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Abstract. We present a new decomposition of a Cauchy-Vandermonde matrix as a product of bidiagonal
matrices which, unlike its existing bidiagonal decompositions, is now valid for a matrix of any rank. The

new decompositions are insusceptible to the phenomenon known as subtractive cancellation in floating point

arithmetic and are thus computable to high relative accuracy. In turn, other accurate matrix computations
are also possible with these matrices, such as eigenvalue computation amongst others.

1. Introduction

An n × n Cauchy-Vandermonde (CV) matrix of index l, and parameters x1, x2, . . ., xn and y1, y2, . . . , yl
is defined as:

(1) A =


1

x1+y1
· · · 1

x1+yl
1 x1 · · · xn−l−1

1
1

x2+y1
· · · 1

x2+yl
1 x2 · · · xn−l−1

2

...
. . .

...
...

...
. . .

...
1

xn+y1
· · · 1

xn+yl
1 xn · · · xn−l−1

n

 .

At one extreme, l = 0, the CV matrix is a Vandermonde matrix and at the other, l = n, it is a Cauchy
matrix.

When the parameters of a CV matrix are ordered as

(2) 0 < x1 ≤ x2 ≤ · · · ≤ xn, 0 < y1 ≤ y2 ≤ · · · ≤ yl,

the CV matrix is totally nonnegative (TN) [1], i.e., all of its minors are nonnegative [2]. As such, the
decompositions of CV matrices as a product of nonnegative bidiagonal factors become of interest in both
the study of the theoretical properties of these matrices [3, 4, 5, 6] as well as accurate and efficient numerical
computations with them [7, 8, 9].

The CV matrices appear prominently in computing rational interpolates with prescribed poles [10]. This
type of interpolation has applications in control systems [11]. The CV matrices also appear in connection
with the numerical solution of singular integral equations [4, 12], as well as in numerical quadrature [13],
rational models of regression [14], and E-optimal design [15].

The main issue we address in this paper is that when some of the parameters xi or yi coincide, the CV
matrix is no longer nonsingular and the existing bidiagonal decomposition (from [1]) no longer exists. To
illustrate this, the 3 × 3 Cauchy matrix (which is a CV matrix of index l = 3) with nodes x1, x2, x3 and
y1, y2, y3 has a bidiagonal decomposition (see [7])
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x1+y1

1
x1+y2

1
x1+y3

1
x2+y1

1
x2+y2

1
x2+y3

1
x3+y1

1
x3+y2

1
x3+y3



=

 1
0 1

x2+y1

x3+y1
1


 1

x1+y1

x2+y1
1

(x1+y2) (x2+y1) (x2−x3)
(x3+y1) (x3+y2) (x1−x2)

1


×


1

x1+y1
(x1−x2) (y1−y2)

(x1+y2) (x2+y1) (x2+y2)
(x1−x3) (x2−x3) (y1−y3) (y2−y3)

(x1+y3) (x3+y1) (x2+y3) (x3+y2) (x3+y3)


×

 1 x1+y1

x1+y2

1 (x1+y2) (x2+y1) (y2−y3)
(x1+y3) (x2+y3) (y1−y2)

1


 1 0

1 x1+y2

x1+y3

1

 ,(3)

which does not exist when x1 = x2 or y1 = y2 because x1 − x2 and y1 − y2 appear in denominators. This is
unfortunate, because the Cauchy matrix itself is very well defined even then.

The main contribution of this paper is to refactor the existing bidiagonal decomposition of any CV
matrix as a product of nonnegative bidiagonals, a decomposition that is valid for any complex values of
the parameters for which the CV matrix is defined, not just for those that make it nonsingular and TN.
Additionally, this paper extends the results of [16] on singularity-free bidiagonal decompositions of CV
matrices with one multiple pole (which are of Vandermonde type) to any CV matrix of any index l ≥ 1
(which are not of Vandermonde type).

