 𝜙, 𝜙 = 𝑓𝜙(𝑧, 𝜙, ) + 𝑔𝜙 𝑢. (11)

3 
Fig. 4. Diagram of the hybrid automaton describing the mechanical subsystem,
including the position constraints. Each transition between modes (yellow blocks)
occurs when the corresponding guard condition (green text, before "⇒") is satisfied.
In some transitions, the velocity jumps according to the corresponding reset rule (red
text, after "⇒"). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

2.2. Mechanical dynamics

The dynamical equation of the armature during motion is given
by Newton’s second law. Following a state-space representation, the
position 𝑧 and velocity 𝑣 are treated as state variables, whose dynamical
equations during motion are

𝑧̇ = 𝑣, (12)

𝑣̇ = 𝑓𝑣(𝑧, 𝑣, 𝜙) =
1
𝑚

(

𝐹pas(𝑧, 𝑣) − 𝐹mag(𝑧, 𝜙)
)

, (13)

here 𝑚 is the movable mass, 𝐹mag is the magnetic force, and 𝐹pas is
he passive force that encompasses the remaining forces acting on the
over (e.g., elastic, gravitational or friction forces). The only force that

an be controlled — albeit indirectly — is the magnetic force, which is
efined (Moya-Lasheras et al., 2021) as

mag(𝑧, 𝜙) = −1
2
′

g(𝑧)𝜙
2, ′

g(𝑧) =
𝜕g(𝑧)
𝜕𝑧

. (14)

Note that the stroke of these actuators is limited. Thus, the me-
chanical dynamics must change when resting in the minimum position
𝑧min or maximum position 𝑧max. This is achieved by representing the
dynamics with a hybrid automaton, as depicted in Fig. 4. The dynamic
mode is given by the discrete state 𝑞 ∈ {1, 2, 3}. Each transition
between two modes is accompanied by its guard condition and, in the
case of transitioning from 𝑞 = 2, also a reset function: 𝑣+ = 0.

3. Iterative learning control

3.1. Problem formulation

The controller is initially designed based on the dynamical equa-
tions of the motion mode (𝑞 = 2), which can be expressed compactly
as

𝒙̇𝑛(𝑡) = 𝒇
(

𝒙𝑛(𝑡), 𝑢𝑛(𝑡)
)

, (15a)

𝑦𝑛(𝑡) = ℎ
(

𝒙𝑛(𝑡), 𝑢𝑛(𝑡)
)

, (15b)

here 𝒙𝑛 is the state vector and 𝑦𝑛 is the output. Note that 𝑛 and 𝑡
enote the iteration and time dependence, respectively. To improve
he readability of the following expressions, the iteration and time
ependence of variables is omitted whenever possible.

In accordance to the notation from Section 2, the state vector and
unction are

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑧
𝑣
𝜙


⎤

⎥

⎥

⎥

⎥

⎦

, 𝒇 (𝒙, 𝑢) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑣
𝑓𝑣(𝑧, 𝑣, 𝜙)

𝑓𝜙(𝑧, 𝜙, ) + 𝑔𝜙 𝑢
𝒇 (𝑧, 𝜙, , 𝑢)

⎤

⎥

⎥

⎥

⎥

⎦

. (16)

On the other hand, the output is specified as the variable to be
racked through control. The objective is to track the position 𝑧. How-
ver, in order to facilitate the control design and theoretical analysis,
he following output is instead proposed:

= ℎ(𝒙, 𝑢) =
(

𝜚 + d )3
𝑧 = 𝜚3 𝑧 + 3 𝜚2 𝑣 + 3 𝜚 𝑎 + 𝑎̇, (17)
d𝑡
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being 𝜚 a positive constant, 𝑎 the acceleration and 𝑎̇ the jerk,

𝑎 = 𝑓𝑣(𝑧, 𝑣, 𝜙), 𝑎̇ = d𝑓𝑣∕d𝑡. (18)

ote that the relation between 𝑦 and 𝑧 (17) can be interpreted as
third-order linear time-invariant dynamical system, where −𝜚 are

he system poles. Thus, the constant 𝜚 can be specified for a desired
ettling time. Note also that the jerk can be expressed compactly as an
nput-affine function,

𝑎̇ = 𝑓𝑎(𝒙) + 𝑔𝑎(𝒙) 𝑢, (19)

here

𝑎(𝒙) =
𝜕𝑓𝑣
𝜕𝑧

𝑣 +
𝜕𝑓𝑣
𝜕𝑣

𝑓𝑣(𝑧, 𝑣, 𝜙) +
𝜕𝑓𝑣
𝜕𝜙

𝑓𝜙(𝑧, 𝜙, ), (20)

𝑔𝑎(𝒙) =
𝜕𝑓𝑣
𝜕𝜙

𝑔𝜙, (21)

which, in turn, depend on the following partial derivatives:

𝜕𝑓𝑣
𝜕𝑧

= 1
𝑚

( 𝜕𝐹pas

𝜕𝑧
(𝑧, 𝑣) − 1

2
′′

g (𝑧)𝜙
2
)

, (22)

𝜕𝑓𝑣
𝜕𝑣

= 1
𝑚

𝜕𝐹pas

𝜕𝑣
(𝑧, 𝑣), (23)

𝜕𝑓𝑣
𝜕𝜙

= − 1
𝑚

′
g(𝑧)𝜙. (24)

