000144995 001__ 144995
000144995 005__ 20250908131440.0
000144995 0247_ $$2doi$$a10.3303/CET24109023
000144995 0248_ $$2sideral$$a139819
000144995 037__ $$aART-2024-139819
000144995 041__ $$aeng
000144995 100__ $$0(orcid)0000-0002-2866-9035$$aLete, A.$$uUniversidad de Zaragoza
000144995 245__ $$aCatalytic conversion of 1,2-propanediol to 2-propanone: an exploratory study
000144995 260__ $$c2024
000144995 5060_ $$aAccess copy available to the general public$$fUnrestricted
000144995 5203_ $$aClimate change underscores the urgency of exploring novel pathways for the decarbonization of the transportation sector. Within the aviation sector, biofuel appears to be the most viable short-term solution. Recently, the focus has centered on the aldol condensation of biomass-derived furans with ketones as 2-propanone (acetone) or 2-hydroxy-2-propanone (acetol), offering an efficient method to produce intermediates suitable for aviation fuels. However, 2-propanone is currently produced from cumene, a petroleum-derived source. This study proposes 1,2-propanediol (1,2-PDO), a sustainable product obtained by the hydrogenolysis of glycerol, a byproduct of the biodiesel industry, as a renewable feedstock for the generation of 2-propanone.
For that purpose, the coprecipitation method with sodium hydroxide was employed to synthesize three copper, zinc, and aluminum-based catalysts. The catalysts were characterized through ICP-OES, N2 adsorption-desorption, XRD, and H2-TPR. The dehydration of 1,2-PDO to 2-propanone was investigated in a continuous system at 227 ºC, using a 10 wt% aqueous solution of 1,2-PDO at atmospheric pressure with a W/m ratio of 10 gCatalyst min g1,2-PDO-1. The catalyst with the lower zinc content achieved the highest carbon selectivity to 2-propanone at 22.1% and generated 1845 µmol2-propanone/mol1,2-PDO. This study revealed that lower zinc content could enhance 1,2-PDO dehydration to 2-propanone, preventing the subsequent hydrogenation of 2-propanone to 2-propanol. Additional optimization is required to attain higher yields.
000144995 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R$$9info:eu-repo/grantAgreement/ES/MCINN/PID2020-114985RB-I00
000144995 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000144995 592__ $$a0.257$$b2024
000144995 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ3
000144995 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000144995 700__ $$0(orcid)0000-0001-7115-9025$$aGarcía, L.$$uUniversidad de Zaragoza
000144995 700__ $$0(orcid)0000-0002-2924-3095$$aRuiz, Joaquín$$uUniversidad de Zaragoza
000144995 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, Jesús$$uUniversidad de Zaragoza
000144995 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000144995 773__ $$g109 (2024), 133-138$$pChem. eng. trans.$$tChemical Engineering transactions$$x1974-9791
000144995 8564_ $$s1414732$$uhttps://zaguan.unizar.es/record/144995/files/texto_completo.pdf$$yVersión publicada
000144995 8564_ $$s2656541$$uhttps://zaguan.unizar.es/record/144995/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000144995 909CO $$ooai:zaguan.unizar.es:144995$$particulos$$pdriver
000144995 951__ $$a2025-09-08-12:59:12
000144995 980__ $$aARTICLE