For example, using the results of this paper, the above Cauchy matrix can instead be decomposed as 1
x1+y1

1
x1+y2

1
x1+y3

1
x2+y1

1
x2+y2

1
x2+y3

1
x3+y1

1
x3+y2

1
x3+y3



=

 1
0 1

x2+y1

x3+y1
x3 − x2


 1

x1+y1

x2+y1
x2 − x1

(x1+y2) (x2+y1)
(x3+y1) (x3+y2)

x3 − x1


×


1

x1+y1
1

(x1+y2) (x2+y1) (x2+y2)
1

(x1+y3) (x3+y1) (x2+y3) (x3+y2) (x3+y3)


×

 1 x1+y1

x1+y2

y2 − y1
(x1+y2) (x2+y1)
(x1+y3) (x2+y3)

y3 − y1


 1 0

1 x1+y2

x1+y3

y3 − y2

 .

This is a simpler decomposition in that it requires fewer arithmetic operations to compute than the existing
one (3). Additionally, the new decomposition is valid for any complex values of the nodes x1, x2, . . . , xn and
y1, y2, . . . , yl for which the Cauchy–Vandermonde matrix itself is defined.

One benefit of the existing bidiagonal decompositions of CV matrices from [1] is that it allows for numerical
computations to be performed with nonsingular TN CV matrices efficiently and to high relative accuracy
[1, 7]. The new bidiagonal decompositions remain insusceptible to subtractive cancellation, and thus all of
the entries of these decompositions can be computed to high relative accuracy when the matrix is TN. By
“high relative accuracy” we mean that the sign and most leading significant digits of each entry are computed
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correctly (see section 5). Matrix computations can now be performed with TN CV matrices of any rank
accurately and efficiently using the methods of [9] – see section 6 for a numerical example.

The efficiency and high relative accuracy is particularly relevant, for example, in eigenvalue computations
since the corresponding matrices are unsymmetric. The error bounds for the eigenvalues computed by
the conventional algorithms (such as the ones in LAPACK [17, 18]) imply that none of the eigenvalues are
guaranteed to be accurate, although the largest ones typically are – see the example in section 6. In contrast,
the results of this paper now allow for all eigenvalues to be efficiently computed to high relative accuracy
and, in particular, the zero eigenvalues are computed exactly.

The paper is organized as follows. In section 2 we review the existing bidiagonal decompositions of
nonsingular TN matrices from [1]. We derive the new singularity-free bidiagonal decomposition of a CV
matrix in section 3. For a Cauchy matrix (i.e., a CV matrix of index l = n), the results can be derived
directly from [16] as we explain in section 4. We discuss accuracy issues in section 5 and present numerical
experiments in section 6.

2. The ordinary bidiagonal decomposition of a TN CV matrix

Even though the new decompositions that we derive for the class of CV matrices is valid without any
requirement for total nonnegativity, our approach is based on the existing bidiagonal decompositions for
nonsingular TN CV matrices, which we review here.

Any nonsingular n× n TN matrix A can be factored as a product of nonnegative bidiagonal matrices as
[6]:

(4) A = L(1)L(2) · · ·L(n−1)DU (n−1)U (n−2) · · ·U (1),

where L(i) are n× n nonnegative and unit lower bidiagonal, D is n× n nonnegative and diagonal, and U (i)

are n× n nonnegative and unit upper bidiagonal. For the nontrivial entries l
(k)
j and u

(k)
j of the factors L(i)

and U (i), respectively, we have l
(k)
i = u

(k)
i = 0 for i < n− k.

Following the terminology of [16], we refer to the decomposition (4) as the ordinary bidiagonal decompo-
sition of A to contrast it with the new singularity-free bidiagonal decomposition (10) we derive below.

The decomposition (4) occurs naturally in the process of complete Neville elimination when adjacent rows
and columns are used for elimination. We refer the reader to [6] and [5] for details on the connection with
Neville elimination.

We have exactly n2 nontrivial entries which parameterize the above decomposition and these are arranged
in an n× n array M = BD(A), where [7, sec. 4]

mij = L
(n−i+j)
i,i−1 , i > j,(5)

mij = U
(n−j+i)
j−1,j , i < j,(6)

mii = Dii.(7)

For i ̸= j, the mij are the multipliers of the complete Neville elimination with which the (i, j) entry of A is
eliminated and mii are the diagonal entries of D. This particular arrangement of the nontrivial parameters
makes it easy to input these parameters to a software as an n× n matrix M .