Furthermore, for the theoretical design and convergence proof of
he controller, it is necessary to establish a set of assumptions. The first
wo are well known and widely used for ILC design, while the last three
re specifically tailored for the studied systems:

ssumption 1. For any input signal and initial state vector, the state
ector 𝒙(𝑡) and function 𝒇 (16) are bounded.

ssumption 2. For every iteration 𝑛, the initial values of the state
ector 𝒙𝑛(𝑡) are identical and equal to the desired ones 𝒙𝐝(𝑡). Formally,

𝑛(0) = 𝒙𝐝(0), ∀𝑛 ∈ N. (25)

On one hand, Assumption 1 is justified for switch-type actuators
ecause their stroke is inherently constrained between two limiting
ositions, and their magnetic flux is limited due to magnetic saturation.
n the other hand, Assumption 2 requires that each operation starts

rom a steady state, which is often achievable in practice due to
ufficiently long intervals between operations. It also implies that the
nfluence of remanent magnetization and other disturbances on the
nitial state is negligible, which is also reasonable for the studied class
f actuators.

ssumption 3. The gap reluctance g is a monotonically increasing
unction of the position, i.e.
′
g(𝑧) > 0, ∀𝑧 ∈ [𝑧min, 𝑧max]. (26)

ssumption 4. In their domain, the differential reluctance 𝛥𝑖 (6) is
ounded and differentiable, whereas the magnetic and passive forces
mag and 𝐹pas (13) are bounded and twice differentiable.

ssumption 5. The magnetic flux is bounded such that

∈ [𝜙min, 𝜙max), (27)

here 𝜙min and 𝜙max are strictly positive constants.

Assumption 3 implies that the magnetic force is always negative
i.e. attractive), as expected. Assumption 4 is also a reasonable imposi-
ion to the dynamical system, although it somewhat limits the possible
odels (e.g., a model with a passive force that changes discretely with
espect to the position would not be valid and should be approximated

4 
ith a smooth function). In contrast, Assumption 5 is a control impo-
ition that greatly simplifies its design (note that negative values of
he magnetic flux are completely unnecessary because the magnetic
orce is an even function of the magnetic flux). It also prevents crossing
he singularity point 𝜙 = 0, which is uncontrollable. In practice, this
ast imposition can be achieved by saturating negative currents to zero
e.g. with a diode).

.2. Motion control design

The objective is to determine a sequence of input signals 𝑢𝑛 that
rives the output 𝑦𝑛 to converge to the desired one 𝑦d. Our control
trategy is based on a first-order linear ILC, known for its surprising
ffectiveness even for of highly nonlinear and uncertain systems (Xu,
011),

𝑛+1 = 𝑢𝑛 +𝐾𝑛 (𝑦d − 𝑦𝑛), (28)

here 𝐾𝑛 ∈ R represents the learning control gain, dependent on the
teration number 𝑛 to allow adaptability. The convergence proof, rooted
n Xu and Tan (2003), is supported by two lemmas, which are presented
nd proved hereunder:

emma 1. There exists positive constant scalars 𝑐1, 𝑐2 and 𝑐3 and positive
onstant vector 𝒄𝟒 such that

𝒇 (𝒙1, 𝑢1)−𝒇 (𝒙2, 𝑢2)‖ ≤ 𝑐1
(

‖𝒙1 − 𝒙2‖+|𝑢1 − 𝑢2|
)

, (29)

2 ≤ 𝜕ℎ∕𝜕𝑢 ≤ 𝑐3 ∨ −𝑐2 ≤ 𝜕ℎ∕𝜕𝑢 ≤ −𝑐3, (30)

|𝜕ℎ∕𝜕𝒙| ≤ 𝒄𝟒. (31)

roof. Firstly, from Assumptions 1 and 4, 𝒇 is bounded and almost
ifferentiable everywhere. The only non-differentiable points are the
nes in which the magnetic flux derivative is zero (11), but they are
ontinuous because

lim
̇→0

𝛥𝑖
(

𝑖, 𝜙, 𝜙̇
)

𝜙̇ = 𝛥𝑖
(

𝑖, 𝜙, 0
)

0 = 0. (32)

herefore, it is Lipschitz continuous, as stated in (29).
Secondly, from the output definition (17)–(24), its partial derivative

ith respect to the input can be expressed as
𝜕ℎ
𝜕𝑢

= 𝑔𝑎(𝒙) = − 1
𝑚

′
g(𝑧)𝜙𝑔𝜙, (33)

where 𝑚 and 𝑔𝜙 are positive constants, while ′
g(𝑧) and 𝜙 are positive

and bounded (see Assumptions 3 and 5). Therefore, 𝜕ℎ∕𝜕𝑢 is always
negative and bounded, proving (30).

