000144991 001__ 144991
000144991 005__ 20260112133340.0
000144991 0247_ $$2doi$$a10.1103/PhysRevLett.133.081001
000144991 0248_ $$2sideral$$a139795
000144991 037__ $$aART-2024-139795
000144991 041__ $$aeng
000144991 100__ $$aO’Hare, Ciaran A. J.
000144991 245__ $$aAxion Minicluster Streams in the Solar Neighborhood
000144991 260__ $$c2024
000144991 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144991 5203_ $$aA consequence of QCD axion dark matter being born after inflation is the emergence of small-scale substructures known as miniclusters. Although miniclusters merge to form minihalos, this intrinsic granularity is expected to remain imprinted on small scales in our galaxy, leading to potentially damaging consequences for the campaign to detect axions directly on Earth. This picture, however, is modified when one takes into account the fact that encounters with stars will tidally strip mass from the miniclusters, creating pc-long tidal streams that act to refill the dark matter distribution. Here we ask whether or not this stripping rescues experimental prospects from the worst-case scenario in which the majority of axions remain bound up in unobservably small miniclusters. We find that the density sampled by terrestrial experiment on mpc scales will be, on average, around 70%–90% of the average local DM density, and at a typical point in the solar neighborhood, we expect most of the dark matter to be comprised of debris from ⁢(102–103) overlapping streams. If haloscopes can measure the axion signal with high-enough frequency resolution, then these streams are revealed in the form of an intrinsically spiky line shape, in stark contrast with the standard assumption of a smooth, featureless Maxwellian distribution—a unique prediction that constitutes a way for experiments to distinguish between pre- and postinflationary axion cosmologies.
000144991 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E21-17R$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2022-126078NB-C21
000144991 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttps://creativecommons.org/licenses/by/4.0/deed.es
000144991 590__ $$a9.0$$b2024
000144991 592__ $$a2.856$$b2024
000144991 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b9 / 114 = 0.079$$c2024$$dQ1$$eT1
000144991 593__ $$aPhysics and Astronomy (miscellaneous)$$c2024$$dQ1
000144991 594__ $$a15.6$$b2024
000144991 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144991 700__ $$aPierobon, Giovanni
000144991 700__ $$0(orcid)0000-0002-1044-8197$$aRedondo, Javier$$uUniversidad de Zaragoza
000144991 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000144991 773__ $$g133, 8 (2024), e081001 [7 pp.]$$pPhys. rev. lett.$$tPhysical Review Letters$$x0031-9007
000144991 8564_ $$s1445575$$uhttps://zaguan.unizar.es/record/144991/files/texto_completo.pdf$$yVersión publicada
000144991 8564_ $$s3077707$$uhttps://zaguan.unizar.es/record/144991/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144991 909CO $$ooai:zaguan.unizar.es:144991$$particulos$$pdriver
000144991 951__ $$a2026-01-12-13:13:57
000144991 980__ $$aARTICLE