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Abstract: Wind turbine components’ failure prognosis allows wind farm owners to apply predictive
maintenance techniques to their fleets. Determining the health status of a turbine’s component
typically requires verifying many variables that should be monitored simultaneously. The scope of
this study is the selection of the more relevant variables and the generation of a health status indicator
(Failure Index) to be considered as a decision criterion in Operation and Maintenance activities.
The proposed methodology is based on Gaussian Mixture Copula Models (GMCMs) combined
with a smoothing method (Cubic spline smoothing) to define a component’s health index based on
the previous behavior and relationships between the considered variables. The GMCM allows for
determining the component’s status in a multivariate environment, providing the selected variables’
joint probability and obtaining an easy-to-track univariate health status indicator. When the health of
a component is degrading, anomalous behavior becomes apparent in certain Supervisory Control
and Data Acquisition (SCADA) signals. By monitoring these SCADA signals using this indicator, the
proposed anomaly detection method could capture the deviations from the healthy working state.
The resulting indicator shows whether any failure is likely to occur in a wind turbine component and
would aid in a preventive intervention scheduling.

Keywords: wind turbine; Gaussian Mixture Copula models; failure index; health status indicator;
cubic spline smoothing

1. Introduction

Wind energy is one of the fastest-growing energy sources. Both onshore and offshore
wind technologies pose Operation and Maintenance (O&M) challenges for O&M decision-
makers such as limited site accessibility [1], adverse and dynamic operating conditions [2]
and the aging of the wind turbine fleet [3].

Lack of proper management under these challenging circumstances results in severe
penalties such as major component failures, long unavailability and significant revenue
losses. To avoid severe consequences, there exists a growing interest in asset digitalization
and timely status tracking of wind power plants [4–6]. This interest results in new data
acquisition opportunities, new data sources and the tendency to move from data silos to
data sharing. The available data must be analyzed and interpreted smartly, which is highly
beneficial to decision-makers. Then, smart management of O&M activities is relevant to
enhancing the economic balance of a wind energy power plant. Furthermore, the success
of maintenance task optimization models relies on accurate estimation of the component’s
remaining useful life (RUL), the impact of component degradation on system efficiency,
and the accuracy of the prognosis model itself ([7,8]). Therefore, the use of health indices
that can be easily monitored over time can enhance the precision of these models and
facilitate the field maintenance personnel’s tasks in the power plant.
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Smart management of O&M activities involves planning predictive and preventa-
tive interventions, evaluation of assets performance and effective condition monitoring.
Compact decision support tools are needed to transform such complex decisions into a
manageable form and make consistent decisions [9].

The decision-maker responsible for managing wind farm O&M activities (wind power
plant owner or O&M engineer) needs to gain in-depth knowledge of the machine and its
components’ health status. It is essential to perform adequate maintenance planning that
maximizes asset reliability. The decision support tools must help with these needs and also
provide helpful and easy-to-track indicators of anomalous working states promptly [10,11].

Different malfunction and anomaly detection techniques can be implemented in
a wind turbine O&M decision support tool. The majority of the condition monitoring
techniques use Supervisory Control and Data Acquisition (SCADA) signals or Condition
Monitoring System (CMS) measurements as inputs. A wind turbine is a complex system
with many components & sub-components. In wind turbines, the condition monitoring
systems target major components such as electric and control systems, generators, hubs,
blades and gearboxes, since these components are classified as critical assemblies [12]. The
frequency of major wind turbine gearbox failures is generally low. However, these failures
are associated with severe consequences [13].

Timely evaluation of CMS and SCADA data trends can aid decision-making on
whether to inspect, repair, or replace the wind turbine component under examination [14].
There are also tools for analyzing the remaining useful lifetime of the wind turbine compo-
nent. These tools use the maintenance and failure records of the component. Nevertheless,
many challenges exist in conveying data sets and deriving results from such analyses. On
the one hand, existing methods that use only CMS and SCADA data are limited to aid
only short-term maintenance decisions. On the other hand, methods based on statistical
distributions, which use only maintenance and failure records as input data, cannot provide
fine temporal failure occurrence estimations. Moreover, these methods require waiting until
a reasonable amount of failures have occurred before obtaining robust findings due to the
input failure data requirement of the models [15]. Therefore, new methods are needed to
integrate all forms of maintenance, failures and operational data to support the scheduling
of component intervention associated with decision making [16,17].

Condition monitoring covers fault monitoring activities that can be performed using
either signal-based or model-based techniques ([18]). In signal-based methods, in general,
patterns are considered and the statistics of the signals are compared to threshold values.
Then, the deviation between the thresholds and measurements is used as an indicator of
abnormal behavior. In the model-based techniques, the model simulates the behavior of
the component, and then the estimation of the signal is compared to real measurements.
The resulting difference from this comparison is used as an indicator to detect the abnormal
working of the investigated asset.

The most straightforward approach to condition monitoring is asset status tracking
via control charts ([19]), developed to monitor target variables easily. Generally, control
charts are based on statistical parameters, through which the average historical behavior
of the signal and significant intervals is defined. Via control charts, it is possible to detect
normal and abnormal working trends and patterns of a signal. However, conventional
control charts have some challenging prerequisites to fulfill, such that the collected data
be independent and normally distributed. Therefore, control charts generate many false
alarms under real operating conditions [20]. One of the solutions for these false alarms
is to remove the auto-correlation which exists in input data. To do that, Exponentially
Weighted Moving average techniques (univariate, EWMA, and multivariate, MEWMA)
were implemented in the control chart design process [21]. The EWMA control charts
were not able to detect the faults for wind turbines, while in comparison, the MEWMA
control charts could detect the faults with a half an hour lead time window in [20]. The
better performance of the MEWMA, compared to the EWMA, was associated with the
multivariate nature of wind turbine faults. Nevertheless, a half an hour lead time window
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is very limited to schedule and/or perform maintenance activities. From the decision
maker’s perspective, this means simultaneously monitoring several signals together with
the result that is not worth it.

Therefore, there is room for improvement in existing anomaly detection techniques
for wind turbines, which are multicomponent and multivariate entities, as the existing
methods lack the consideration of real working conditions and adequate integration of
available SCADA signals into the anomaly indicators [22]. The applicability of the existing
models to the condition monitoring data is limited due to their short lead times between
the alert status and the failure time. Furthermore, wind turbine faults require the analysis
of multivariate systems, so selecting the variables to be considered and their relationships
is essential. The selection of these variables is crucial for better model performance, but
also for a better understanding of their operation and avoiding black-box models that are
difficult to interpret physically.

Depending on the component under investigation, the signals considered in model-
based condition monitoring must be revised and selected carefully.

In particular, oil temperature, rotational speed, and power signals obtained from
SCADA and vibration and oil debris obtained from CMS are relevant variables to detect
gearbox failures [23]. Notably, vibrations require special attention, evidenced by the
comprehensive review conducted in [24] or the promising results presented in [25] based
on generalized multiscale Poincare plots (GMPOP) and support vector data description
(SVDD). Also, in the literature oil pressure was considered as an input variable for the
gearbox failure detection. In the case of the generator, variables such as generator speed,
active power, or reactive power are variables that can be studied for fault detection. In the
case of the blades, other variables such as wind speed, rotor speed, or the miscorrelations
between wind speed and torque shaft are parameters of interest for this purpose [26].

In brief, O&M engineers need to simultaneously monitor a wide range of variables to
assess the health status level of different wind turbine components. Therefore, easy-to-track
summary indicators are required. These indicators can be considered as a decision criterion
for intervention planning, component repair and asset remaining lifetime evaluations [10].

Furthermore, a good prognosis of the wind power plant and adapted management
of the maintenance to the specific working conditions will revert very positively to the
economic balance of each project. The new methodologies, which aim for “Condition Mon-
itoring” and predictive maintenance of the assets, are becoming more promising [27–29].

