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Abstract: In this study, we evaluated the capability of an unmanned aerial vehicle with a LiDAR sensor
(UAV-LiDAR) to classify and map fuel types based on the Prometheus classification in Mediterranean
environments. UAV data were collected across 73 forest plots located in NE of Spain. Furthermore,
data collected from a handheld mobile laser scanner system (HMLS) in 43 out of the 73 plots were
used to assess the extent of improvement in fuel identification resulting from the fusion of UAV
and HMLS data. UAV three-dimensional point clouds (average density: 452 points/m2) allowed
the generation of LiDAR metrics and indices related to vegetation structure. Additionally, voxels
of 5 cm3 derived from HMLS three-dimensional point clouds (average density: 63,148 points/m2)
facilitated the calculation of fuel volume at each Prometheus fuel type height stratum (0.60, 2, and
4 m). Two different models based on three machine learning techniques (Random Forest, Linear
Support Vector Machine, and Radial Support Vector Machine) were employed to classify the fuel
types: one including only UAV variables and the other incorporating HMLS volume data. The most
relevant UAV variables introduced into the classification models, according to Dunn’s test, were the
99th and 10th percentile of the vegetation heights, the standard deviation of the heights, the total
returns above 4 m, and the LiDAR Height Diversity Index (LHDI). The best classification using only
UAV data was achieved with Random Forest (overall accuracy = 81.28%), with confusion mainly
found between similar shrub and tree fuel types. The integration of fuel volume from HMLS data
yielded a substantial improvement, especially in Random Forest (overall accuracy = 95.05%). The
mapping of the UAV model correctly estimated the fuel types in the total area of 55 plots and at least
part of the area of 59 plots. These results confirm that UAV-LiDAR systems are valid and operational
tools for forest fuel classification and mapping and show how fusion with HMLS data refines the
identification of fuel types, contributing to more effective management of forest ecosystems.

Keywords: proximal remote sensing; unmanned aerial vehicles; HMLS; machine learning; wildfires;
forest management

1. Introduction

Wildfires are an inherent disturbance of forest ecosystems, yet various factors are con-
tributing to an increase in their frequency and intensity [1–3]. Some causes of this alteration
are attributed to climate change [4,5], land use changes [6], reforestation policies [7,8], and
urban growth in the wildland–urban interface [9]. As a consequence, forests are more
exposed to the negative processes of recurrent and extreme wildfires, beyond the deteri-
oration or loss of vegetation cover by fire, such as soil degradation [10] and biodiversity
loss [11–13], also leading to an increase in carbon emissions into the atmosphere [14,15].
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Mediterranean environments are particularly prone to wildfires due to the characteristics
of climate and vegetation [16]. Moreover, the exposure of these regions to extreme wildfires
is projected to increase in the future [17–19], heightening the vulnerability of these valuable
ecosystems. A key mechanism for preventing and mitigating wildfires is understanding
the spatial distribution of forest fuels, which constitute all living or dead matter available in
forest landscapes for combustion. The characterization of fuels helps to predict fire rate of
spread, fireline intensity, and propagation axes across heterogeneous forest landscapes during
hypothetical fire scenarios, enabling fuel mapping across large areas [20–22]. Given that
the structural complexity of forest fuels often makes their identification a complex task [23],
several fuel classifications have been developed in the last decades. For Mediterranean
environments, the Prometheus fuel classification [24] uses indicators/thresholds of vegetation
height and percentage cover of shrubs and trees to classify fuels according to the type, height,
and density of the main element of propagation (grass, shrub, or leaf litter). It comprises
seven fuel types (FTs): FT1 for grass fuels; FT2, FT3, and FT4 for shrub fuels (low, medium,
and high, respectively); and FT5, FT6, and FT7 for tree fuels (without understory, with non-
continuous understory to canopy, and with continuous understory to canopy, respectively).
Remote sensing has been extensively employed for the identification of forest fuels and,
specifically, LiDAR (Light Detection and Ranging) systems, thanks to the ability of laser pulses
to work their way through the canopy and interact at different heights with the vegetation
cover, enabling the representation of forests’ three-dimensional structure. LiDAR sensors
can be mounted on different platforms. For instance, NASA’s Global Ecosystem Dynamics
Investigation system onboard the International Space Station allows for characterizing fuels
across vast areas [25,26] and can be coupled with multispectral imagery to enhance fuel
classification [27]. On the other hand, airborne laser scanner (ALS) systems facilitate the
identification of fuels at regional scales with high spatial resolution, integrating multispectral
indices [28,29] and hyperspectral images [30].

