000145051 001__ 145051
000145051 005__ 20240926122721.0
000145051 0247_ $$2doi$$a10.1016/j.apsusc.2024.161180
000145051 0248_ $$2sideral$$a139918
000145051 037__ $$aART-2025-139918
000145051 041__ $$aeng
000145051 100__ $$aCabaço, João S.
000145051 245__ $$aModifying vacancy defects during systematic disordering of the Cr2AlC nano-lamellar system
000145051 260__ $$c2025
000145051 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145051 5203_ $$aThe layered structure of MAX phases is associated with a number of functional properties and is the subject of extensive research. While the unit-cell layers of these structures have been well studied, much less is known about the distribution and manipulation of point defects within them. Here, we selected the prototype Cr2AlC system and, using variable energy positron beams, observed Doppler broadening and positron annihilation lifetimes to track the evolution of defects caused by the penetration of energetic transition metal ions (Co+ and Mn+) and noble gas ions (Ar+ and Ne+). In all cases an overall reduction of the open-volume defect concentration is observed post-irradiation. Atomic displacements induced by the penetrating ions drastically modify the defect distribution: the concentration of agglomerates of 9–15 vacancies (corresponding to positron lifetimes of 335–450 ps) in the precursor [Cr2C/Al]n layers is suppressed, whereas Al mono- and Al-Cr di-vacancy (lifetimes 217–231 ps) concentrations are enhanced. This breakdown of large defects into point defects scales with atomic displacements and is largely independent of the penetrating ion species, providing insights into the manipulation of point defects in nano-layered systems.
000145051 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E13-23R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER E28-23R$$9info:eu-repo/grantAgreement/EC/H2020/823717/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM3$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 823717-ESTEEM3
000145051 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000145051 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145051 700__ $$aLiedke, Maciej Oskar
000145051 700__ $$0(orcid)0000-0001-6771-6941$$aPablo-Navarro, Javier
000145051 700__ $$aGanss, Fabian
000145051 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, César
000145051 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra García, Manuel$$uUniversidad de Zaragoza
000145051 700__ $$aKentsch, Ulrich
000145051 700__ $$aButterling, Maik
000145051 700__ $$aWagner, Andreas
000145051 700__ $$aLindner, Jürgen
000145051 700__ $$aFaßbender, Jürgen
000145051 700__ $$aLeyens, Christoph
000145051 700__ $$aBoucher, Richard
000145051 700__ $$aBali, Rantej
000145051 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000145051 773__ $$g679 (2025), 161180 [10 pp.]$$pAppl. surf. sci.$$tApplied Surface Science$$x0169-4332
000145051 8564_ $$s6124481$$uhttps://zaguan.unizar.es/record/145051/files/texto_completo.pdf$$yVersión publicada
000145051 8564_ $$s2509478$$uhttps://zaguan.unizar.es/record/145051/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145051 909CO $$ooai:zaguan.unizar.es:145051$$particulos$$pdriver
000145051 951__ $$a2024-09-26-10:58:28
000145051 980__ $$aARTICLE