Copula models are proposed in [30,31] for power curve performance analysis with
applications in condition monitoring. In [32] the Gaussian Mixture Copula Model (GMCM)
is proposed as a new modeling tool for power curves. The results are promising in
modeling and outlier detection in power curves. It is expected that additional variables
will be included to obtain a more accurate model in the future. One of the first advanced
approaches in wind turbines from a multivariate environment [33], obtains a power curve
multivariate model based on conditional copulas. Reference [34] explores the multivariate
analysis considering generator speed, wind speed and power in multivariate models for
wind turbine health monitoring. This kind of tool allows estimating the joint probability
density function of considered variables in a non-parametric way.

These models can satisfy the need for a methodology to characterize the relationship
between critical variables in a multivariate environment. They can be applied to power
curves, and components characterization and they are suitable to be applied on preventive
detection of failures.

As a summary and to support the final motivation and justification for the selection
of the proposed methodology, Figure 1 and Table 1 are shown. Figure 1 illustrates the
typical data used in condition monitoring, as well as the most commonly employed models.
It highlights the scope of this paper, which focuses on SCADA data and probabilistic
models. Table 1 presents a representative selection of the prevailing trends and dominant
models in fault detection and diagnostics within wind turbine components, based on
SCADA data, with applications in condition-based maintenance. SCADA data may be
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a preferable choice for condition monitoring, over well-tested techniques like vibration-
based, due to its availability and low cost of exploitation, providing a comprehensive
view of equipment performance. Leveraging existing infrastructure, SCADA enables
effective anomaly detection and predictive maintenance, enhancing operational efficiency
and minimizing downtime.

Figure 1. Condition Monitoring. Common Data & Models.

Table 1. Summary main trends in fault detection and diagnostics in wind turbines.

Ref Models Applications on Main Contribution

[19] EWMA tower, yaw, gearbox Simple and robust. Only on large wind farms

[20] EWMA, MEWMA Power output
deviation, generator

Autocorrelation is challenging. Better performance when data is
independent and normally distributed. Multivariate model is the best.
Limited lead time window.

[21] EWMA, MEWMA Power Curve
monitoring Robust detection of underperformance

[22] LSTM-SDAE
XGBoost

Generator, pitch
motor, gearbox,
anemometer

Average classification accuracy 92%. Black box, not comprehensible

[26] ARIMA Gearbox Trend propagation of the oil pump outlet pressure. Good trend
predictor. Applied to one variable and one failure mode

[33,34] Copula Power curve Good performance in outliers rejection and multivariate power curve

[35] MDAE-DTAD (deep
autoencoder) generator Multivariate model. An in-depth performance comparison is made

with other similar models, Semi-supervised anomaly detection models.

[36] TWSVM gearbox Better performance than standard classifiers (SVM, KNN, MLPNN,
DT)

[37] DT wind turbine
structures

Root cause of excessive vibrations applied to big data-based
applications

As extracted from the consulted bibliography, Table 1, and other comprehensive and
recent reviews in the field ([18,27,38]), most references on wind turbine fault detection
methods are based on condition monitoring techniques, such as signal-based or model-
based approaches. Furthermore, the main models used in CM in recent years appear to
have focused on data-driven classification and regression models. There is also a noticeable
interest in other probabilistic and deep learning models.

The proposed method can be considered as a combination of both approaches, lever-
aging the strengths of signal-based and model-based methods. It utilizes a model-based
approach by employing the GMCM model to define the wind turbine component’s behav-
ior. This model is trained using selected variables identified through a feature selection
process and captures statistical relationships and dependencies among them. Additionally,
it incorporates a signal-based approach by using signals obtained from the wind turbine,
which can be historical or real-time data. These signals capture dynamic and changing
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information of the system and serve as input for the copula model. Consequently, a uni-
variate signal is generated, processed, and monitored. By analyzing and processing these
signals alongside the GMCM model, the joint behavior of the variables can be evaluated,
and the joint probability of anomalous events or behaviors can be determined.

Moreover, as stated in the existing literature, there has been limited utilization of
probabilistic models, such as copulas, specifically the GMCM model, in the context of fault
detection in wind turbine components. The GMCM model enables the generation of a
univariate output parameter, which facilitates the transition from condition monitoring
to maintenance decision-making. This capability allows for the simultaneous monitoring
of multiple variables, thereby simplifying the maintenance planning decision system by
minimizing the number of health indices to be monitored (ideally, one per component).

For all the aforementioned reasons, the Gaussian Mixture Copula Model (GMCM) is
chosen as a solution to address the need for flexibility when working with multivariate
systems and to overcome and relax the requirement of Gaussian data assumption, which is
commonly imposed by many models in this field. This study aims to develop and validate
a holistic methodology for generating a Failure Index (FI) focused on early fault detection
in major wind turbine components.

To conclude and highlight the main contributions of this paper to the wind energy
industry and to previous work with GMCM models, this study advances the application of
the Gaussian Mixture Copula Model (GMCM) by extending its use beyond the traditional
power curve modeling and outlier detection with limited input variables (primarily wind
speed and power). Our approach applies the GMCM to various wind turbine components,
including the gearbox, generator, and blades, which represent a broader range of entities
compared to previous studies. We have developed a comprehensive variable selection
methodology to identify the most influential variables for representing the health of each
component, utilizing up to seven variables in the final GMCM models (and many more
during the variable selection process). This enhancement improves the flexibility and
scalability of the GMCM method.

The main contributions of this work are as follows:

• Enhanced GMCM Application: We extend the GMCM method to a variety of wind
turbine components, providing a more versatile and comprehensive modeling ap-
proach.

• Scalability Improvements: By incorporating multiple variables through an advanced
selection process, the methodology ensures scalability and robustness in fault detection
across different wind turbine components.

• Holistic Health Index Generation: We propose a holistic GMCM-based methodology
that generates a user-friendly and easily monitorable health index for the main systems
of a wind turbine, facilitating effective maintenance decision-making.

• Early Fault Detection: The developed Failure Index (FI) focuses on the early detection
of faults in major wind turbine components, enhancing operational efficiency and
reducing downtime.

The paper is structured in the order that follows. In Section 2, selected SCADA signals,
case study information, and details of learning and test data sets are introduced. It also
covers the mathematical foundations of the employed methodologies. The data filtering
process and feature selection are discussed, and the applied GMCM model’s optimization
process is explained. The presentation of the proposed framework complements this
section. In Section 3, the resulting FI signals from the studied cases are discussed. Finally, a
summary of the contributions is given in Section 4.

2. Materials and Methods

In this section, algorithms and models used to develop a failure index for the condition
monitoring of wind turbine components and the proposed technique are summarized.
Generators, blades and gearboxes have been tested with the proposed methodology. In
Section 2.1 the description of the data considered in this study is provided. In Section 2.2,
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the overall proposed methodology is shown as a combination of the techniques explained
in the following subsections. A data filtering task is needed to ensure that the input
observations correspond to the characteristics of the wind turbine’s healthy or faulty state.
Therefore, in Section 2.3, the filtering procedure and its dependencies are described. Then,
the relevant feature selection techniques are discussed in Section 2.4. Subsequently, the
correlation analysis is introduced, which is used to investigate associations between the
signals. The next step is to develop a GMCM method and optimize its coefficients. In
Section 2.5, the underlying theory of the GMCM models and the advantages of the copula
models are portrayed. The process of converting the resulting log-likelihoods obtained
from the GMCM models into a failure index is explained. The final technique that needs to
be referred to is the signal smoothing method, and the details are shown in Section 2.6.

2.1. Data

Data were obtained from two different sites in Spain. In Site 1, there are four wind
farms with 33 wind turbines each and a nominal power of 950 kW per wind turbine. In Site
2, there is one wind farm comprising 12 wind turbines with a nominal power of 3000 kW
each; 10 min SCADA data, together with failure and maintenance logbooks, were used in
the study.

