000144988 001__ 144988
000144988 005__ 20250923084440.0
000144988 0247_ $$2doi$$a10.1016/j.jcp.2024.113378
000144988 0248_ $$2sideral$$a139780
000144988 037__ $$aART-2024-139780
000144988 041__ $$aeng
000144988 100__ $$aOrtega-Moya, J.
000144988 245__ $$aA vertically non-uniform temperature approach for the friction term computation in depth-averaged viscoplastic lava flows
000144988 260__ $$c2024
000144988 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144988 5203_ $$aRecently, depth-averaged shallow flow models have been adapted to modelling liquefied lava flows, generally characterized by a marked temperature-dependent non-Newtonian rheology. Modelling these complex flows requires to include the effects of the depth-averaged temperature gradients in the governing equations. The most significant term to correctly predict the lava mobility is the flow resistance term, which is widely estimated using the linear viscoplastic Bingham model. This non-Newtonian model allows to relate the bed shear stress to the depth-averaged lava flow features by means of a cubic equation with analytical solution when assuming a uniform temperature distribution along the vertical profile. Nevertheless, the lava temperature is non-uniform along the vertical due to the heat transfer at the bottom and the free surface, and hence the classical cubic Bingham model is not valid anymore. In this work, a depth-averaged shallow flow model is adapted for realistic lava flows considering influence of the non-uniform vertical temperature profile in the non-Newtonian resistance. This requires to modify the rheological viscoplastic models for ensuring the coupling between flow dynamics and temperature evolution. Three non-uniform temperature vertical distributions are considered: linear, piece-wise and diffusion profiles. Synthetic tests are used to show the influence of the temperature vertical profile on the numerical results. Furthermore, laboratory experimental data are used to validate this novel viscoplastic resistance formulation and to show that the calibration of its parameters is possible.
000144988 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T32-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-137334NB-I00
000144988 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000144988 590__ $$a3.8$$b2024
000144988 592__ $$a1.685$$b2024
000144988 591__ $$aPHYSICS, MATHEMATICAL$$b2 / 61 = 0.033$$c2024$$dQ1$$eT1
000144988 593__ $$aApplied Mathematics$$c2024$$dQ1
000144988 591__ $$aCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS$$b65 / 175 = 0.371$$c2024$$dQ2$$eT2
000144988 593__ $$aComputational Mathematics$$c2024$$dQ1
000144988 593__ $$aPhysics and Astronomy (miscellaneous)$$c2024$$dQ1
000144988 593__ $$aModeling and Simulation$$c2024$$dQ1
000144988 593__ $$aNumerical Analysis$$c2024$$dQ1
000144988 593__ $$aComputer Science Applications$$c2024$$dQ1
000144988 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144988 700__ $$0(orcid)0000-0003-4673-9073$$aMartínez-Aranda, S.$$uUniversidad de Zaragoza
000144988 700__ $$0(orcid)0000-0002-3635-6223$$aFernández-Pato, J.
000144988 700__ $$0(orcid)0000-0001-8674-1042$$aGarcía-Navarro, P.$$uUniversidad de Zaragoza
000144988 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000144988 773__ $$g519 (2024), 113378 [20 pp.]$$pJ. comput. phys.$$tJournal of Computational Physics$$x0021-9991
000144988 8564_ $$s1632574$$uhttps://zaguan.unizar.es/record/144988/files/texto_completo.pdf$$yVersión publicada
000144988 8564_ $$s1919391$$uhttps://zaguan.unizar.es/record/144988/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144988 909CO $$ooai:zaguan.unizar.es:144988$$particulos$$pdriver
000144988 951__ $$a2025-09-22-14:49:59
000144988 980__ $$aARTICLE