000144990 001__ 144990
000144990 005__ 20250923084441.0
000144990 0247_ $$2doi$$a10.3390/cryst14080735
000144990 0248_ $$2sideral$$a139790
000144990 037__ $$aART-2024-139790
000144990 041__ $$aeng
000144990 100__ $$aVoronov, Aleksandr Andreyevich
000144990 245__ $$aDevelopment of reconfigurable high-frequency devices using liquid crystal in substrate-integrated gap waveguide technology
000144990 260__ $$c2024
000144990 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144990 5203_ $$aThis article presents the theoretical study, numerical simulation and fabrication of a phase shifter and a stub resonator for use in microstrip ridge gap waveguide (MRGW) technology, using a liquid crystal (LC) in the substrate as a reconfigurable material. The phase shifter and the stub resonator are filled with LC, and thanks to the LC’s dielectric anisotropy properties, the phase shift and the resonance response can be easily controlled using an external electric or magnetic bias field. The phase shifter was designed to operate in the range of 10 to 20 GHz, and the resonator was designed to operate in the range of 7.8 to 8.8 GHz. The phase shifter’s responses (including both phase shift and insertion losses), associated with both the parallel and perpendicular permittivity values of the LC, were computed and measured, and then the corresponding figure of merit (FoM) was extracted. The resonator’s frequency responses, associated with both the LC’s parallel and perpendicular permittivity, were computed. The resonator’s frequency responses, which provided different polarization voltages, were measured and compared to the simulation results. All technological issues related to both prototypes are also discussed here. The good agreement between the simulation and measurement results confirm this technology as a viable approach to the practical implementation of these microwave reconfigurable devices.
000144990 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E47-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-136590OB-C41$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-129196B-C41$$9info:eu-repo/grantAgreement/ES/UZ/UZ2023-CIE-01
000144990 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000144990 590__ $$a2.4$$b2024
000144990 592__ $$a0.486$$b2024
000144990 591__ $$aCRYSTALLOGRAPHY$$b11 / 31 = 0.355$$c2024$$dQ2$$eT2
000144990 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ2
000144990 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b294 / 460 = 0.639$$c2024$$dQ3$$eT2
000144990 593__ $$aMaterials Science (miscellaneous)$$c2024$$dQ2
000144990 593__ $$aInorganic Chemistry$$c2024$$dQ2
000144990 593__ $$aCondensed Matter Physics$$c2024$$dQ2
000144990 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144990 700__ $$aBachiller, Carmen
000144990 700__ $$0(orcid)0000-0001-9814-0834$$aVillacampa, Belén$$uUniversidad de Zaragoza
000144990 700__ $$aBoria, Vicente E.
000144990 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000144990 773__ $$g14, 8 (2024), 735 [14 pp.]$$pCrystals$$tCrystals$$x2073-4352
000144990 8564_ $$s1627766$$uhttps://zaguan.unizar.es/record/144990/files/texto_completo.pdf$$yVersión publicada
000144990 8564_ $$s2766034$$uhttps://zaguan.unizar.es/record/144990/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144990 909CO $$ooai:zaguan.unizar.es:144990$$particulos$$pdriver
000144990 951__ $$a2025-09-22-14:50:36
000144990 980__ $$aARTICLE