SCADA signals had to be cleaned to make them usable. Then, each failure was as-
signed to the respective wind turbine (WT) component with the help of the SCADA alarms
and logbooks. The method has been previously tested in site 1, where the information
related to reported failures was available in different components (generator, blades and
gearbox). Later, in site 2 the study focuses on gearbox failures due to the high number of
reported failures of this component in the available period of this site.

Inspections and regular service work periods were excluded from the database. Avail-
able data were divided into two datasets corresponding to the learning and test periods.
Then, three failure cases and nine healthy cases (generator, blades and gearbox) were
modeled in site 1, and eight cases were modeled in site 2, two of them containing a gearbox
failure and six without failure.

The optimal splitting of the data into the training and the test periods for supervised
learning techniques ranges from 60% to 80% for the training period (being the remaining
data for the test period) [39,40]. Therefore, approximately six months of data were used for
learning the model and, approximately two months of data were used for testing it.

Maintenance interventions and failure history have been documented as unstructured
comments in spreadsheets. A simplified summary of the maintenance history excluding
routine services is provided in Table 2.

Table 2. Maintenance logbook events.

Site Wind Turbine Start Date End Date Event

1 S1_GEN_F1 1 July 2015 _ Generator failure

1 S1_BLD_F1 4 December 2014 _ Blades failure

1 S1_GBX_F1 22 May 2012 _ Gearbox failure

2 S2_GBX_F1 7 May 2014 31 July 2015 Gearbox failure

2 S2_GBX_F2 5 June 2014 1 August 2014 Gearbox oil pump
pressure failure

On site 1, S1_GEN_F1, S1_BLD_F1 and S1_GBX_F1 are analyzed as generator failure,
blade failure and gearbox failure cases. In addition, S1_GEN_H1, S1_GEN_H2, S1_GEN_H3,
S1_BLD_H1, S1_BLD_H2, S1_BLD_H3, S1_GBX_H1, S1_GBX_H2 y S1_GBX_H3 are also
studied as healthy cases for comparison.
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On site 2, S2_GBX_F1 and S2_GBX_F2 are analyzed as gearbox failure cases. Similarly
to site 1, six cases without failure are also studied as S2_GBX_H1, S2_GBX_H2, S2_GBX_H3,
S2_GBX_H4, S2_GBX_H5, S2_GBX_H6.

Between the two sites, five failure cases and 15 healthy cases have been analyzed. This
results in a ratio of three healthy cases for each failure case analyzed.

In the case of site 1, the number of available SCADA signals is limited to 16 variables
and all will be considered in the study. Whereas, in the case of site 2, SCADA data provide
a total of 97 signals. Taking into consideration the component to be studied and literature-
based recommendations [41], 13 signals were selected to model gearbox healthy and faulty
working behaviors. Table 3 and Table 4 show the list of variables of site 1 and site 2, respectively.

Table 3. List of signals of Site 1 (all variables).

Signal Abbreviation Unit

Gearbox bearing temperature 1 BT1 °C

Gearbox bearing temperature 2 BT2 °C

Reactive Power Q KVAr

Voltage Phase (1,2,3) X Vl(1,2,3) V

Current Intensity Phase (1,2,3) X Il(1,2,3) A

Large generator temperature GlT °C

Small generator temperature GsT °C

Torque M Nm

Gearbox oil tank temperature OTT °C

Ambient temperature AT °C

Rotor speed Rw rpm

Generator speed Gw rpm

Power Pow kW

Wind speed Average V m/s

Wind speed Maximum Vmax m/s

Wind speed Deviation Vvar m/s

Table 4. List of signals of Site 2 (selected).

Signal Abbreviation Unit

Gearbox bearing temperature 1 BT1 °C

Gearbox bearing temperature 2 BT2 °C

Gearbox bearing temperature 3 BT3 °C

Power Pow kW

Ambient temperature AT °C

Gearbox oil input pressure OIP Bar

Gearbox oil mechanical pressure OMP Bar

Gearbox oil electrical pressure OEP Bar

Rotor speed Rw rpm

Generator speed Gw rpm

Gearbox oil inlet temperature OIT °C

Gearbox oil tank temperature OTT °C

Wind speed Average V m/s
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In the end, a representative data sample has been considered. Later, data cleaning was
applied to the signals and registration errors and duplicated data were removed. In general,
the data availability values are very high after this process, exceeding 95% in most cases
(except for S1_GBX_H1, which is around 93%), making it a representative data sample.

2.2. Flowchart of the FI Generation Process

The conceptual flowchart of the proposed methodology is given in Figure 2.
In this analysis, 20 cases are investigated to develop a functional failure index and

test its performance. With the 12 cases of site 1 and the available variables, the model’s
performance has been analyzed for different components (generator, blades and gearbox).
The best results have been observed in the case of the gearbox. To confirm the resulting
performance in this component, a specific analysis of the gearboxes has been carried out at
site 2 where eight cases were analyzed using the same methodology shown in the flowchart
given in Figure 2. The methodology is the same in site 1 and in site 2. However, in site 1 it
is not as critical as in site 2 because of the limited number of available variables that can
affect each component.

Figure 2. Diagram. Health Status Indicator Process.

First, signals are reviewed considering literature recommendations for wind turbine
component failure modes [41]. Then, all available signals have been considered at site 1.
They have been grouped by component by considering 10 variables related to the blade
component, nine variables related to the generator and seven related to the gearbox. On
the other hand, 13 signals related to the gearbox are selected on site 2.

In order to ensure that the input data in the learning period represents the healthy
period of the wind turbine, the following procedure was performed. Duplicate data and
zero power values are removed. Later, power values outside the normal operating range are
filtered. For this purpose, data associated with lower or higher production than expected
are removed using the Mahalanobis distance [42,43] between the measured power series
and the estimated power for the measured wind speed considering the manufacturer’s
power curve.

Next, filtered input data of the SCADA signals are split as learning and test inputs
for all wind turbines. Learning data are used in the GMCM and the resulting output
from the GMCM (Log-likelihood density) is transformed as the inverse of the cumulative
Log-Likelihood density [44] to generate the self-defined failure index (FI).
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Then, the feature selection process is conducted. Indeed, this feature selection is
applied by component and by site. This process aims at reducing the number of variables
to feed the final model. Using Spearman correlation, the generated FI and the regressor
variables are analyzed in both sites to evaluate their influence on the generated FI series.
Then, a backward and forward process is started where a pre-selection criterion is used
to assess the overall importance of the variables. As a result, considering the Spearman
correlation index and the attempt to homogenize the final models, a GMCM model based
on seven variables is established in the learning period and applied to all the studied cases.
The seven variables selected as the most influencing for each component model and for
each site are listed in Section 2.4. Later, the GMCM coefficients are saved and then used
with the test data to evaluate the FI’s performance for both sites. Finally, generated failure
index series are smoothed using cubic spline methodology [45] to provide a clean summary
signal to the decision-maker.

2.3. Filtering Process

One of the strengths of this study is the compatibility with the transition to the
digitalization of assets. The flexibility of the methods to the uncertain quality of the input
data is a remarkable feature in the models’ behavior. For this reason, to verify the robustness
and flexibility of the method, no complex filtering algorithms have been applied to the
study variables. However, this task is needed to ensure a minimum quality of input data
to generate the model from the learning period. Among the information available for this
study, there were no SCADA alarms. In this sense, only the main information gaps, the
main outliers identified in the power curve and the periods in which the wind turbine is
stopped have been removed.

For this purpose, the Mahalanobis Distance (MD) has been considered. MD can deter-
mine the similarity between two vectors, taking into account distances and the correlations
between variables. This value has no unit of measurement and is scale-invariant. Accord-
ing to this method, two power series have been compared, the measured power and the
power associated with the wind speed measured according to the manufacturer’s curve.
Filtering against the manufacturer’s power curve allows for identifying the normal mode
behavior. As a result, all the observations corresponding to events where the wind turbine
is stopped or related to a power value different from expected will be excluded from the set
of learning data.