The explicit formulas for the entries (5)–(7) of the ordinary bidiagonal decomposition (4) of a nonsingular
TN CV matrix are [1, Prop. 4.1]:

mii =


1

xi+yi

∏i−1
k=1

1
(xi+yk)(xk+yi)

∏i−1
k=1(xi − xk)(yi − yk), 1 ≤ i ≤ l;

∏l
k=1

1
xi+yk

∏i−1
k=1(xi − xk), l < i ≤ n;
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for 1 ≤ i ≤ n,

mij =


xi−j+yj

xi+yj

∏j−1
k=1

xi−1+yk

xi+yk

∏i−2
k=i−j

xi−xk+1

xi−1−xk
, j ≤ l;

∏l
r=1

xi−1+yr

xi+yr

∏i−2
k=i−j

xi−xk+1

xi−1−xk
, j > l;

(8)

for 1 ≤ j < i ≤ n, and

mji =



xj+yi−j

xj+yi−1

∏j
k=1

xk+yi−1

xk+yi

∏i−2
r=i−j

yi−yr+1

yi−1−yr
, 1 ≤ j < i ≤ l;

xj+yl−j+1

xj+yl

∏j
k=1(xk + yl)

∏l−1
r=l−j+1

1
yl−yr

, i = l + 1; 1 < j ≤ l;

xj ,
l + 2 ≤ i ≤ n,
1 ≤ j ≤ i− l − 1;

xj + yi−j ,
l + 2 ≤ i ≤ n,
i− l ≤ j ≤ i− 1;
i = l + 1, j = 1;

(9)

for 1 ≤ j < i ≤ n.

In [1] an algorithm with high relative accuracy and of complexity O(n2) for computing the bidiagonal
decomposition for nonsingular TN CV matrices was also included.

The trouble with the above expressions when some of the xi’s or some of the yi’s coincide is obvious—the
terms in the expressions for mij and mji above underlined with a single line have singularities. Of course,
the CV matrix itself doesn’t have singularities and the reason is that the double underlined terms in the
expressions for mii cancel all problematic denominators.

In our approach below we work the double underlined terms into the expressions formii into the bidiagonal
factors making all singularities disappear. This results in bidiagonal factors that no longer have unit diagonals
for which leads us to a new definition of a singularity-free bidiagonal decomposition in the next section.

3. The singularity-free bidiagonal decomposition

Following the approach and notation of [16], we obtain the singularity-free bidiagonal decomposition of a
matrix into a product of bidiagonal factors where the bidiagonal factors (L(i) and U (i) in (4)) no longer need
to have unit diagonals.

The singularity-free bidiagonal decomposition of an n× n matrix A is

(10) A = L1L2 · · ·Ln−1DUn−1Un−2 · · ·U1,

where the matrix D is nonnegative and diagonal, the factors Li and Ui are nonnegative lower and upper
bidiagonal, and have the same nonzero patterns as L(i) and U (i) in (4), respectively, i = 1, 2, . . . , n − 1.
Namely, (Lk)i+1,i = (Uk)i,i+1 = 0 for i < n− k (see theorem 2.1 in [7]).

Following [9], the nontrivial entries of SBD(A) are stored in two matrices: B, which is n×n and C, which
is (n+ 1)× (n+ 1):

[B,C] = SBD(A).
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As with BD(A), the matrix B stores the nontrivial offdiagonal entries of Li and Ui as well as the diagonal
entries of D, exactly as in (6):

bij = (Ln−i+j)i,i−1, i > j,

bij = (Un−j+i)j−1,j , i < j,

bii = Dii.

The matrix C stores the diagonal entries of Li and Ui as

cij =

{
(Ln−i+j)i−1,i−1, i > j,
(Un−j+i)j−1,j−1, i < j.

In this arrangement, cij , i > j, is the diagonal entry in Ln−i+j immediately above bij and similarly for i < j
and Un−j+i. The entries cii, i = 1, 2, . . . , n + 1 as well as the entries c1,n+1 and cn+1,1 are unused. This is
the same construction as the one given in formula (9) in [9], except that, just as in our previous paper [16],
we now allow for the (n, n) entry in Li and Ui to be any nonnegative number and not necessarily equal 1
(see also section 7 of [16]).

The new singularity-free bidiagonal decomposition of (10) is not unique, but this is inconsequential for the
purposes of accurate computations: any accurate decomposition of a TN matrix as a product of nonnegative
bidiagonal matrices is an equally good input [7, 9].