Lastly, its gradient with respect to the state vector is composed by
the following elements:

𝜕ℎ∕𝜕𝑧 = 𝜚3 + 3 𝜚 𝜕𝑓𝑣∕𝜕𝑧 + 𝜕𝑓𝑎∕𝜕𝑧 + 𝜕𝑔𝑎∕𝜕𝑧, (34)

𝜕ℎ∕𝜕𝑣 = 3 𝜚2 + 3 𝜚 𝜕𝑓𝑣∕𝜕𝑣 + 𝜕𝑓𝑎∕𝜕𝑣 + 𝜕𝑔𝑎∕𝜕𝑣, (35)

𝜕ℎ∕𝜕𝜙 = 3 𝜚 𝜕𝑓𝑣∕𝜕𝜙 + 𝜕𝑓𝑎∕𝜕𝜙 + 𝜕𝑔𝑎∕𝜕𝜙, (36)

𝜕ℎ∕𝜕 = 𝜕𝑓𝑎∕𝜕 . (37)

These partial derivatives depend on up to the first, second and third
partial derivatives of 𝛥𝑖, 𝐹pas and g, respectively, as can be checked
in (20)–(24). Because they are bounded (Assumption 4), 𝜕ℎ∕𝜕𝒙 is also
bounded, matching (31). □

Lemma 2. For a certain desired output 𝑦d, there exists a unique input 𝑢d
such that

𝒙̇𝐝 = 𝒇 (𝒙𝐝, 𝑢d), (38a)

𝑦 = ℎ(𝒙 , 𝑢 ). (38b)
d 𝐝 d
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Proof. In accordance to the proposed output definition (17), the
desired output is defined based on the desired position trajectory 𝑧d
nd its time derivatives,

d = 𝜚3 𝑧d + 3 𝜚2 𝑣d + 3 𝜚 𝑎d + 𝑎̇d, (39)

here 𝑣d, 𝑎d and 𝑎̇d denote the desired velocity, acceleration and jerk,
espectively.

Then, the first and second elements of the state vector 𝒙𝐝 are
the position 𝑧d and velocity 𝑣d, which are already defined. The third
state variable is the magnetic flux 𝜙d, which can be derived from the
acceleration definition (13),

𝜙d =

√

2
𝐹pas(𝑧d, 𝑣d) − 𝑚𝑎d

′
g(𝑧d)

. (40)

he solution is unique because the magnetic flux is restricted to positive
alues (Assumption 5).

The last state variables are the magnetomotive forces d𝑖. Given
hat their initial values d𝑖(0) are unique (Assumption 2), and that the
agnetic flux and therefore its time derivative 𝜙̇d are also unique, the
agnetomotive forces d𝑖 can be uniquely determined as the solutions

f the following differential equations:

̇d𝑖 = 𝛥𝑖(d𝑖, 𝜙d, 𝜙̇d) 𝜙̇d. (41)

Finally, the desired input is uniquely defined based on the jerk
definition (19),

𝑢d =
𝑎̇d − 𝑓𝑎(𝒙𝐝)

𝑔𝑎(𝒙𝐝)
. □ (42)

Lastly, the convergence of the control law during motion is stated
in the following proposition:

Proposition 1. If the control action applied to the system (15) is computed
from (28) while ensuring that the control gain 𝐾𝑛 satisfies the following
condition for every iteration 𝑛:

𝐾min ≤ 𝐾𝑛 < 0, 𝐾min = − 2𝑚
𝑔𝜙 max

(

′
g(𝑧)

)

𝜙max
, (43)

then the position 𝑧𝑛 tends to the desired trajectory 𝑧d as the number of
iterations 𝑛 increases.

Proof. With a constant gain 𝐾𝑛 = 𝐾, ∀𝑛, and given Assumption 2 and
Lemmas 1 and 2, the monotonic convergence of the input 𝑢 toward 𝑢d
is theoretically guaranteed (Xu & Tan, 2003) if

|1 −𝐾 𝜕ℎ∕𝜕𝑢| < 1. (44)

Note that 𝜕ℎ∕𝜕𝑢 = 𝑔𝑎(𝒙) and is always negative (33). After some
manipulations,

2∕𝑔𝑎(𝒙) < 𝐾 < 0. (45)

Furthermore, from Assumption 5 as well as the definitions of 𝑔𝑎 (21)
and 𝐾min (43), it follows that
2

𝑔𝑎(𝒙)
= − 2𝑚

𝑔𝜙 ′
g(𝑧)𝜙

> − 2𝑚
𝑔𝜙 max

(

′
g(𝑧)

)

𝜙max
= 𝐾min. (46)

Therefore, (43) is a sufficient condition to guarantee (44), and thus
the input converges to 𝑢d. Because the convergence is monotone for
any constant 𝐾 ∈ [𝐾min, 0), any sequence of adaptive gains 𝐾𝑛 ∈
[𝐾min, 0) also guarantees said convergence. Moreover, given Lemma 2,
the convergence toward 𝑢d implies that the output tends to 𝑦d and, more
importantly, the position converges to the desired trajectory 𝑧d. □

Note that the controller has been designed based on the assumption
of perfectly known dynamics. As previously stated, non-repeating dis-
turbances can have an impact on the tracking performance because of
the lack of real-time feedback. However, robustness against system un-

certainties can be readily achieved by computing the gain bound 𝐾min

5 
with the worst-case values of the model constants and functions. This
involves considering the minimum value of 𝑚 and the maximum values
of 𝑔𝜙, ′

g(𝑧) and 𝜙max. These minimum and maximum values should be
derived from the physical tolerances of the actual devices. If this is not
feasible, the parameter ranges can be estimated with an identification
process of a sufficiently large sample of devices from the same family.
In addition, it may be advisable to set the minimum and maximum
values of these parameters conservatively, incorporating a margin or
tolerance to account for other modeling errors and disturbances.