In this process, since we are dealing with only two variables (real power output
and ideal power output), the covariance matrix is a 2 × 2 matrix and is guaranteed to
be of full rank given the imperfect correlation between the variables. This ensures that
the Mahalanobis distance can be effectively applied for outlier detection. Although the
distributions of these variables are not perfectly normal, the method remains robust for
detecting outliers in this specific application.

The results of the applied methodology are shown in Figure 3 where power, mechanical
pump pressure, bearing temperature and generator speed are plotted against wind speed.
It can be seen how the main outliers are identified and removed from the set of learning
data. The filtering methodology outlined above has been carried out on all the analyzed
wind turbines.
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Figure 3. Accepted (blue) and Rejected (orange) learning data.

2.4. Feature Selection

Different variables were selected to monitor the generator, blades, and gearbox based
on the domain expertise, data availability, and variables’ physical meanings. In the case
of site 1, 16 signals were available to monitor the components and 97 signals in the case
of site 2. In the first stage, the behavior of the GMCM model was tested in three wind
turbine components (generator, blades and gearbox) in site 1, where the availability of
variables was limited. Once a potential failure detection capacity was observed in the
gearbox components of the turbines from site 1, the same procedure was applied in site 2
focused on gearbox failure detection.

In order to make a selection of the most interesting set of variables to assess the health
of the component, the available variables, their relationship and the experience from the
literature review were taken into consideration [41]. In this sense, in site 1, 10 variables
have been considered to analyze the blade’s health status, nine variables in the case of the
generator, and seven variables were available to track the gearbox’s health status.

In site 2, the number of available signals for the gearbox analysis is higher. Therefore,
some additional issues about the variables’ physical meanings have been taken into account.
In this respect, it was considered that the oil affects the lubrication film directly, and thanks
to this, the protection of moving parts can be achieved by reducing the friction in the
gearbox. Therefore, oil has to be monitored too, and oil conditions can be monitored by
temperature, dielectric constant or viscosity.

As highlighted in literature [46], there are already extensively developed analyses and
procedures considering oil status for gearbox health condition monitoring. Therefore, the
working conditions of the gearbox and oil status have to be taken into consideration in the
gearbox health status analysis. Focusing on viscosity is a very relevant characteristic to be
considered for the proper functioning of the oil. It is known that oil temperature and oil
pressure directly affect the viscosity [47]. Therefore, oil pressure and temperature could
be good candidates for consideration as sensitive variables when analyzing the health of
a gearbox.

Hence, according to these considerations and based on the literature review and
available signals, 13 variables have been selected in the first stage as significant enough to
be considered in a gearbox health status tracking in site 2.

Afterward, to select the most influential variables and reduce their number when gen-
erating the model, the Spearman correlation analysis was also carried out [48]. Spearman
correlation provides a test to evaluate the degree of association between variables, wherein
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this Spearman correlation coefficient will acquire a higher value as the degree of association
increases. Then, the FI and the regressor variables were analyzed to evaluate their influence
on the generated FI series estimated from different wind turbines in the wind farm.

Hereafter, the findings obtained from the Spearman correlation of FI and the dependent
variables are shown in Figures 4 and 5. These figures show the most influential variables
in the failure index results allowing us to discard some of them to simplify the models.
In order to harmonize the number of variables and generate the models considering the
most influential of them, they were reduced to 7 to establish the final GMCM model in the
learning period. For this purpose, the variables with a Spearman correlation index greater
than 0.18 (V, Pow, M, Vmax, Vvar, Gw, AT) were selected in the case of the blade model
(see Figure 4a). In the case of the generator model, the selected variables were associated
with Spearman index values greater than 0.22 (V, Ilx, Q, Gw, Vlx, GlT, GsT) (see Figure 4b).
Finally, a value greater than 0.1 was fixed for variable selection in the gearbox model in
site 1 (V, Pow, OTT, BT1, AT, Gw, Rw) and site 2 (V, Gw, Rw, OEP, OMP, OIP, Pow) (see
Figures 4c and 5).

(a) Site 1: Blades (b) Site 1: Generator

(c) Site 1: Gearbox

Figure 4. Spearman’s Correlation: FI vs. dependent variables, Site 1 (selected variables are
underlined). Positive (blue) and negative (red) correlations are shown. Circle size reflects
correlation strength.

Figure 5. Spearman’s Correlation: FI vs. dependent variables, Site 2: Gearbox (selected variables
are underlined). Positive (blue) and negative (red) correlations are shown. Circle size reflects
correlation strength.

In summary, the first step consists of literature-based signal selection. Then, the
featured selection method is launched and redundant parameters are removed. For this
task, a Failure Index (FI) is calculated (Section 2.5.3) for a representative set of data from
the components in different wind turbines of the studied wind farm (site-dependent,
technology-dependent, component-dependent) and a Spearman correlation is calculated.
The most relevant variables are selected based on the Spearman correlation index to
establish the optimized GMCM to apply in the test period.

Table 5 summarizes the selection process showing, for both sites, all the available
signals that may influence each component. The seven selected signals for each component
in each site are shown in color.
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Table 5. Available and Selected Variables per Component for both sites. Selected variables are
color-coded by component. Numbers 1 and 2 refer to the two studied sites.

Site Signal Abbreviation Component
(Selected = Color-Coded)

1 Gearbox bearing temperature 1 BT1 Blades, Gearbox

1 Gearbox bearing temperature 2 BT2 Blades, Gearbox

1 Reactive Power Q Generator

1 Voltage Phase X(1,2 or 3) Vlx Generator

1 Current Intensity Phase X(1,2 or 3) Ilx Generator

1 Large generator temperature GlT Generator

1 Small generator temperature GsT Generator

1 Torque M Blades

1 Gearbox oil tank temperature OTT Gearbox

1 Ambient temperature AT Blades, Generator, Gearbox

1 Rotor speed Rw Blades, Generator, Gearbox

1 Generator speed Gw Blades, Generator, Gearbox

1 Power Pow Blades, Gearbox

1 Wind speed Average V Blades, Generator, Gearbox

1 Wind speed Maximum Vmax Blades

1 Wind speed Deviation Vvar Blades

2 Gearbox bearing temperature 1 BT1 Gearbox

2 Gearbox bearing temperature 2 BT2 Gearbox

2 Gearbox bearing temperature 3 BT3 Gearbox

2 Power Pow Gearbox

2 Ambient temperature AT Gearbox

2 Gearbox oil input pressure OIP Gearbox

2 Gearbox oil mechanical pressure OMP Gearbox

2 Gearbox oil electrical pressure OEP Gearbox

2 Rotor speed Rw Gearbox

2 Generator speed Gw Gearbox

2 Gearbox oil inlet temperature OIT Gearbox

2 Gearbox oil tank temperature OTT Gearbox

2 Wind speed Average V Gearbox

2.5. The Gaussian Mixture Copula Model

The Gaussian Mixture Copula Model (GMCM) provides a powerful tool for modeling
and understanding the joint behavior of multiple variables. Combining copulas and
Gaussian mixture models allows for a flexible and accurate representation of complex
dependency structures, making it a valuable approach in statistical modeling and analysis.
In this study, the GMCM model is applied using the variables measured with the SCADA
data in a multivariate environment. The aim is to highlight the hidden dependency
structure in the wind turbine variables. The theoretical foundations of this type of copula
model (GMCM) are described below.

Let [xj
i ]p×n = (x1, . . . , xp) = (x1, . . . , xn) be p random variables with n instances each,

where j identifies the variables, i the observations, and xj
i is the i-th observation value of
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the j-th variable. A single superscript indicates the index along the variables while a single
subscript is used for the index along the observations. Random variables are denoted by
uppercase letters and their realizations are represented by lowercase letters. Bold font
is used for vectors of random variables, observations, or parameters. Plain font is used
for scalars.