To derive the singularity-free bidiagonal decomposition of a CV matrix A, we start with its ordinary
bidiagonal decomposition (4). Then, we factor the diagonal factor D into three diagonal factors D = GEF ,
where

Gii =

i−1∏
r=1

(xi − xr),

Eii =


1∏i−1

r=1(xi + yr)
∏i

k=1(xk + yi)
, 1 ≤ i ≤ l;

1∏l
r=1(xi + yr)

, l + 1 ≤ i ≤ n,

(11)

Fii =

{ ∏i−1
r=1(yi − yr), 1 ≤ i ≤ l;

1, l + 1 ≤ i ≤ n,
(12)

and thus (4) becomes

(13) A =
(
L(1)L(2) · · ·L(n−1)G

)
· E ·

(
FU (n−1)U (n−2) · · ·U (1)

)
.

The lower triangular matrix L(1)L(2) · · ·L(n−1)G has a singularity-free bidiagonal decomposition [16, Thm.
4.1]

(14) L(1)L(2) · · ·L(n−1)G = L1L2 · · ·Ln−1,

where

(15) Lk=



1
. . .

1
sn−k+1,1 xn−k+1 − xn−k

sn−k+2,2 xn−k+2 − xn−k

. . .
. . .

snk xn − xn−k


.
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and

sij =



xi−j + yj
xi + yj

·
j−1∏
r=1

xi−1 + yr
xi + yr

, j ≤ l;

l∏
r=1

xi−1 + yr
xi + yr

, j > l.

for i > j. The quantities sij above are obtained from their mij counterparts in (8) by omitting the underlined
factors.

The diagonal factor E has no singularities when some of the parameters coincide, thus the only remaining
task is to rework the factors of the upper triangular matrix FU (n−1)U (n−2) · · ·U (1). We formulate it in the
following result.

Theorem 1. Let the matrices U (1), U (2), . . . , U (n−1) be defined as in (4) for a TN CV matrix A of index l
with nodes x1, x2, . . . , xn, and y1, y2, . . . , yl, and let the matrix F be defined as in (12). Then we have

(16) FU (n−1)U (n−2) · · ·U (1) = Un−1Un−2 · · ·U1,

where Uk, k = 1, 2, . . . , n− 1, are upper bidiagonal matrices such that

(17)

(Uk)tt =

{
yt − yn−k,
1,

n− k + 1 ≤ t ≤ l,
otherwise;

(Uk)t−1,t =

{
st−n+k,t,
0,

n− k + 1 ≤ t ≤ n,
otherwise,

with the sji (1 ≤ j < i ≤ n) defined as

(18) sji =



xj+yi−j

xj+yi−1

∏j
k=1

xk+yi−1

xk+yi
, 1 ≤ j < i ≤ l;

xj+yl−j+1

xj+yl

∏j
k=1(xk + yl), i = l + 1; 1 < j ≤ l;

xj ,
l + 2 ≤ i ≤ n,
1 ≤ j ≤ i− l − 1;

xj + yi−j ,
l + 2 ≤ i ≤ n,
i− l ≤ j ≤ i− 1;
i = l + 1, j = 1.

Namely,

Uk=



1
. . .

1 s1,n−k+1

yn−k+1 − yn−k
. . .

. . . sl,n−k+l

yl − yn−k
. . .

1
. . .

. . . skn
1



.
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Proof. We define n× n diagonal matrices D(k), k = 1, 2, . . . , n as:

(19) (D(k))tt =

{ ∏t−1
r=n−k+1(yt − yr), n− k + 2 ≤ t ≤ l,

1, otherwise,

i.e.,

D(k)=



1
. . .

1
yn−k+2 − yn−k+1

. . .∏l−1
r=n−k+1(yl − yr)

1
. . .

1


and thus, in particular, D(n) = F and

(20) D(k) = I

for k = 1, 2, . . . , n− l + 1.
With the paramters sji defined as in (18), we have from (6) and (9) that the offdiagonal entries of the

matrix U (k) are

(21) U
(k)
t−1,t = mt−n+k,t =



st−n+k,t

∏t−2
r=n−k

yt−yr+1

yt−1−yr
, n− k + 1 ≤ t ≤ l;

st−n+k,t

∏l−1
r=n−k

1
yl−yr

, t = l + 1;

st−n+k,t, l + 1 < t ≤ n.