3.3. Full control design

The proposed control law (28) serves as the basis for the full
controller. It is modified and expanded by accounting for some prac-
tical considerations and limitations. Firstly, it should be noted that
the controller must be implemented separately for the opening and
closing operations, but, for clarity, the distinction between operation
types is omitted. Another important consideration is that, in a practical
scenario, the time is discretized with a certain sampling period 𝑇 ,
i.e. 𝑡 ∈ {0, 𝑇 , 2 𝑇 , …}, and that the time resets (𝑡 = 0) at the beginning
of each iteration 𝑛.

Regarding the control law, it is separated into different intervals.
During motion, the controller is defined as

𝑢𝑛+1(𝑡) = 𝑢̄𝑛(𝑡) + 𝛥𝑢𝑛(𝑡), ∀𝑡 ∈ [𝑡0, 𝑡f ], (47)

where 𝑡0 and 𝑡f represent the initial and final instants of the motion
interval, respectively, 𝑢̄𝑛(𝑡) is the smoothed previous input, and 𝛥𝑢𝑛 is
he input variation based on the output error.

It is desirable to filter or smooth the input signal in order to elim-
nate high-frequency noise, especially so when using the input signal
o estimate the position. A widely used measure in ILC applications is
he smoothing of the previous input with a Q-filter in order to reduce
ensitivity against high-frequency uncertainties. The proposed filter is
ormulated as

̄𝑛(𝑡) = 𝑤𝑢𝑛(𝑡 − 𝑇 ) + (1 − 2𝑤) 𝑢𝑛(𝑡) +𝑤𝑢𝑛(𝑡 + 𝑇 ), (48)

here 𝑤 ∈ [0, 0.5] is the filter coefficient, which gives more weight
o the previous and next samples as 𝑤 increases. In this case, the Q-
ilter can be considered a weighted-average operator in a symmetrical
indow (Wang et al., 2009).

As an additional measure, the input variations are saturated in
rder to avoid large changes in the input between iterations, which
ay be caused by unrepeatable perturbations or errors. Formally, it

s expressed as

𝑢𝑛(𝑡) = sat+𝛥𝑢max
−𝛥𝑢max

(

𝐾𝑛
(

𝑦d(𝑡) − 𝑦𝑛(𝑡)
))

, (49)

here sat denotes the saturation function, ensuring that 𝛥𝑢 ∈ [−𝛥𝑢max,
𝑢max], and 𝐾𝑛 is the control parameter. The constant 𝛥𝑢max should be
hosen as a fraction of the maximum voltage.

Previous measures are quite general, and can be applied to many
ther ILC applications. In contrast, the following one is specifically
ntended for soft-landing control applications. Note that position track-
ng is not the ultimate objective, but rather a means to reduce impact
elocities. Taking this into account, this paper proposes an adaptive
ontrol parameter,

𝑛 = max
(

𝐾min, −𝑘 ‖𝒗𝐜‖2
)

, (50)

here 𝑘 is a new control constant and 𝒗𝐜 is the vector of impact veloci-
ies in the previous iteration. Notice that it is saturated to 𝐾min if lesser
han that value to ensure that the condition (43) from Proposition 1 is
atisfied.

Lastly, the controller should work for the full hybrid system, repre-
ented in Fig. 4, instead of only during the motion intervals. On one
and, before the motion, it is important to note that the coil must
e energized or de-energized (in the closing or opening operation,



E. Moya-Lasheras and C. Sagues Control Engineering Practice 152 (2024) 106067 
Fig. 5. Solenoid valve used for testing. (a) Photo. (b) Longitudinal section.

Fig. 6. Desired position trajectory for the closing operations.

respectively) so that at the motion start (𝑡 = 𝑡0), the magnetic flux 𝜙0 is
the necessary one to balance the magnetic and passive forces (13), i.e.

𝐹pas(𝑧0, 0) + 𝐹mag(𝑧0, 𝜙0) = 0, (51)

where the initial position is 𝑧0 = 𝑧max or 𝑧0 = 𝑧min, depending on
the operation type (closing or opening, respectively). To achieve the
previous condition at 𝑡 = 𝑡0, we propose to apply during an adaptive
time interval a constant voltage 𝑢prev, which should be large or small
enough to ensure that the actuator can start separating from 𝑧 = 𝑧max
or 𝑧 = 𝑧min in closing or opening operations, respectively. Formally,

𝑢𝑛+1(𝑡) = 𝑢prev, ∀𝑡 ∈ [𝑡0 − 𝜏𝑛+1, 𝑡0), (52)

where 𝜏𝑛+1 denotes the interval. It is iteratively updated as

𝜏𝑛+1 = 𝜏𝑛 + 𝑐𝜏 (𝑡takeoff − 𝑡0), (53)

being 𝑡takeoff the instant in which the actuator started moving in the
previous iteration and 𝑐𝜏 ∈ (0, 1] a filter coefficient. Intuitively, for
larger 𝑐𝜏 , the interval is updated more aggressively, which is more
suitable when cycle-to-cycle variability is low.

On the other hand, after the motion, the actuator must be kept in
its final position. This is handled by applying a constant voltage 𝑢post ,
which must be large or small enough to keep the actuator at 𝑧 = 𝑧min
or 𝑧 = 𝑧max in closing or opening operations, respectively,

𝑢𝑛+1(𝑡) = 𝑢post , ∀𝑡 > 𝑡f . (54)

4. Control application

4.1. Tested actuator and models

The proposed soft-landing control solution is tested with a com-
mercial linear-travel solenoid valve, shown in Fig. 5. The cylindrically
symmetrical core consists of a fixed part and a plunger. The current
through the coil generates a magnetic force that tends to attract the
movable core toward the fixed core, whereas the spring force tends to
keep them separated.