The Gaussian Mixture Model (GMM) is a probabilistic model used for representing
complex data distributions. It assumes that the data are generated from a mixture of several
Gaussian (Normal) distributions. The GMM represents the probability density function as
a weighted sum of Gaussian distributions. Each Gaussian component represents a cluster
or mode in the data. The probability density function (PDF) of a K-component GMM is
given by:

fGMM(x; θ) =
K

∑
k=1

πkϕ(x; µk, Σk) (1)

where πk are the mixing proportions, with πk > 0 and ∑K
k=1 πk = 1, while µk and Σk

are the component-specific vectors of means and covariance matrices, respectively. For
simplicity, we use the parameter θ = (π1, . . . , πk, µ1, . . . , µk, Σ1, . . . , Σk) to jointly represent
all parameters.

A copula is a mathematical function that characterizes the joint distribution of mul-
tiple random variables by representing their dependence structure separately from their
marginal distributions. Mathematically, a copula can be described as follows. Let Fj be the
marginal cumulative distribution (CDF) of X j. The copula function C(U j) is a multivariate
function defined on the unit hypercube [0, 1]n where U j are the CDFs of X j, U j = Fj(X j).
The copula function C(U1, . . . , U p) maps the marginals to the joint CDF, such that for
every joint distribution with continuous marginals, F(X1, . . . , X p), there exists a unique
copula function such that F(X1, . . . , X p) = C(F1(X1), . . . , Fp(X p)). It can also be shown
that the corresponding joint density can be written as the copula density, c, multiplied by
the individual marginal densities f j:

f (x) = c(F1(x1), . . . , Fp(xp))
p

∏
j=1

f j(xj) (2)

The Equation (2) illustrates how copulas provide a flexible way to construct multi-
variate density functions. Copulas achieve this by separating the specification of marginal
distributions, f j from the characterization of the dependence structure, c. This decoupling
allows independently choosing the parametric family for each aspect, enabling the cus-
tomization of the marginals and the dependency modeling according to the specific needs.
From Equation (2) the copula family can be obtained as:

c(F1(x1), . . . , Fp(xp)) =
f (x)

∏
p
j=1 f j(xj)

(3)

If the joint density function is chosen to be equal to the multivariate normal density ϕ, with
normal densities ϕj, the Gaussian copula density is given as cϕ = ϕ(x)

∏
p
j=1 ϕj(xj)

.

Copula-based models can be viewed as generative models where the goal is to learn
the underlying distribution of the observed data and then use that distribution to generate
new samples that resemble the original data. These models are defined on the CDF-
transformed data, U j = Fj(U j), also called pseudo or latent observations. The generative
model for a Gaussian copula is defined through a Gaussian distribution on the latent CDF
transformations: X j = F−1

j (U j); U j = Φj(Y j); Y ∼ Φ(µ, Σ), where Φj is the jth marginal
CDF corresponding to the multivariate normal distribution with CDF Φ, mean µ and
covariance matrix Σ.
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The Gaussian Mixture Copula Model is obtained using a GMM as the joint density
function in Equation (3), which allows writing the GMCM copula density as:

c f (U, θ) =
fGMM(Ψ−1

θ (U))

∏
p
j=1 ψj(Ψ

−1
jθ (U j))

(4)

where Ψjθ and ψjθ are the jth marginal CDF and PDF of the GMM fGMM.
The generative model of the GMCM can be written as:

X j = F−1
j (U j); U j = Ψj(Y j); Y j ∼ ψjθ (5)

The likelihood of n observations from GMCM can be expressed in terms of the realiza-
tions of latent variables Y :

L =
n

∏
i=1

∑K
k=1 πkϕ(yi|µk, Σk)

∏
p
j=1 Σkψj(y

j
i |µi

k, Σkjj)
(6)

As a summary of the generative process of applying the GMCM Copula, Figure 6 illus-
trates the transformation of variables in the real domain X to the transformed field U ([49])
followed by modeling interdependencies among the variables using the GMCM. Subse-
quently, a simulation is performed in the copula space, and then an inverse transformation,
as described previously, is applied to obtain simulated data in the real domain. It high-
lights the workflow of the GMCM model and how the transformations between the copula
domain and real variable domain are integrated, providing a clear visual representation of
the key stages of the generative process.

Figure 6. Multivariate copula.

As a final insight, after the theoretical foundations are exposed, the GMCM model can
capture the relationship between the different distributions and estimate a joint probability.
This estimation is the key to the generation of the failure index proposed in this work.

The strengths of the GMCM models support its selection [50] for the aims of this
study. In general, copula models provide a flexible characterization of multivariate dis-
tributions. In this sense, GMCM models relax the assumption of working with normal
distributions [51]. Therefore, these models allow flexible dependency modeling, especially
of non-Gaussian data. GMCM models have been applied to deal with unsupervised pattern
recognition, clustering and outlier recognition applications, and they can model many
kinds of multi-modal dependencies, notably asymmetric and tail dependencies.

2.5.1. Estimation of the GMCM Parameters

One of the major challenges in using the GMCM is the determination of the pa-
rameters and it may require a high computational cost. This is conducted by finding
the parameters that maximize the likelihood function given in Equation (6). The opti-
mization of the likelihood function is not trivial and there are intrinsic problems such as
convergence and identifiability of the GMCM parameters which may affect any estimation
procedure [52]. In this study two optimization algorithms have been chosen, the Pseudo
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Expectation Maximization algorithm (PEM) and the Nelder–Mead (NM) algorithm, which
are described below.

The EM algorithm is a method for performing maximum likelihood estimation in the
presence of latent variables. It does this by first estimating the values of the latent variables
(Expectation step), then optimizing the model (Maximization step), and finally repeating
these two steps until convergence is achieved. This is an efficient and general approach
and is mostly used for density estimation with missing data, such as clustering algorithms
like the Gaussian Mixture Model [53]. When the EM algorithm is applied to GMM, the
inputs of the model, (X1, . . . , X p), remain fixed, as the parameters are iteratively updated
through a sequence of alternating Expectation and Maximization steps. On the other hand,
the inputs to a GMCM are the marginal values of the CDF, (U1, . . . , U p), which are used to
obtain the values of the inverse distribution, (Y1, . . . , Y p). Since the inverse distribution
functions along the margins change with each update of the parameters, so do the values of
the inverse distribution. As a result, the assumption of fixed observations, made by the EM
algorithm for GMM, is violated for GMCM and can not be applied directly here. In order
to overcome this problem, modifications to the EM algorithm have been developed and are
typically called the Pseudo Expectation Maximization (PEM) algorithm. The approach used
here uses the initialization parameters to compute the pseudo-data. Then it iterates between
the two EM stages, maximizing the pseudo-likelihood of obtaining new model parameters
based on the pseudo-data and updating pseudo-data in the expectation stage [54]. The use
of nonconstant pseudo-data in the likelihood does not guarantee the convergence of the
process and can even achieve convergence to incorrect parameters.

The Nelder–Mead optimization algorithm is a popular approach for optimizing
non-differentiable objective functions [55]. It is employed for global or local searches
in challenging problems involving noisy, nonlinear, and multi-modal functions. A notable
advantage of the Nelder–Mead algorithm is that it does not rely on function gradient
information, making it applicable to situations where the gradient is unknown or difficult
to compute accurately.