We will prove that

(22) D(k+1)U (k) = UkD
(k)

for k = n− 1, n− 2, . . . , n− l+ 1. This identity will allow us to “work” the matrix D(n) into the product of
bidiagonals in (24) below and remove all singularities when some of the parameters defining A coincide.

Since D(k+1) and D(k) are both diagonal and U (k) and Uk are both upper bidiagonal, we have bidiagonals
on each side of (22). Thus it suffices to show that the corresponding diagonal and offdiagonal entries are the
same.

Since U (k) has a unit diagonal, the diagonal (t, t) entry, t = 1, 2, . . . , n, in the product on the left side of

(22) is D
(k+1)
tt . On the right, the corresponding entry is (Uk)ttD

(k)
tt and these are equal for t = n− k+1, n−

k + 2, . . . , l, because

D
(k+1)
tt =

t−1∏
r=n−k

(yt − yr) = (yt − yn−k)

t−1∏
r=n−k+1

(yt − yr) = (Uk)ttD
(k)
tt ,

since (Uk)tt = yt − yn−k by (17).

The rest of the diagonal entries on each side of (22) all equal 1, since D
(k+1)
tt = D

(k)
tt = (Uk)tt = 1 for

t < n− k + 1 and t > l.
Thus all diagonal entries on both sides of (22) are equal.
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Next, we establish that the offdiagonal, (t− 1, t) entries on each side of (22) are equal, i.e., that

(23) D
(k+1)
t−1,t−1U

(k)
t−1,t = (Uk)t−1,tD

(k)
tt

for t = 2, 3, . . . , n.

Since U
(k)
t−1,t = (Uk)t−1,t = 0 for t = 2, 3, . . . , n− k, we only need to prove (23) for t ≥ n− k + 1.

For n− k + 1 ≤ t ≤ l, from (17) and (19),

(Uk)t−1,t = st−n+k,t and D
(k)
tt =

t−1∏
r=n−k+1

(yt − yr),

which combined with (21) gives

(Uk)t−1,tD
(k)
tt = st−n+k,t

t−1∏
r=n−k+1

(yt − yr)

= st−n+k,t

t−2∏
r=n−k

(yt − yr+1)

= st−n+k,t

t−2∏
r=n−k

yt − yr+1

yt−1 − yr

t−2∏
r=n−k

(yt−1 − yr)

= U
(k)
t−1,t ·D

(k+1)
t−1,t−1,

so (23) holds.
For t = l + 1 we have

U
(k)
l,l+1D

(k+1)
ll = sl+1−n+k,l+1

l−1∏
r=n−k

1

yl − yr

l−1∏
r=n−k

(yl − yr)

= sl+1−n+k,l+1

= sl+1−n+k,l+1 ·D(k)
l+1,l+1,

since D
(k)
l+1,l+1 = 1 and thus (23) holds again.

For t = l + 2, l + 3, . . . , n we have D
(k+1)
t−1,t−1 = D

(k)
tt = 1 and U

(k)
t−1,t = (Uk)t−1,t = st−n+k,t and (23) holds

in that case as well.
With this, (23) and, in turn, (22) are fully established.
Finally, we use (22) to work the factor D(n) = F through the product D(n)U (n−1)U (n−2) · · ·U (1) as follows

D(n)U (n−1)U (n−2) · · ·U (1) = Un−1D
(n−1)U (n−2) · · ·U (1)

= Un−1Un−2D
(n−2)U (n−3) · · ·U (1)

= · · ·

= Un−1 · · ·Un−l+2D
(n−l+2)U (n−l+1) · · ·U (1)

= Un−1 · · ·Un−l+1D
(n−l+1)U (n−l) · · ·U (1),

and since D(n−l+1) = I,

= Un−1Un−2 · · ·U1,(24)

where the factors that change on each step are underlined.
Our proof is complete. □
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We have thus established our main result.

Theorem 2. The singularity-free bidiagonal decomposition (10) of an n× n CV matrix A is

(25) A = L1L2 · · ·Ln−1EUn−1Un−2 · · ·U1,

for any values of the nodes for which the CV matrix exists, where the matrices A,E,Lk, and Uk are defined
in (1), (11), (15), and (17), respectively.

Proof. For a nonsingular n × n TN CV matrix (i.e., when the nodes are ordered and strictly increasing
0 < x1 < x2 < · · · < xn, 0 < y1 < y2 < · · · < yl [1]) the result follows directly from [1] and (11), (13), (14),
and (16).