In recent years, proximal remote sensing platforms, such as unmanned aerial vehicles
(UAVs) and ground-based laser scanner systems, have become highly promising technolo-
gies for fuel identification and classification in heterogeneous environments. One of the
primary advantages of the joint use of UAVs and ground-based systems is the ability of
the latter to collect data without the constraints of drone flights, as long as there is real
accessibility to the forest stand and with very high spatial resolutions [23]. UAVs have
demonstrated their effectiveness even when equipped with photogrammetric sensors, such
as visible or multispectral cameras, instead of LiDAR. In this respect, Shin et al. (2018) [31]
found that photogrammetric UAVs can efficiently estimate canopy cover and canopy height
in conifer forest stands. Hoffrén et al. (2023) [32] successfully classified the Prometheus
fuel types in almost the same study area as in this study by combining very high-density
three-dimensional point clouds with multispectral images and textural data from a pho-
togrammetric UAV. However, in this study, the authors noticed very discrete classification
rates when classifying the Prometheus fuel types FT3 and FT6. This limitation could be
attributed to the inability of photogrammetric UAVs to capture data below the upper
canopy. In this regard, Hillman et al. (2021) [33] demonstrated that UAVs with LiDAR
sensors are better able to describe the entire vertical structure of vegetation below canopies
than photogrammetric UAVs in a dry sclerophyll forest in Australia. Additionally, they
noted very similar estimates of canopy and sub-canopy cover in both UAV-LiDAR and
ground-based systems. Conversely, findings from Hyyppä et al. (2020) [34] suggest that
ground-based systems provide better results for collecting tree-level structural data than
above-canopy UAV-LiDAR systems. Consequently, the capacity of UAV-LiDAR systems to
characterize fuels below canopies may be compromised by the penetration capabilities of
the laser pulses into the canopy and the maximum number of returns that the sensor is able
to record in a single pulse. Identifying the shrubland is very important since it is usually
the place through which fires are mainly spread. Ground-based systems can address this
challenge since they operate at ground level with an extremely high-density scanning rate,
enabling a more precise characterization of understory fuels. Indeed, these systems have
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been successfully utilized by Chen et al. (2016) [35] to identify all vertical fuel layers in a
forest stand and by Wilson et al. (2022) [36] to evaluate the impact of fuel structure on wild-
fire severity. However, despite these favorable findings, data collection with ground-based
systems may pose operational challenges in terms of time and cost [37], particularly when
compared to the relatively shorter time periods required for data collection with UAVs.

In this context, considering the demonstrated efficacy of UAVs and LiDAR remote
sensing in identifying forest fuels, both individually and in combination, in this study, we
aim to assess the capability of a UAV-LiDAR system for the identification of the Prometheus
fuel types in Mediterranean forest stands and their classification using modeling techniques
based on machine learning for the subsequent fuel mapping across larger areas. In this
study, we focus primarily on shrub and tree understory fuels. The initial hypothesis is that
the capacity of UAV-LiDAR systems to characterize vegetation and fuel structure enables
the classification of the Prometheus fuel types with high levels of accuracy. Furthermore,
recognizing the uncertainty surrounding UAV-LiDAR systems’ ability to identify fuels
below canopies, in this study, we also utilize data collected in a previous work [38] employ-
ing a ground-based handheld mobile laser scanning (HMLS) system. In this context, the
secondary objective is to assess the extent of improvement in fuel identification resulting
from the integration of UAV-collected data with HMLS data, especially shrub fuels, to better
differentiate between shrub and tree understory fuel types. The hypothesis is that HMLS
systems have the potential to mitigate classification errors that occur between fuel types
with high structural heterogeneity, particularly in the middle and lower strata. Ultimately,
in this work, we aim to underscore the utility of UAV-LiDAR systems and their potential
synergy with ground-based laser scanner systems to improve forest management practices
related to forest fuels and, thus, mitigate the negative impacts of wildfires on the ecosystem.

2. Materials and Methods
2.1. Study Area

The study area was located in five sectors within the Autonomous Community of
Aragón (NE of Spain): Almudévar, Ayerbe, Uncastillo, Villarluengo, and Zuera. UAV
data were collected across 73 forest plots of 15 m circular radius, except for one plot of
10 m radius due to terrain constraints (a comprehensive description of the forest plots is
available in Table S1 of the Supplementary Materials). HMLS data were obtained in 43 out
of the 73 forest plots in the context of a previous work (for further details, see Hoffrén et al.,
2024 [38]). The center of each plot was determined using a Leica Viva® GS15 CS10 GNSS
Real-Time Kinematic (RTK) Global Positioning System with sub-meter accuracy. To form
the ground-truth for the classification models, the fuel type of each plot was estimated by
visual analyses in the field and validated with the processed HMLS point cloud in the plots
where HMLS data were collected [38]. The number of plots for each fuel type is shown in
Table 1. Note that, in this work, FT1 (grass fuel) was not considered as the study focuses on
shrubs and tree understory fuel types. Figure 1 shows six study plots in frontal view using
the UAV’s colored point cloud, each with a different fuel type.