Two specific models of this device are used. Both follow the general
structure presented in Section 2, but with different complexities. The
6 
Table 1
Parameters of the complete model.

Symbol Value Symbol Value

𝑅 50 Ω g,0 2.58 ⋅ 109 H−1

𝑁 1200 ′
g,0 7.37 ⋅ 1010 H−1∕m

𝑙c 0.055m 𝑘1 334m−1

𝐴c 1.26 ⋅ 10−5 m2 𝑘2 0.154m
𝑘eddy 1440 Ω−1 𝑚 1.20 ⋅ 10−3 kg
𝑀sat 2.90 ⋅ 106 A∕m 𝑘sp 52.1N∕m
𝑏 3.66 ⋅ 10−3 T 𝑧sp 0.0161m
𝑐 0.724 𝑐f 0.0375N s∕m
𝜅 668A∕m 𝑧min 0
𝛼 0.426 𝑧max 1 ⋅ 10−3 m

Table 2
Parameters of the simplified model.

Symbol Value Symbol Value

∗
g,0 4.51H−1 𝜙∗

sat 0.0276Wb
′ ∗

g,0 51.2H−1 𝑚∗ 1.20 ⋅ 10−9 kgm2

𝑘∗1 0.334 𝑘∗sp 5.21 ⋅ 10−5 Nm
𝑘∗2 154 𝑧∗sp 16.1
∗

c,0 3.23H−1 𝑐∗f 3.75 ⋅ 10−8 Nms

first one is the complete model, which was previously proposed (Moya-
Lasheras et al., 2021) and is summarized in Appendix A. It includes the
most important electromagnetic phenomena: magnetic saturation, hys-
teresis, eddy currents and flux fringing. Thus, it is chosen for emulating
the real system in the simulated analyses. However, this model is too
complex for control of simple reluctance actuators. For one, given the
large number of parameters, the model identification is computation-
ally expensive. This is especially critical when working with low-cost
actuators with large unit-to-unit variability, because parameters should
be recalculated for each device. Moreover, the implementation cost of
controllers and estimators based on this model is usually prohibitive.

Therefore, for estimation and control, we propose to use a simplified
model, summarized in Appendix B. In contrast to the previous one, this
model neglects the complex magnetic hysteresis phenomenon. It has
been previously designed for position estimation of reluctance actua-
tors (Moya-Lasheras et al., 2022). It is also suitable for position tracking
control with the proposed formulation in Section 3. The model structure
is a particularization of the general form presented in Section 2, but
with some constant and variable changes to reduce the complexity and
the number of parameters. Mainly, the state variables are modified as
follows:

𝑧∗ = 𝑧∕𝑧max, 𝑣∗ = 𝑣∕𝑧max, 𝜙∗ = 𝑁 𝜙, (55)

where 𝑧∗ is the normalized position, such that 𝑧∗ ∈ [0, 1]; 𝑣∗ is its time
derivative; and 𝜙∗ is the flux linkage, replacing the magnetic flux as
the third state variable.

The parameter values of the complete and simplified models, pre-
sented in Tables 1 and 2, respectively, have been obtained through an
identification procedure. This process minimizes simulated errors with
respect to experimental position, voltage, and current signals measured
from the real device. As an indicator of the accuracy of each model, the
simulated current has a normalized root mean square error of 2.99%
with the complete model and 5.74% with the simplified model.

4.2. Control strategy

The control strategy proposed in Section 3.3 is particularized to the
presented actuator. Firstly, the desired position trajectory for the clos-
ing operations has been designed through an optimal control method
proposed in Moya-Lasheras et al. (2020b), using the simplified model
with the nominal parameter values (see Table 2). The result is presented
in Fig. 6.
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Fig. 7. Control and estimation diagram.

Then, the control diagram is depicted in Fig. 7. The actuator dy-
amics is represented by the dashed box, whose input is the control
ction 𝑢 and outputs are the measurements of voltage 𝜐coil, current 𝜄coil

and the discrete state 𝑞. For the simulated cases, the complete model
(Appendix A) is used, and random voltage perturbations 𝑝𝑢 are also
introduced.

In this practical scenario, the controller does not rely on direct
position measurements. Instead, it uses estimates of the position 𝑧̂∗ and
he vector of contact velocities 𝒗̂∗𝐜 from the previous iteration. These
stimates are derived from measurements of voltage 𝜐coil, current 𝜄coil
nd the discrete state 𝑞. We employ an offline estimator based on the
implified model (Appendix B), as proposed in Moya-Lasheras et al.
2022). The estimator uses an Extended Rauch–Tung–Striebel two-pass
moother, performing a forward pass with an Extended Kalman filter,
ollowed by backward pass covering the entire operation interval. The
ackward pass improves greatly the estimation accuracy, as demon-
trated by simulated and experimental analyses (Moya-Lasheras et al.,
022). However, it renders the estimator unsuitable for real-time imple-
entation. Fortunately, the proposed controller, intentionally designed
ithout a real-time feedback loop (47)–(54), allows the position to be
btained offline or iteratively.

Both the controller and estimator depend on a vector of parameters
rom the simplified model. It is defined as
∗ =

[

𝑚∗ 𝑘∗sp 𝑧∗sp 𝑐∗f ∗
g,0 ′ ∗

g,0 𝑘∗1 𝑘∗2 ∗
c,0 𝜙∗

sat
]𝖳, (56)

where the asterisk superscript is used to make a distinction between
these auxiliary parameters (obtained through normalization and other
manipulations) and the ones from the complete model.