For general values of the parameters (when A is not a nonsingular TN matrix), both sides of (25) are
defined for any complex values of the parameters xi and yj so long as all denominators, xi + yj , i =
1, 2, . . . , n, j = 1, 2, . . . , l, in (1) are nonzero.

If we fix the values of all parameters defining the matrix A, except for one, say xi, the entry aij of A
is a meromorphic function of that parameter xi on C. When the matrix A is TN and nonsingular, this
(i, j)th entry of A equals the (i, j)th entry on the right hand side of (25) on an open interval containing the
parameter xi (e.g., x1 ∈ (0, x2) for i = 1, xi ∈ (xi−1,xi+1) for 2 ≤ i ≤ n− 1, and xn ∈ (xn−1,∞)).

The Identity Theorem [19, Thm. 3.2.6] then implies that (25) holds for any complex values of the nodes
xi, i = 1, 2, . . . , n, for which the CV matrix A is defined.

By repeating the same argument for any of the parameters yj in place of the xi, the proof is complete. □

Algorithm 1 contains the pseudocode1 to compute with high relative accuracy the singularity-free bidi-
agonal decomposition of a CV matrix corresponding to Theorem 2. Taking into account that the algorithm
mentioned in Section 2 has a computational cost of O(n2), this algorithm also has the same computational
complexity.

4. Vandermonde and Cauchy matrices

The n× n Vandermonde

V =
[
xj−1
i

]n
i,j=1

and n× n Cauchy matrices

C =
[

1
xi+yj

]n
i,j=1

are the l = 0 and l = n cases of an n × n CV matrix. Both are particular cases of Theorem 2 with the
additional convention that indices less than 1 or exceeding n are ignored and empty products equal one.

The singularity-free bidiagonal decomposition of a Vandermonde matrix was obtained in [16]. Since the
transpose of a Cauchy matrix with nodes {xi}ni=1 and {yj}nj=1 is a Cauchy matrix with nodes {yj}nj=1 and
{xi}ni=1, the singularity-free bidiagonal decomposition of a Cauchy matrix can be obtained directly from (14)
without the need of Theorem 2.

5. Numerical accuracy

In the standard “1 + δ” model of floating point arithmetic [21], to which the IEEE 754 double precision
arithmetic [22] conforms, the result of any floating point calculation is assumed to satisfy

(26) fl(a⊙ b) = (a⊙ b)(1 + δ),

where ⊙ ∈ {+,−,×, /}, |δ| ≤ ε, and ε is tiny and is called machine precision.

1This algorithm is implemented in MATLAB as the routine STNBDCauchyVandermonde in the package STNPack [20].
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Algorithm 1

Input: The vector x containing the nodes {xi}1≤i≤n and the vector y containing the poles {yi}1≤i≤l.
Output: [B,C] = SBD(A)

1: function [B,C]=STNBDCauchyVandermonde(y, x)

2: n=length(x);
3: l=length(y);
4: B=ones(n);
5: C=ones(n);

6: for j=1:l
7: for i=j+1:n

8: Bi,j =
xi−j + yj
xi + yj

;

9: for r=1:j-1

10: Bi,j = Bi,j
xi−1 + yr
xi + yr

;

11: end
12: end
13: end

14: for j=2:n
15: for i=j+1:n
16: Ci,j = xi−1 − xi−j ;
17: end
18: end

19: j=l+1;
20: for i=j+1:n
21: for r=1:j-1

22: Bi,j = Bi,j
xi−1 + yr
xi + yr

;

23: end
24: end

25: for j=l+2:n
26: for i=j+1:n
27: for r=1:l

28: Bi,j = Bi,j
xi−1 + yr
xi + yr

;

29: end
30: end
31: end

32: for i=1:l
33: for r=1:i-1

34: Bi,i =
Bi,i

xi + yr
;

35: end
36: for k=1:i

37: Bi,i =
Bi,i

xk + yi
;

38: end
39: end
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40: for i=l+1:n
41: for r=1:l

42: Bi,i =
Bi,i

xi + yr
;

43: end
44: end

45: for i=2:l
46: for j=1:i-1

47: Bj,i =
xj + yi−j

xj + yi−1
;

48: for k=1:j

49: Bj,i = Bj,i
xk + yi−1

xk + yi
;