Table 1. The Prometheus fuel types: general characteristics and number of forest plots for each
fuel type and platform considered in this study. The difference between FT6 and FT7 is the vertical
difference between shrubs and trees, which is >0.5 m in FT6 and <0.5 m in FT7.

Fuel Type Cover Shrub Mean Height UAV
Plots UAV and HMLS Plots

FT2
>60% grass and <50% trees (>4 m)

0.30–0.60 m 11 10
FT3 0.60–2.00 m 7 5
FT4 2.00–4.00 m 5 5

FT5 <30% shrub and >50% trees (>4 m) 14 9

FT6
>30% shrub and >50% trees (>4 m)

12 7
FT7 24 7
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turing hot summers, cold winters, and scarce rainfall throughout the year (less than 500 

Figure 1. Graphical representation from the UAV’s colored point cloud of the structural differences
of the Prometheus fuel types considered in this study. Units are in meters. The yellow, blue, and
red dotted lines correspond to the height thresholds of the Prometheus classification (0.60, 2, and
4 m, respectively).

All sectors experience a predominant Mediterranean climate with continental influence
(Figure 2). The sectors of Almudévar, Ayerbe, and Zuera are situated in the Central Ebro
Valley, characterized by substantial daily and annual temperature fluctuations, featuring
hot summers, cold winters, and scarce rainfall throughout the year (less than 500 mm/year).
The sector of Uncastillo, located to the north of the Central Ebro Valley in the foothills of the
Pre-Pyrenees, experiences less pronounced temperature variations compared to the afore-
mentioned sectors, although they are still high, and average annual rainfall is somewhat
higher (~700 mm/year). The sector of Villarluengo, placed in the southernmost part of
Aragón within the Iberian mountain range, also experiences pronounced daily and annual
temperature fluctuations. However, its highest mean altitude results in cooler summers
than those observed in the Central Ebro Valley, albeit winters are colder. The average
annual precipitation is somewhat higher (~800 mm/year), with a high possibility of winter
snowfall. Convective storms are frequent in this sector, often accompanied by lighting due
to its proximity to the Mediterranean Sea and the convergence of prevailing winds [39].
All forest plots are predominantly characterized by Mediterranean-type vegetation, well
adapted to the climatic conditions. The most representative forest types within the plots
include Aleppo pine (Pinus halepensis Mill.) and bog pine (Pinus nigra Mill.) forests, mixed
with understory vegetation dominated by boxwood (Buxus sempervirens), junipers (Junipe-
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rus oxycedrus), oaks (Quercus coccifera, Quercus faginea, and Quercus ilex subsp. rotundifolia),
rosemary (Rosmarinus officinalis), and thyme (Thymus vulgaris) [40].
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Figure 2. Spatial distribution of study sectors and forest plots where UAV and HMLS data were
collected in the Autonomous Community of Aragón (NE Spain).

2.2. LiDAR Data Collection and Processing

The primary instrument utilized to collect data in the 73 plots was a quadcopter
DJI Matrice 300 RTK UAV unit (DJI, Shenzhen, China) equipped with a DJI Zenmuse L1
LiDAR sensor (Figure 3a). Additionally, data were collected in 43 out of the 73 plots with a
GeoSLAM ZEB-Horizon HMLS system (GeoSLAM, Ruddington, UK) at the end of May 2023
as part of the study developed by Hoffrén et al. (2024) [38]. A comprehensive description of
HMLS data acquisition and processing methods can be found in Hoffrén et al. (2024) [38].

