000145037 001__ 145037
000145037 005__ 20240926122721.0
000145037 0247_ $$2doi$$a10.1016/j.apnum.2024.09.002
000145037 0248_ $$2sideral$$a139899
000145037 037__ $$aART-2025-139899
000145037 041__ $$aeng
000145037 100__ $$0(orcid)0000-0003-1263-1996$$aClavero, C.$$uUniversidad de Zaragoza
000145037 245__ $$aAn efficient uniformly convergent method for multi-scaled two dimensional parabolic singularly perturbed systems of convection-diffusion type
000145037 260__ $$c2025
000145037 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145037 5203_ $$aIn this work we solve initial-boundary value problems associated to coupled 2D parabolic singularly perturbed systems of convection-diffusion type. The analysis is focused on the cases where the diffusion parameters are small, distinct and also they may have different order of magnitude. In such cases, overlapping regular boundary layers appear at the outflow boundary of the spatial domain. The fully discrete scheme combines the classical upwind scheme defined on an appropriate Shishkin mesh to discretize the spatial variables, and the fractional implicit Euler method joins to a decomposition of the difference operator in directions and components to integrate in time. We prove that the resulting method is uniformly convergent of first order in time and of almost first order in space. Moreover, as only small tridiagonal linear systems must be solved to advance in time, the computational cost of our method is remarkably smaller than the corresponding ones to other implicit methods considered in the previous literature for the same type of problems. The numerical results, obtained for some test problems, corroborate in practice the good behavior and the advantages of the algorithm.
000145037 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000145037 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145037 700__ $$aJorge, J.C.
000145037 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000145037 773__ $$g207 (2025), 174-192$$pAppl. numer. math.$$tAPPLIED NUMERICAL MATHEMATICS$$x0168-9274
000145037 8564_ $$s1910848$$uhttps://zaguan.unizar.es/record/145037/files/texto_completo.pdf$$yVersión publicada
000145037 8564_ $$s1618913$$uhttps://zaguan.unizar.es/record/145037/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145037 909CO $$ooai:zaguan.unizar.es:145037$$particulos$$pdriver
000145037 951__ $$a2024-09-26-10:58:08
000145037 980__ $$aARTICLE