50: end
51: end
52: end

53: for i=2:l
54: for j=2:i-1
55: Cj,i = −yi−j + yi−1;
56: end
57: end

58: i=l+1;
59: for j=1:i-1

60: Bj,i =
xj + yi−j

xj + yi−1
;

61: for k=1:j
62: Bj,i = Bj,i · (xk + yi−1);
63: end
64: end

65: for j=2:i-1
66: Cj,i = −yi−j + yi−1;
67: end

68: for j=l+2:n
69: for i=1:j-l-1
70: Bi,j = xi;
71: end
72: for i=j-l:j-1
73: Bi,j = xi + yj−i;
74: end
75: end

76: for i=2:n
77: Bn,i = Bn,i ·

∏n−1
k=n−i+1(xn − xk);

78: end
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For a computed quantity, x̂ to have high relative accuracy, it means that it satisfies an error bound with
its true counterpart, x

|x̂− x| ≤ θ|x|,
where θ is a modest multiple of ε. In other words, the sign and most significant digits of x must be correct.
In particular, if x = 0, it must be computed exactly.

The above model directly implies that the accuracy in numerical calculations is lost due to one phenomenon
only, known as subtractive cancellation [23]. It occurs when a subtraction of previously rounded off quantities
results in the loss of significant digits. Multiplication, division, and addition of same-sign quantities preserve
the relative accuracy. The subtractions xi − xj as well as yi − yj are always computed to high relative
accuracy, since the parameters xi and yj are initial data and are thus assumed to be exact: (26) tells us the
result of those subtractions is computed to high relative accuracy.

Detailed error analysis for the ordinary bidiagonal decompositions of a nonsingular TN CV matrix has
already been performed in [1].

The new singularity-free bidiagonal decomposition inherits the same componentwise error bounds and is
thus also computable to high relative accuracy: all offdiagonal entries in the matrices Li and Ui are factors
in the corresponding entries in the matrices L(i) and U (i) and thus satisfy the same error bounds as do the
elements in the diagonal factor E. The entries on the diagonals of Li and Ui are either 1 or differences of
initial data and have a relative error bounded by ε per (26).

6. Numerical experiments

We performed extensive numerical tests to verify the correctness of the new singularity-free bidiagonal
decomposition of CV matrices we derived in this paper. We report on two those here.

For our first numerical experiment we selected a 20× 20 CV matrix A of index 6 with nodes

(27) {xi}14i=1 = {1, 2, 2, 2, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

and

(28) {yj}6j=1 = {1, 2, 2, 2, 3, 4},

where the node 2 is repeated in both x and y arrays 6 and 3 times, respectively. This choice of the parameters
makes the CV matrix TN (see (2)). It is of rank 15 since the 15× 15 submatrix consisting of rows 1, 2, and
8 through 20 and columns 6 through 20 is a Vandermonde matrix with distinct nodes and thus nonsingular,
and rows 3 through 7 are the same as row 2.

We implemented the formulas for the singularity-free bidiagonal decomposition of this CV matrix (Al-
gorithm 1) into the routine STNBDCauchyVandermonde in the package STNTool [20]. We then formed the
bidiagonal decomposition of the CV matrix with parameters (29) and (28). We then computed the eigenval-
ues using the algorithm STNEigenValues from the same package STNTool, which has complexity of O(n3)
for an n× n matrix (see also [9] for details on the eigenvalue algorithm) using as input the matrices B and
C that are output by STNBDCauchyVandermonde. We also computed the eigenvalues using a conventional
eigenvalue algorithm (eig in MATLAB [24]) in both double precision IEEE floating point arithmetic and,
for verification, formed the matrix and then computed its eigenvalues in 40 decimal digit arithmetic. As
expected, only the largest eigenvalues are computed accurately by eig in double precision arithmetic and all
eigenvalues smaller than about 10−16 times the largest eigenvalue are lost to roundoff.

In contrast, all nonzero eigenvalues computed by STNEigenValues were correct to at least 14 correct
decimal digits when compared with those computed in 40 decimal digit precision using Mathematica. Their
magnitude ranging from about 1015 to 10−5 meant 40 digit arithmetic was sufficient to get the nonzero
eigenvalues accurate to 16 digits. No amount of extra precision will allow us to reliably compute the zero
eigenvalues using conventional algorithms. The reason we know the algorithm computed the correct number
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of zero eigenvalues (5) is because we know the rank of the matrix from theory as described earlier in this
section2 – see Figure 1.