The NM algorithm is a simplex-based method developed to solve the optimization
problem of minimizing (maximizing) a given nonlinear function f : Rn → R without
constraints. The method uses only function values calculated at some selected points in
the real multidimensional space Rn and does not need any gradient estimate at those
points. The NM algorithm begins with a simplex S in Rn, defined as the convex hull of
n + 1 vertices, (x0, . . . , xn) ∈ Rn (a simplex is a geometric shape defined in the Rn domain
and used as a ‘vehicle’ to perform the search for the optimum solution in that domain).
The algorithm then starts iterating and proceeds to reshape/move this simplex, vertex by
vertex, toward an optimal region in the search space. At each step, it tries one or more
modifications of the current simplex and chooses one that moves it towards a ‘better’
region of the domain. Finally, the simplex vertex that yields the most optimal target value
is returned.

Convergence

Convergence is indeed an essential issue in optimizing the model, and there is no
guarantee of convergence as said before and discussed in [52]. Therefore, both methods
(NM and PEM) have been tested to fit the GMCM model. To do so, 50 different starting
parameters have been iterated to ensure the model’s convergence in each optimization
method and obtain a successful fitting.

It is remarkable that we are dealing with, a seven-variable model, and no convergence
was obtained in any case when the optimization method is PEM. However, the NM method
achieves successful fittings in all cases in a reasonable time, with the convergence time
ranging from 65 to 232 s in the analyzed trials. As an example of these tests, the convergence
times for model fitting in four of the cases from site 2 are provided in Table 6.
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Table 6. Performance of optimization methods (convergence = converge., elapsed = elaps.).

NM Algorithm PEM Algorithm

WTG Converge. elaps. Time (s) Converge. elaps. Time (s)

S2_GBX_F1 YES 66.30 NO 480.03

S2_GBX_F2 YES 65.06 NO 91.27

S2_GBX_H1 YES 231.97 NO 159.12

S2_GBX_H2 YES 77.97 NO 216.11

This is consistent with the findings reported in [52], where the NM method was already
selected as the most robust among those tested.

The fitting algorithms were executed on a machine with the following characteristics:
Processor Intel(R) Core(TM) i58250U CPU @1.6 GHz, 16 GB RAM.

Identifiability of the Parameters

The GMCM suffers from unidentifiable parameter configurations due to its invariance
properties. For example, the translation invariance implies that only the relative distances
between the location parameters, µ1, . . . , µm, can be deduced. This is (partially) addressed
by arbitrarily anchoring the first component to µ1 = 0. To account for scaling invariance,
the variance of the first component is scaled to unity in each dimension, Σ1kk for all k.
Nevertheless, problems of identifiability may still appear in specific scenarios.

2.5.2. Model Fitting

The procedure for fitting the GMCM, including the optimization of the parameters
is applied as described in [32,52]. The main steps considered to model the multivariate
copula are as follows:

• Compute the scaled ranks for each column: A range scaling process is applied to
the input data of the model. This helps to reduce the impact of outliers, ensures
that the scales between variables are comparable, and maintains the relationship of
dependency between the variables.

• Parameter initialization: suitable starting parameters for the GMCM model have to be
selected. The K-means algorithm is used to choose the starting values heuristically.
The parameters defined within the GMCM model are shown in Table 7. The model
fitting heavily relies on the selected initial parameters. Therefore, a seed is defined at
the beginning of this process, to ensure result replicability and to obtain model-fitting
results for different initial parameters.

• Fitting the model: in this step, the final GMCM model parameters are estimated. Here,
the optimization methods considered for model coefficients calculation are the Nelder–
Mead (NM) and Pseudo-Expectation-Maximization algorithm (PEM) as described in
Section 2.5.1.

• Joint probability calculation: Once the models are fitted, the joint probability cal-
culation is conducted. This step generates the log-likelihood for each multivariate
observation on the analyzed period.

Table 7. Parameters in GMCM models.

Parameter Description

k the number of components in the mixture

p the dimension of the mixture distribution (input variables in the model)

π vector of length k related to mixture proportions, where the sum of them is 1

µ list of length k of numeric vectors of length p for each component

Σ list of length k of variance-covariance matrices for each component
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As an example of the adjusted parameters in each case presented here, Table 8 shows
all the adjusted parameters for the S2_GBX_F1 case.

Table 8. Parameters GMCM model: S2_GBX_F1.

S2_GBX_F1

k Σ

3 comp1

1.000 −0.045 −0.014 −0.106 0.029 0.020 0.341

p −0.045 1.000 −0.083 −0.198 −0.011 −0.233 −0.208

7 −0.014 −0.083 1.000 −0.013 −0.016 −0.009 −0.006

−0.106 −0.198 −0.013 1.000 −0.007 0.009 −0.057

π 0.029 −0.011 −0.016 −0.007 1.000 0.008 0.029

comp1 comp2 comp3 0.020 −0.233 −0.009 0.009 0.008 1.000 0.160

0.193 0.503 0.304 0.341 −0.208 −0.006 −0.057 0.029 0.160 1.000

comp2

µ 0.837 −0.007 −0.031 −0.097 0.062 0.286 0.265

comp1 comp2 comp3 −0.007 3.308 0.126 −0.260 0.006 0.313 0.294

0 −3.242 −0.047 −0.031 0.126 2.281 −0.082 −0.100 0.096 0.167

0 0.448 4.009 −0.097 −0.260 −0.082 5.019 0.619 0.145 0.119

0 0.889 2.057 0.062 0.006 −0.100 0.619 1.537 0.260 0.255

0 0.593 −0.948 0.286 0.313 0.096 0.145 0.260 0.856 0.442

0 −2.470 −0.190 0.265 0.294 0.167 0.119 0.255 0.442 0.875

0 −3.481 0.021 comp3

0 −3.120 0.024 1.026 0.080 −0.097 −0.050 −0.247 0.085 0.104

0.080 0.777 −0.157 −0.122 −0.054 0.007 0.028

−0.097 −0.157 1.168 0.031 −0.134 0.010 0.032

−0.050 −0.122 0.031 1.333 −0.067 −0.018 0.013

−0.247 −0.054 −0.134 −0.067 3.397 0.071 0.057

0.085 0.007 0.010 −0.018 0.071 0.976 0.227

0.104 0.028 0.032 0.013 0.057 0.227 0.958

In this study, 20 real cases have been analyzed. As a result, once the variable selection
is made (Section 2.4), 20 GMCM models have been generated.

The GMCM model estimates the joint probability density function from the multivari-
ate data, obtaining a probability density map from the multivariate environment. In this
way, it is possible to define a boundary based on the joint probability (joint log-likelihood,
in this case) [52]. Based on this joint probability, it is possible to define condition monitoring
parameters such as the proposed in this work (see Section 2.5.3). It allows for identifying
data whose probability of fulfilling the model is lower, or in other words, to detect periods
where a component is working in a failure mode.

To perform the described steps regarding the use of GMCM models, in this study, we
have relied on the tools integrated within the R library “GMCM” [52].

2.5.3. Failure Index Generation

The next step consists of transforming the log-likelihood obtained from the GMCM
output into a handy and understandable index to detect failures.
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In general, log-likelihood provides information about the probability of belonging
to the fitted model in the learning stage. In this sense, an observation for which the log-
likelihood is high means that it would fit the model’s behavior and, therefore, have a higher
probability of belonging to it. In the case of this study, it would mean that this observation
corresponds to the healthy behavior of the component. If the observation does not fulfill
the model, it does not correspond to healthy behavior, and the log-likelihood value will
be lower.

In order to generate a smart and comparable index to define an empirical probability
of belonging to unhealthy behavior, a transformation is conducted. The transformation
applied to GMCM output (log-likelihood) is based on the inverse of the cumulative empiri-
cal function [44]. This resulting parameter intends to determine the risk of failure of the
component or the probability of working in an unhealthy mode. The Failure Index (FI) is
defined in Equation (7).

FI(%) = (1 − (∑i=n
i=1 ecd f (Pi))

n
) ∗ 100 (7)

where,

• Pi is the log-likelihood estimated with the copula model.
• ecd f function is the empirical cumulative density function fitted in the learning period

to the log-likelihood output variable. This function is used to standardize values
(between 0 and 1).