UAV data were acquired in several field campaigns performed between March and
May 2023. The UAV flights over the plots were automated using the DJI Pilot 2 appli-
cation. A flight altitude of 100 m above ground level was established based on 1 m
resolution Digital Elevation Models (DEMs) derived from ALS-LiDAR data from the
2nd coverage of the Spanish National Orthophotography Project (PNOA, 2024: https:
//pnoa.ign.es/web/portal/pnoa-lidar/, accessed on 13 June 2024). A serpentine mapping
pattern was utilized with an 80% overlap between scans in both cross-track and along-track
directions, along with a zenith angle of incidence and a flight speed of 7 m/s. An illustrative
example of the UAV flight scheme over the plots is presented in Figure 3b. The LiDAR
sensor on the UAV operated at a scanning rate of 240,000 points per second, allowing
for up to 3 returns in a single laser pulse. These scans facilitated the generation of very

https://pnoa.ign.es/web/portal/pnoa-lidar/
https://pnoa.ign.es/web/portal/pnoa-lidar/
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high-density three-dimensional point clouds, with an average density of 452 points/m2

(further details are available in Table S1 of the Supplementary Materials). The UAV was
equipped with an RTK system, enabling the georeferencing of data in real-time without
the necessity for ground control points in the field. The RTK system allows the UAV’s
global navigation system to connect via the Internet to the Geodetic Reference Stations of
the Spanish National Geographic Institute and, in cases where coverage was deficient, to
the UAV’s RTK total station, providing differential corrections for the average positioning
error of GNSS satellites and thus ensuring sub-meter accuracies.
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Figure 3. (a) DJI Matrice 300 RTK UAV unit with DJI Zenmuse L1 LiDAR sensor and (b) general flight
scheme for UAV data collection on two forest plots.

The UAV scans underwent initial preprocessing using DJI Terra v.3.6.7 proprietary
software. The data were converted into LAS files and georeferenced to the local reference
system (EPSG: 25830–ETRS89/UTM zone 30N) for XY coordinates and to the EGM-96
geoidal model for Z coordinates. Subsequently, point clouds from the LAS files were
categorized into ground and non-ground points. To achieve this, the Multiscale Curvature
Classification algorithm was employed utilizing the MCC-LiDAR v.2.1 command line
tool [41], following the parameters established by Montealegre et al. (2015) [42]. Points
classified as ground were utilized to create DEMs with a 0.20 m spatial resolution using the
TIN-to-raster interpolation method [43]. To accomplish this, the rasterize terrain function
from the “lidR” package [44,45] for R environment [46] was employed. The heights of the
point clouds were normalized with respect to ground level using the previously created
DEMs through the normalize heights function from the “lidR” package. Lastly, metrics
related to fuel structure and diversity indices were extracted at the plot scale. To mitigate
uncertainty in Z coordinates, points below 5 cm in height were excluded from subsequent
analyses to prevent the inclusion of data potentially associated with the ground rather than
vegetation, as a vertical accuracy of 1.5 cm + 1 ppm is reported by the UAV manufacturer
(https://enterprise.dji.com/es/matrice-300/specs, last accessed on 13 June 2024). Three
types of structural metrics were generated utilizing the Cloudmetrics function from FU-
SION/LDV v.4.21 software [47]: heights distribution (e.g., minimum, mean, and maximum
elevation, and elevation at different height percentiles), heights variability (e.g., standard
deviation, variance, skewness, kurtosis, and L-moments of heights), and canopy cover
density (e.g., percentage of cover within specific height intervals of the Prometheus fuel
classification: below 0.60 m, 0.60–2 m, 2–4 m, and above 4 m). In addition to structural
metrics, three forest diversity indices were computed: the LiDAR Height Diversity Index

https://enterprise.dji.com/es/matrice-300/specs
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(LHDI) (Equation (1)), which is a modified version of the Shannon–Wiener diversity index
(H’); the LiDAR Evenness Diversity Index (LHEI) (Equation (2)), which adapts the Pielou’s
evenness index; and the rumple index, defined as the ratio between the Canopy Surface
Model (CSM) and ground area (Equation (3)). Both LHDI and LHEI were initially intro-
duced by Listopad et al. (2015) [48] and, for their computation, the proportion of returns
within each height interval of the Prometheus fuel classification was estimated according
to Domingo et al. (2020) [29] using the Cloudmetrics function from FUSION/LDV software.
For the rumple index, CSMs and ground area were calculated using the Canopymodel and
Surfacestats functions from FUSION/LDV software, with a pixel resolution of 0.50 m and a
3 × 3 smoothing algorithm, accounting for the density of the UAV point cloud. Rumple
index was also calculated for each height interval of the Prometheus fuel classification and
additionally for the entire forest canopy structure within each plot.

LHDI = −∑[(Ph)× ln(Ph)] (1)

LHEI =
LHDI
ln(Ph)

(2)

Rumple index =
3D canopy sur f ace area

ground area
(3)

where P is the proportion of returns at the defined Prometheus classification intervals (h).