0 2 4 6 8 10 12 14 16 18 20

Eigenvalue index

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

10
10

10
20

conventional, double precision

new accurate algorithm

conventional, 40-digit precision

double precision threshold

40-digit precision threshold

Figure 1. The eigenvalues of the 20× 20 Cauchy-Vandermonde matrix A as computed by
various algorithms.

For our second numerical experiment, we chose a nonsingular TN Cauchy-Vandermonde matrix of index
0 with (distinct) nodes

(29) {xi}9i=1 = {1/2, 1, 5/2, 3, 10/3, 4, 11/2, 17/3, 6}
and no poles. This matrix is also TN Vandemonde, which allowed us to compare our algorithms with those
from our previous work [16] as well as the algorithms of [7]. We chose the nodes carefully so that the matrix
is very ill conditioned (condition number 4.7 × 1011), but not too ill conditioned, so that the conventional
matrix algorithms (e.g., LAPACK [17] as implemented in MATLAB [24]) would compute even the smallest
eigenvalues with some relative accuracy.

We compared the accuracy of all computed eigenvalues with those computed by Maple in 50 decimal digit
floating point arithmetic, which (because the condition number is 4.7 × 1011) was sufficient to ensure they
accurate to at least 16 correct decimal digits in each.

In the second column of Table 1, we observe, as expected, that our new algorithms compute eigenvalues
that agree with the ones computed by Maple to at least 15 digits, i.e., to high relative accuracy. We
computed the bidiagonal decomposition using Algorithm 1 as implemented by STNBDCauchyVandermonde in
the package STNTool [20], followed by a call to STNEigenvalues in the same package.

In the third column, we observe, again, as expected, that our new algorithm computed the eigenvalues
just as accurately as the algorithms of our previous work [16] using instead the routine STNVandermonde

from STNTool [20] for the bidiagonal decomposition.
The fourth column demonstrates the importance of deriving the accurate formulas for the bidiagonal

decomposition of a TN Cauchy-Vandermonde matrix and that those are better than just using Neville
elimination to obtain those bidiagonal decompositions (which is susceptible to subtractive cancellation). By
computing the bidiagonal decomposition using Neville elimination using the routine TNBD from the package

2Since the graph is log-scale, the zero eigenvalues are not depicted and the eigenvalues computed negative or complex by

the conventional algorithms are displayed by their absolute values.
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TNTool [20], instead of the results of this paper, we caused irreparable damage – the eigenvalues of the
thus decomposed matrix, even though computed to high relative accuracy using the routine TNEigenvalues,
differ to various degrees from the true ones. This example underscores the importance of computing the
bidiagonal decompositions accurately in the first place, which is the main contribution of this paper.

λi
STNBDCauchyVandermonde STNBDVandermonde TNBD

eig
+ STNEigenValues + STNEigenValues + TNEigenValues

1.88193e+06 0 0 2.79604e-14 1.23719e-16
1.38376e+04 6.57263e-16 6.57263e-16 7.74256e-14 1.70888e-15
3.11538e+02 0 0 9.17778e-14 9.28726e-14
1.83012e+01 1.94124e-16 1.94124e-16 2.00724e-13 2.23437e-13
2.43185e+00 1.82614e-16 1.82614e-16 2.71912e-13 6.13932e-11
1.11330e+00 1.99447e-16 1.99447e-16 2.46317e-13 6.28627e-11
2.19017e-01 7.60369e-16 7.60369e-16 3.84240e-13 1.45762e-10
3.11176e-02 3.34484e-16 3.34484e-16 7.34416e-13 1.91914e-10
4.90302e-04 2.21129e-16 2.21129e-16 2.61574e-12 1.21019e-07

Table 1. The eigenvalues of a TN Vandermonde matrix and the relative error in each as
computed by various algorithms.

Finally, in the last column, we report the results of MATLAB’s command eig where, expectedly, only the
largest eigenvalues are computed accurately then progressively losing relative accuracy in the smaller ones.
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for Applied Mathematics at San José State University. The Woodward Fund is a gift from the estate of
Mrs. Marie Woodward in memory of her son, Henry Teynham Woodward. He was an alumnus of the
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