5. Results

5.1. Simulated analysis

Multiple simulations are performed to analyze the performance of
the controller and the estimator. To emulate unit-to-unit variability, the
model parameters are perturbed in each run. Formally,

𝜃∗𝑖 = 𝜃∗𝑖
nom (1 + 𝑒𝜃 𝑖), (57)

where 𝜃∗𝑖 is the 𝑖th component of the parameter vector (56), 𝜃∗𝑖
nom is the

corresponding nominal parameter value (Table 2) and 𝑒𝜃 𝑖 is the relative
error. Each relative error is a realization of a uniform random variable
𝐸𝜃 ,

𝐸𝜃 ∼ 
(

−𝛿𝜃∕2, 𝛿𝜃∕2
)

, (58)

where 𝛿𝜃 denotes its interval length.
Moreover, cycle-to-cycle variability is emulated by perturbing the

voltage in each iteration 𝑛. Formally, the applied voltage is 𝑢𝑛(𝑡) + 𝑝𝑢,
where 𝑢𝑛(𝑡) is the control action computed based on the proposed
method in Section 3.3; and 𝑝𝑢 represents the voltage perturbation (see
Fig. 7), which is a realization of a normal random variable 𝑃𝑢,

∼ 
(

0, 𝜎 2) , (59)
𝑢 𝑢
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whose standard deviation is set to 𝜎𝑢 = 0.025V.
Regarding the control algorithm, it has been initialized with a con-

stant voltage, 𝑢1(𝑡) = 30V. This uncontrolled first commutation serves
also as a reference to assess the improvement in following iterations.
The voltage values before and after the motion are accordingly set
as 𝑢prev = 𝑢post = 30V. Moreover, the control gain 𝐾min is specified
based on the proposed definition (43) with a conservative adjustment
to account for potential modeling errors,

𝐾min = max

(

−2𝑚∗

′ ∗
g,0 𝜙

∗
sat

)

=
−2𝑚∗nom (1 + 𝛿𝜃)

′ ∗
g,0

nom 𝜙∗
sat

nom (1 − 𝛿𝜃)2
. (60)

The remaining control constants 𝜚, 𝑤, 𝛥𝑢max, 𝑘 and 𝑐𝜏 are not based on
the model, so they are optimized for each case separately in order to
improve the control performance.

Four Monte Carlo tests have been performed for different parameter
errors (𝛿𝜃 = 5, 10, 20 and 50%). For each one, 500 runs are carried
out, with 100 commutations or iterations. This number of operations
has been selected to show the control convergence, but note that
this controller has been designed for working indefinitely in practical
scenarios.

The results are summarized in Fig. 8. The top graphs display the
distribution of the absolute values of the position estimation errors,
|𝑧̃∗| = |𝑧∗ − 𝑧̂∗|, in each iteration 𝑛. Note that the position errors
while resting at one of the limiting positions (𝑞 = 1 or 𝑞 = 3) are
always zero, so only the errors during motion (𝑞 = 2) have been
computed. Note also that 𝑧∗ ∈ [0, 1], so the errors are significant but still
quite small considering that the estimator relies on a simplified model
with parameter errors. As expected, the estimation errors increase with
larger parameter errors, especially in the last case, in which 𝛿𝜃 = 50%.
But the estimator is demonstrated to be quite robust, because the errors
increase at a smaller rate than the parameters, e.g., increasing ten times
the parameter errors (from 𝛿𝜃 = 5% to 50%) increases the errors about
five times.

The position estimation allows tracking it via the proposed ILC, but
the ultimate objective is to decrease the impact velocities. Thus, to
check the control performance, an equivalent contact velocity 𝑣c,eq is
calculated in each commutation, having the same total kinetic energy
as all contact velocities,

𝑣c,eq = ‖𝒗𝐜‖. (61)

These velocities are summarized in the bottom graphs of Fig. 8. For
𝛿𝜃 = 5, 10 and 20%, the results are very similar, despite their different
position estimation errors. This shows that the control is quite robust to
estimation errors. The root mean square velocities in the last iterations
(𝑛 > 50) are 0.181, 0.206 and 0.214 m/s, respectively, which are less
than 2% of the average impact energy in the uncontrolled scenarios
(𝑛 = 1). In the last case, in which 𝛿𝜃 = 50%, there is a significant
increase in the estimation errors, which results in a significantly slower
convergence speed of the control. In any case, after 50 iterations, the
results are still very good, with a root mean square velocity of 0.26 m/s.
Therefore, the control is effective even in the undesired scenarios in
which the model is not properly identified.