• n is the number of observations

Finally, an FI value is generated for each observation where higher FI values will
indicate a higher probability of operation under unhealthy conditions. Later, the GMCM
coefficients are used with the test data to evaluate the performance of the FI.

2.6. Signal Smoothing

Lastly, the generated failure index from component selected variables is smoothed.
The cubic spline function has been considered for this issue. A spline function is a curve
constructed from piecewise polynomial functions, ensuring continuity at their junction
points. Spline functions have numerous applications in signal smoothing, noise reduction,
and trend extraction in time series analysis.

The choice of cubic splines provides a balance between flexibility and simplicity,
ensuring effective smoothing without the risk of overfitting associated with higher-order
splines. Specifically, the smooth.spline function in R, with an adjusted spar parameter
to control the smoothness of the fit, was used. This approach has proven to be robust and
practical for the dataset used. As a consequence, the generated failure index series is a
smoothed [56] which provides a clean summary to the decision-maker.

The resulting series is an easy-to-interpret signal with application in failure detection in
components where a multivariable environment is considered. In addition, this same index
has successful applications in the early detection of component failures, as demonstrated
in the paper [57].

3. Results

This section shows the results obtained for site 1 and site 2. The subsequent para-
graphs provide the examination details of temporal evolution for the FI and the selected
SCADA signals.

3.1. Results Site 1

In site 1, the available variables were limited, but the registered component failure in the
maintenance logbook was available on different components (generator, blades and gearbox).
Consequently, for this site, three failure cases are presented, one per component (S1_GEN_F1,
S1_BLD_F1, S1_GBX_F1) and nine healthy cases (S1_GEN_H1, S1_GEN_H2, S1_GEN_H3,
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S1_BLD_H1, S1_BLD_H2, S1_BLD_H3, S1_GBX_H1, S1_GBX_H2, S1_GBX_H3), three for
each component (generator, blades, and gearbox).

As the first result of the behavior of the methodology applied through the values
obtained from the FI index at this site, the graphs in Figure 7 are shown, where each row
corresponds to the three healthy cases of each component. This figure displays the range of
FI values in all the healthy cases analyzed at the site. From the analysis of this figure, the
first conclusion regarding the performance of the FI index is drawn. In general, the healthy
state of the component corresponds to FI values equal to or less than 50.

Subsequently, each of the failure cases studied for this site is analyzed. This analysis
includes the FI index along with all the variables considered and associated with the
component’s health. Additionally, for comparative purposes, a healthy component case is
included along with each failure case.

Figure 7. Failure Index Evolution (FI). Components in a healthy working mode. Site1 .

Site 1, Faulty case 1 (generator) presents the analysis performed in the faulty work-
ing period of S1_GEN_F1 (investigation of generator case). Figure 8a shows the FI trend
and the SCADA variables under consideration.

The FI ranges between 65 and 70. In this case, major maintenance intervention on the
generator was reported in July 2015. Before replacing the component, between 15 May and
15 June, an increase in the FI value between 35 and almost 70 was observed. Although
similar increases were detected in the weeks prior to the test period, the model seems to
detect anomalies before the intervention. Despite there being room for improvement in
terms of sensitivity, the method appears to be effective in detection.

Site 1, Healthy case 1 (generator) presents the analysis performed in the healthy work-
ing period of S1_GEN_H1 (investigation of generator case). Figure 8b shows the FI trend
and the SCADA variables under consideration.

The FI ranges between 30% and 60%. In accordance with the FI, the SCADA signals
do not show signs of abnormal working. The SCADA signals do not exhibit significant
gaps during the analysis period. There are no significant mean changes in the time series of
these signals. Only from March, there is a slight decrease in the temperature of the large
generator and the small generator, but it corresponds with a slight decrease in wind speed
in the same period.
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While the differences between the healthy case and the faulty case are not as evident
as in other components analyzed in this study, they do indicate a reasonable sensitivity
to anomaly detection in generators. Therefore, although it would be beneficial to con-
tinue investigating by applying complementary techniques and analyzing the data at a
lower granularity, the proposed method does appear to provide useful information for the
detection of anomalies in generators.

(a) (b)

Figure 8. Site 1, Time evolution Failure Index (generator). (a) Site 1, Faulty case 1 (generator). (b) Site
1, Healthy case 1 (generator).

Site 1, Faulty case 2 (blades) presents the analysis performed in the faulty working
period of S1_BLD_F1 (investigation of blades case). Figure 9a shows the FI trend and the
SCADA variables under consideration.

The FI ranges between 40% and 66%. In this case, major maintenance interventions
on blades are reported on 4 December 2014. In this case, in order to detect some degree of
degradation in blades and to monitor the evolution of the FI index before and after major
corrective actions, the component is monitored between January 2013 and July 2016. A
significant increase in the FI value is observed from December 2014, which corresponds to
the date of the major corrective.

Site 1, Healthy case 2 (blades) presents the analysis performed in the healthy working
period of S1_BLD_H1 (investigation of blades case). Figure 9b shows the FI trend and the
SCADA variables under consideration.

The FI ranges between 32% and 50%. In accordance with the FI, the SCADA signals
do not show signs of abnormal working. The SCADA signals do not exhibit significant
gaps during the analysis period. There are no significant mean changes in the time series of
these signals.

Although the results between healthy and faulty cases do not seem conclusive, the
method does provide sufficient sensitivity to be considered for this type of application.
However, there is room for improvement in terms of its sensitivity. It would likely be
interesting to investigate the considered cases further by including other variables in the
model and examining their long-term evolution. This long-term analysis has already been
attempted in the presented faulty case, where blade degradation could only be captured in
the final stage of the available period, as the index increased with a steeper slope.
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(a) (b)

Figure 9. Site 1, Time evolution Failure Index (blades). (a) Site 1, Faulty case 2 (blades). (b) Site 1,
Healthy case 2 (blades).

Site 1, Faulty case 3 (gearbox) presents the analysis performed in the faulty working
period of S1_GBX_F1 (investigation of gearbox case). Figure 10a shows the FI trend and
the SCADA variables under consideration.

The FI ranges between 30 and 90. In this case, a major gearbox failure was reported
on 25 May 2012. A notable increase in the FI value is detected between April 1 and April
20, where a value greater than 90 is reached. After that, a slight decrease in the FI value
is registered until reaching a value around 60. These values can indicate an early failure
detection in the gearbox.

Site 1, Healthy case 3 (gearbox) presents the analysis performed in the healthy work-
ing period of S1_GBX_H1 (investigation of gearbox case). Figure 10b shows the FI trend
and the SCADA variables under consideration.

The FI ranges between 40% and 50%. In accordance with the FI, the SCADA signals
do not show signs of abnormal working. The SCADA signals do not exhibit significant
gaps during the analysis period. There are no significant mean changes in the time series of
these signals.

As a final assessment of the gearbox case at site 1, in comparison with the case of a
healthy gearbox, the differences between the analyzed healthy and faulty cases seem to be
very sensitive for detecting faults in the gearbox. Therefore, the gearbox is analyzed again
at site 2, where more variables are considered to generate the optimal model.
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(a) (b)

Figure 10. Site 1, Time evolution Failure Index (gearbox). (a) Site 1, Faulty case 3 (gearbox). (b) Site 1,
Healthy case 3 (gearbox).

3.2. Results Site 2

In the case of site 2, the results obtained from applying the proposed methodology to two
faulty gearbox cases (S2_GBX_F1, S2_GBX_F2) and six gearbox healthy cases (S2_GBX_H1,
S2_GBX_H2, S2_GBX_H3, S2_GBX_H4, S2_GBX_H5, S2_GBX_H6) are presented.

