000144987 001__ 144987
000144987 005__ 20240920135617.0
000144987 0247_ $$2doi$$a10.3390/photonics11080711
000144987 0248_ $$2sideral$$a139781
000144987 037__ $$aART-2024-139781
000144987 041__ $$aeng
000144987 100__ $$aGargallo Yebra, Diana$$uUniversidad de Zaragoza
000144987 245__ $$aAnalysis of the Effective and Actual Lens Position by Different Formulas. Postoperative Application of a Ray-Tracing-Based Simulated Optical Model
000144987 260__ $$c2024
000144987 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144987 5203_ $$a(1) Background: This study compares the effective lens position (ELP) and intraocular lens power (IOLP) derived from SRK/T, Hoffer Q, Holladay I, and Haigis formulas with the actual lens position (ALP) and the implanted IOLP after cataract surgery. Additionally, it aims to optimize ALP using a ray-tracing-based simulated optical model to achieve emmetropia. (2) Methods: A retrospective observational study was conducted on 43 eyes implanted with the same monofocal intraocular lens (IOL). Preoperative and postoperative biometric data were collected using the Lenstar LS900. Postoperative measurements included ALP, subjective refraction, and refraction error (RE). Optical simulations (OSLO EDU 6.6.0) were utilized to optimize ALP for emmetropia (ALPIDEAL). (3) Results: Paired t-test results between REOSLO-REOBJ (p-value = 0.660) and REOSLO-RESUB (p-value = 0.789) indicated no significant statistical differences. However, statistically significant differences were found between ALP and ALPIDEAL (p < 0.05), with a difference of −0.04 ± 0.45 mm [ranging from −1.00 to 1.20 mm]. A significant correlation was observed between ΔALP (ΔALP = ALP − ALPIDEAL) and RESUBJ. (4) Conclusions: This customized ray-tracing eye model effectively achieves refractive outcomes similar to those obtained both subjectively and objectively post-surgery. Additionally, it has enabled optical simulations to optimize the IOL position and achieve emmetropia.
000144987 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000144987 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144987 700__ $$0(orcid)0000-0002-3979-4528$$aRemón Martín, Laura$$uUniversidad de Zaragoza
000144987 700__ $$aPérez Escorza, Iván
000144987 700__ $$aCastro Alonso, Francisco Javier$$uUniversidad de Zaragoza
000144987 7102_ $$11013$$2646$$aUniversidad de Zaragoza$$bDpto. Cirugía$$cÁrea Oftalmología
000144987 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000144987 773__ $$g11, 8 (2024), 711 [10 pp.]$$pPhotonics (Basel)$$tPhotonics$$x2304-6732
000144987 8564_ $$s1736086$$uhttps://zaguan.unizar.es/record/144987/files/texto_completo.pdf$$yVersión publicada
000144987 8564_ $$s2744982$$uhttps://zaguan.unizar.es/record/144987/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144987 909CO $$ooai:zaguan.unizar.es:144987$$particulos$$pdriver
000144987 951__ $$a2024-09-20-13:01:57
000144987 980__ $$aARTICLE