Moreover, for comparison purposes, a state-of-the-art run-to-run
(R2R) control (Moya-Lasheras & Sagues, 2020) is also simulated un-
der the same conditions. This strategy uses a Bayesian optimization
algorithm for adapting the model parameters in each iteration—which
are used to calculate the current applied to the actuator. Conforming
with the cited paper, the optimization cost is defined as the equivalent
contact velocity (61) squared. However, in this case, the impact veloc-
ities are estimated. For consistency, all R2R control parameters have
been adjusted following the same methods as the cited work. Fig. 9
shows equivalent contact velocities from this alternative controller,
which have been obtained following the same procedure. For increasing
parameter errors, the results worsen, especially the variability. Ulti-

mately, for every case they are considerably worse than the results from
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Fig. 8. Distribution of the position estimation errors (top) and equivalent contact velocities (bottom) for different parameter errors with the proposed controller. The graphs include
the median value (𝑃50), the interquartile range ([𝑃25 , 𝑃75]) and the 5th to 95th percentile interval ([𝑃5 , 𝑃95]).
Fig. 9. Distribution of equivalent contact velocities for different parameter errors with an alternative state-of-the-art controller. The graphs include the median value (𝑃50), the
interquartile range ([𝑃25 , 𝑃75]) and the 5th to 95th percentile interval ([𝑃5 , 𝑃95]).
the proposed controller. As the run-to-run control uses the estimated
impact velocities 𝑣∗c for evaluating each iteration and then adapt the
parameters, it is quite sensitive to the estimation errors, even when they
are relatively small (𝛿𝜃 = 5%).

5.2. Experimental validation

The proposed control strategy is validated with the experimental
setup shown in Fig. 10, in which the equipment has been labeled as
follows:

1. The actuator described in Section 4.1 (Fig. 10(b))
2. Personal computer
3. Power supplies (Tenma 72-10505)
4. Voltage amplifier
5. USB oscilloscope with an arbitrary waveform generator (Pico-

Scope 4824)
6. High-speed and high-accuracy laser displacement sensor head

(LK-H082)
7. Displacement sensor controller (Keyence LK-G5001P)

The voltage signals that are supplied to the actuator coil are de-
signed in the PC with MATLAB, generated by the USB oscilloscope
and then amplified. The oscilloscope also measures the coil voltage,
current (with a shunt resistor) and the plunger position (through the
displacement sensor), and sends them to the computer. Note that the
position measurements are not used in the implemented solution, but
in the validation of the estimation and control.

The controller is initialized and executed 100 times, in the same
manner as in Section 5.1. To account for modeling errors, the constant
𝐾min (60) is determined by assuming that 𝛿𝜃 = 10%, which is consid-
ered sufficiently large. The resulting equivalent contact velocities are
condensed in Fig. 11. They are similar to the ones from the simulated
analysis, with a root mean square velocity of 0.37 m/s in the last
iterations (𝑛 > 50), which corresponds to a 94.3% average reduction of
the impact energy with respect to the uncontrolled cases (𝑛 = 1). Also,
we can see that the controller is quite fast, needing about 20 operations
to converge, which is in agreement with the simulated results with
𝛿 = 10%.
𝜃

8 
Fig. 10. Experimental setup. (a) Equipment. (b) Actuator.

Fig. 11. Experimental results using the proposed ILC. Distribution of equivalent contact
velocities with respect to the iteration number.

As explained in Section 3.3, the control gain is adapted in each itera-
tion based on the previous impact velocities. To study its evolution, the
obtained values are displayed in Fig. 12. The left-hand graph represents
the distribution of values of −𝑘 ‖𝒗̂∗𝐜‖2, which is the adapted parameter
𝐾𝑛 before the saturation. Note that the values in the first iteration are
larger than 𝐾min and thus are saturated to said value in order to ensure
the theoretical tracking convergence (see Proposition 1). Note also that
this control parameter is based on the estimated contact velocities. To
show that estimation errors do not have a strong impact on the control
parameter, the right-hand graph displays the distribution of values of
−𝑘 ‖𝒗∗𝐜‖

2, which would be the adapted parameter 𝐾𝑛 after saturation
if the real contact velocities were available. There seems to be a very
slight underestimation of the contact velocities, as these ideal values
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Fig. 12. Adaptive control parameter values (before saturation to 𝐾min) with respect to
the iteration number: real values obtained from estimated impact velocities and used
in the control (left), and ideal values obtained from measured impact velocities (right).

Fig. 13. Experimental results using an ILC with a fixed gain. Distribution of equivalent
contact velocities with respect to the iteration number.

have greater magnitudes than the ones used in the control. Nonetheless,
they are very similar, making the effect of these mismatches in the
control performance insignificant.

The effectiveness of the proposed adaptive ILC gain is assessed by
comparing it to a strategy using a fixed gain, obtained as the average
gain from the prior experiment (𝐾 ≈ −10−10 V s3). An experiment is
performed under the same conditions, resulting in equivalent contact
velocities that are summarized in Fig. 13. In contrast to the proposed
solution (Fig. 11), the fixed gain ILC exhibits a considerably slower
convergence, a consequence of the higher absolute value of the adapted
gain during the initial iterations. Additionally, it displays a higher
overall variability, particularly noticeable from the 20th iteration on-
ward. This behavior can be attributed to the higher magnitude of the
fixed gain during those iterations. This comparison underscores the
advantages of employing an adaptive gain ILC strategy over a fixed gain
counterpart.

The two control strategies are further compared by depicting the
obtained position trajectories in the 1st, 10th, and 100th iterations
(Fig. 14). The top graphs correspond to the proposed adaptive control
strategy, while the bottom graphs are from the fixed gain alterna-
tive. These specific operations were selected from the 100 repetitions
because each one has the closest equivalent contact velocity to its
corresponding average. The measured position (exp.) is normalized for
a direct comparison with the estimated one (est.), which is the one
used by the controller to track the reference trajectory (ref.). Notably,
estimation errors are consistently small, but in some cases they are
noticeable.