As an example of the behavior of the methodology applied through the values obtained
from the FI index, the graphs in Figure 11 are shown. In these graphs, the range of FI values
in all the healthy cases analyzed at the site can be observed. From the analysis of this figure,
the expected behavior of the health index is confirmed: in general, the healthy state of the
component corresponds to FI values equal to or less than 50.

Figure 11. Failure Index Evolution (FI). Components in a healthy working mode. Site 2.

The subsequent paragraphs provide the examination details of temporal evolution for
the FI and the selected SCADA signals.

Site 2, Faulty case 1 (gearbox): Figure 12a shows the generated FI signal starting from
3 months in advance to the gearbox failure occurrence in S2_GBX_F1. In this case, a major
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gearbox failure was reported on 7 May 2014. From the last week of March 2014, the gearbox
oil mechanical pump pressure signal had been lost. Before the occurrence of this clear
anomaly, from February 2014 to the last week of March 2014, failure propagation can be
tracked by the FI; hence the FI has a clear accelerating upward trend.

Site 2, Healthy case 1 (gearbox) presents the analysis performed in the healthy work-
ing period of S2_GBX_H2. Figure 12b shows the FI trend and the SCADA variables under
consideration. The FI ranges between 21% and 40%. In accordance with the FI, the SCADA
signals do not show signs of abnormal working. The SCADA signals do not exhibit signifi-
cant gaps during the analysis period. There are no significant mean changes in the time
series of these signals. Only during the last week of November do the means of the SCADA
signals increase slightly.

As a general assessment of this case, if we compare the failure case and the healthy
case, it can be seen that the range of FI values is notably higher in the failure case, increasing
notably the closer we are to the registered time of failure. Therefore, it can be concluded
that the model is sensitive enough to differentiate between healthy and failure cases.

(a) (b)

Figure 12. Site 2, Time evolution Failure Index (gearbox). (a) Site 2, Faulty case 1 (gearbox). (b) Site 2,
Healthy case 1 (gearbox).

Site 2, Faulty case 2 (gearbox): Figure 13a shows the generated FI signal starting from
3 months in advance to the gearbox failure occurrence in S2_GBX_F2.

In this case, a major gearbox failure is reported on 5 June 2014. Tracking the SCADA
signals from the last week of May 2014, it is possible to observe anomalies in gearbox oil
input pressure, gearbox oil mechanical pump pressure and gearbox oil electrical pump
pressure. Tracking the FI from March 2014 to the last week of May 2014, it is possible to
foresee the failure propagation; hence FI ranges between 40% and 70%.

Site 2, Healthy case 2 (gearbox): covers the analysis performed for the healthy work-
ing period of WT5S2. Figure 13b shows the FI and the corresponding SCADA signals for
the healthy case 2. The FI ranges between 32% and 44%. In comparison to the healthy case 1
(Figure 12b), the mean FI is greater. The maximum FI value was observed in mid-December,
while the mean changes in the SCADA signals appeared in the last week of November.
As also observed in healthy case 1, the mean of wind speed and the other SCADA signals
increase. This similarity between the healthy cases indicates the working behavior of the
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wind turbine when the wind blows between 15 and 25 m/s. Thus, it could be concluded
that there were no abnormal working indicators within the analysis period.

(a) (b)

Figure 13. Site 2, Time evolution Failure Index (gearbox). (a) Site 2, Faulty case 2 (gearbox). (b) Site 2,
Healthy case 2 (gearbox).

As shown in this paper, the best failure index performance has been detected for the
gearbox case.

In Figure 14, a summary of the observed results for this site is presented through a box
and whisker plot, aiming to show the performance of the calculated index. This allows for a
visual comparison of the range of FI values and the monitored SCADA variables for healthy
gearbox cases (in a lighter tone) and faulty gearbox cases (in a darker tone). As shown in
this result for site 2, the performance of the fault index for a different site is confirmed.

Figure 14 shows that the median values of the FI signal (horizontal lines in each box)
range between 20% and 40% in healthy cases, while in faulty cases they range between 60%
and 80%. No significant variations are observed in the median wind speed measurements,
which for all eight cases are in a mid-operational range between 6 and 8 m/s.

This finding is coherent with the existing literature, where the failures associated with
the gearbox component showed a high number in the presence of wind speeds that were
steadily in the low or high range. Alternations in wind speed did not seem to play a role
in the gearbox failures (see Tables 5 and 8 in [58]). Similarly, generator speed, rotor speed,
and power also do not vary significantly between the cases analyzed and observed no
relationship with component health.

As for the oil input pressure, the oil mechanical pump pressure and the oil electrical
pump pressure, there seems to be a slight decrease in the values compared to the healthy
cases. However, although it is more accentuated in the case of the oil input pressure,
this does not occur in the two failure cases studied. This issue could be due to some
unknown operating mode or any type of failure mode. This should be studied further with
the maintenance team. In any case, FI allows simultaneously evaluating the considered
variables. The relationship of these predictor variables makes the failure index a good
indicator of the component’s health.
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Figure 14. Sample distributions analysis: SCADA signals versus Failure Index results. Site 2 (gearbox).
Dark tones represent failure cases, while light tones represent healthy cases.

4. Discussion

The main aspects of multivariable component failure estimation models are addressed
and improved. A feature selection procedure and a functional and practical FI definition
are provided for different gearbox failure modes. The proposed methodology can indicate
failure propagation in advance of failure occurrence with a period of longer than two weeks.
Although other components (generator and blades) have been tested by this method, the
results were not as satisfactory as the gearbox case and will be studied deeper in the future.
Regarding the methodology and the model used, it has been shown that it is a flexible
model, capable of capturing the dependence of the variables that define the health of
the components. This flexibility is demonstrated by the model’s successful application
to various wind turbine components, such as the gearbox, generator, and blades, each
with distinct operational characteristics and failure modes. This GMCM model, applied
in the proposed way, makes it possible to obtain a health index of the component that is
easy to monitor, reducing the computational cost of the decision system for planning the
plant’s maintenance. As a drawback of the model, it has been detected that sometimes the
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adjustment of the model is costly, affecting the detection sensitivity of the method in the
case that the adjustment is not satisfactory. This requires the generation of several fitting
scenarios to select the best one.

The cubic spline smoothing method was chosen to balance flexibility and simplicity,
ensuring effective smoothing without the risk of overfitting associated with higher-order
splines. While other smoothing methods may be more appropriate depending on the nature
of the signal, the cubic splines here were well suited to our desired outcome.

In the next steps, this methodology will be applied in the detection of failure propagation
in other components (yaw system, pitch, etc.) and other renewable energy systems like
PV plants. Besides, a higher data frequency could be considered in the models to obtain
better results and include different variables if available. Furthermore, this method could
have applications in improving the estimation of production, taking into consideration
the different working conditions captured by the copula model, and it will be tested in
future works.
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GMCM Gaussian Mixture Copula Model
FI Failure Index
WT Wind Turbine
CM Condition Monitoring
SCADA Supervisory Control and Data Acquisition
CMS Condition Monitoring System
GMM Gaussian Mixture Model
O&M Operation and Maintenance
RUL Remaining Useful Life
EWMA Exponentially Weighted Moving average
MEWMA Mutivariate Exponentially Weighted Moving average
GMPOP Generalised Multiscale Poincare Plots
SVDD Support Vector Data Description
MD Mahalanobis Distance
PDF Probability Density Function
CDF Cumulative Distribution Function
PEM Pseudo Expectation Maximization
NM Nelder–Mead
LSTM Long Short-Term Memory
SDAE Stacked Denoising Autoencoder
XGBoost Extreme Gradient Boosting
ARIMA Autoregressive Integrated Moving Average
TWSVM Twin Support Vector Machine
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MDAE Multi-kernel maximum mean discrepancy Deep AutoEncoder
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DT Decision Tree
SVM Support Vector Machine
KNN K-Nearest Neighbors
MLPNN Multi-Layer Perceptron Neural Network
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