The left-hand graphs of Fig. 14 display the position trajectories of
the first iteration for both control strategies, where a constant voltage is
applied, resulting in trajectories with high impact velocities. Despite the
identical input signal, the position trajectories are noticeably distinct,
underscoring the inherent cycle-to-cycle variability in the device, a
primary challenge in its control. Moving to the middle graphs, the
trajectories in the 10th iteration are presented. The proposed control
strategy effectively tracks the estimated position in the initial part of
the motion interval (top graph), while the alternative strategy lags
significantly (bottom graph). Finally, the right-hand graphs depict the
trajectories in the last iteration. With the proposed control strategy,
there are small estimation and tracking errors at the end of the motion
interval. Consequently, perfect soft landing is not achieved, but the
impact velocity is considerably reduced. The alternative strategy ex-
hibits a similar behavior, with slightly larger tracking errors and impact

velocity.

9 
Fig. 14. Representative experimental results with adaptive (top) and fixed (bottom)
gains: 1st (left), 10th (middle) and 100th (right) iterations.

6. Conclusion

A new iterative learning controller has been proposed for position
tracking and soft landing of reluctance actuators, aiming to improve
switching operation performance. The controller operates without a
real-time feedback loop, making it sensitive to non-repeating pertur-
bations. Despite this limitation, it offers valuable advantages for ap-
plications involving inexpensive or fast-switching actuators, where the
implementation of high-frequency position observers or sensors in real-
time is impractical. It is especially useful in situations where position
estimates can be obtained offline, after each operation. Offline estima-
tors offer two significant advantages over their real-time counterparts:
reduced implementation costs and increased accuracy. This improved
accuracy can be attributed to the process of refining the estimated state
at a given time by using posterior observation samples.

The proposed controller is validated with simulated and experi-
mental analyses. Despite the absence of a feedback controller and the
presence of significant estimation errors, the control performance is
remarkably good. Additionally, the comparison with a fixed-gain ILC
highlights the advantages of the proposed gain adaptation, including
faster convergence and reduced variability in the control results.
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Appendix A. Complete model

This appendix provides a concise summary of a dynamical model
for short-stroke reluctance actuators, firstly presented in Moya-Lasheras
et al. (2021). It is adapted here to demonstrate that it is a partic-
ularization of the generalized dynamical description from Section 2.
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Specifically, the passive force 𝐹pas (13), the gap reluctance g (4) and
the differential reluctance 𝛥 (6) are defined as follows:

𝐹pas(𝑧, 𝑣) = 𝑘sp (𝑧sp − 𝑧) − 𝑐f 𝑣, (A.1)

g(𝑧) = g,0 +
′

g,0 𝑧

1 + 𝑘1 𝑧 ln(𝑘2∕𝑧)
, (A.2)

𝛥(c, 𝜙, 𝜙̇) =
𝑙c
𝐴c

(

1
𝜇0

−
d𝑀c
d𝐵c

(

c, 𝜙, sgn 𝜙̇
)

)

, (A.3)

here 𝜇0 ≈ 4𝜋⋅10−7 H∕m is the magnetic permeability of free space, and
sp, 𝑧sp, 𝑐f , g,0, ′

g,0, 𝑘1, 𝑘2, 𝑙c and 𝐴c are positive constants to be fitted.

oreover, d𝑀c∕d𝐵c is a function based on the Jiles–Atherton magnetic
ysteresis model, depending on additional positive parameters (𝛼, 𝑀sat ,
, 𝜅 and 𝑐).

ppendix B. Simplified model

This appendix discusses a simplified model, initially presented
n Moya-Lasheras et al. (2022). This model introduces parameter and
ariable changes in order to reduce its complexity, but it can be
hown that it is still a particularization of the general model from
ection 2. For clarity, different notation is used for the auxiliary state
ariables (55) and model parameters.

In this case, the passive force 𝐹 ∗
pas (13) and the gap reluctance ∗

g (4)
ollow the same structure than their complete model counterparts (A.2)
nd (A.1), but with different parameters. It is worth noting that these
ew parameters are related to those of the complete model as follows:

𝑁∗ = 1, 𝑧∗max = 1,
∗
g,0 = g,0∕𝑁2, 𝑚∗ = 𝑚𝑧max

2,
′ ∗
g,0 = ′

g,0 𝑧max∕𝑁2, 𝑘∗sp = 𝑘sp 𝑧max
2,

𝑘∗1 = 𝑘1 𝑧max, 𝑧∗sp = 𝑧sp∕𝑧max,

𝑘∗2 = 𝑘2∕𝑧max, 𝑐∗f = 𝑐f 𝑧max
2.

(B.1)

On the other hand, the differential reluctance ∗
𝛥 (6) is defined

ifferently. The simplified magnetomotive force, ∗ is introduced as
scaled version of the standard one, ∗ = ∕𝑁 , and is expressed as
function of the flux linkage 𝜙∗, based on a modified version of the

röhlich–Kennelly magnetic saturation model,

∗ = ∗(𝜙∗) =
∗

c,0 𝜙
∗

1 − |𝜙∗
|∕𝜙∗

sat
. (B.2)

Then, to show its link to the generalized model, the differential reluc-
tance can be easily derived as follows:

∗
𝛥( , 𝜙, 𝜙̇) = d∗

d𝜙∗ =
∗

c,0 𝜙
∗
sat

2

(

𝜙∗
sat − |𝜙∗

|

)2
. (B.3)
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