2.3. Variables Selection and Classification of Prometheus Fuel Types

The Prometheus fuel types were classified using machine learning classification algo-
rithms. Specifically, three non-parametric classification models were evaluated: Random
Forest (RF), Linear Support Vector Machine (SVM-L), and Radial Support Vector Machine
(SVM-R). This will provide insight into the most suitable classification technique for the
classification of the Prometheus fuel types using UAV-LiDAR in combination with HMLS
systems, as to date, there is no evidence of a preponderant technique [29,32,49,50].

A preliminary selection of variables was conducted to identify the most relevant
ones for inclusion in the classification models. This selection process utilized the post
hoc non-parametric Dunn’s test for multiple comparisons [51], which is similar to the
Kruskal–Wallis test but provides the ability to pinpoint precisely which groups (i.e., pairs
of fuel types: FT2–FT3, FT2–FT4, etc.) differ from each other (Dunn’s test, p ≤ 0.05). The
principle of parsimony was also followed in the final selection of variables so that the most
relevant of the four types of metrics and variables generated (i.e., height distribution, height
variability, canopy cover density, and diversity indices) were included. Subsequently, the
classification models were performed using the “caret” package [52] for R. Two different
types of models were evaluated: a model incorporating relevant variables derived from
the data collected with the UAV in the 73 forest plots and a model that encompasses
the relevant UAV variables along with vegetation volume at specific height intervals of
the Prometheus classification, extracted from the HMLS-derived voxels in the 43 forest
plots [38]. RF models were parametrized by employing between 2 and 10 decision trees at
each node. SVM-L and SVM-R models were fitted by adjusting a cost parameter within the
range of 1–1000. Following the recommendation by Andersen et al. (2005) [53] for small
datasets, model validation was conducted using the k-fold cross-validation method with
groups of 10 observations and 10 repeats in each instance. The overall performance of
each model was evaluated using the overall accuracy (OA) coefficient. The classification
accuracy of each fuel type was estimated using confusion matrices, the Producer’s and
User’s accuracy metrics (also known as the “recall” and the “precision”, respectively [54]),
and the F-score (F), which combines the Producer’s and User’s accuracy into a single metric
to assess the overall performance of the classification for each fuel type.
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2.4. Spatialization Mapping of the Prometheus Fuel Types Model

The mapping of the Prometheus fuel types was performed using the most accurate
model, exclusively considering the UAV data. This decision was made because UAV data
were captured over larger areas both within and outside the forest plots. In contrast, HMLS
data were solely recorded within the plots. Fuel mapping was carried out at a spatial
resolution of 20 m, deemed suitable due to its similarity to the diameter of the forest plots
under study. Furthermore, the spatialization of fuels at higher resolutions may prove
impractical for the effective management of forest fuels, which require lower resolution for
large-scale mapping [23]. Similarly, fuels tend to be distributed at the scale of forest stands
in their fire behavior. The mapped areas corresponded to the designated UAV flight zones,
encompassing the locations of the forest plots. To achieve this, the variables introduced
into the classification models were generated at a pixel scale of 20 m resolution using the
Gridmetrics function from FUSION/LDV software and subsequently mapped using the
CSV2Grid function from FUSION/LDV software. Finally, the spatial model was performed
using the “predict” function of the terra package [55] for R. Afterwards, for each forest plot,
a comparison was made between the observed fuel type (i.e., the ground truth) and those
estimated by the model in the mappings. To accomplish this, the spatialized pixels within
each plot were extracted and checked to see if the majority of those that were mapped
aligned with the observed fuel type.

3. Results
3.1. Classification of Prometheus Fuel Types Using UAV Data

The most relevant variables according to Dunn’s test (p ≤ 0.05) and, consequently,
included in the models were the 99th (“Elev. P99”) and 10th (“Elev. P10”) percentile of
the point cloud height distribution, the standard deviation of the heights (“Elev. stdev.”),
the total returns above 4 m (“All returns > 4 m”), and the LiDAR Height Diversity Index
(“LHDI”). The complete results of Dunn’s test are detailed in Table S2 of the Supplementary
Materials. The variable “Elev. P99” was among the group of height distribution metrics that
distinguished the highest number of pairs of fuel types (up to eight), whereas the variable
“Elev. P10” managed to differentiate seven pairs. The variable “Elev. stdev.” was part of the
second group of metrics related to height variability that distinguished the most pairs (up
to seven), but it was selected due to the improvement its inclusion in the model implied.
The variable “All returns > 4 m”, related to the canopy cover density, also distinguished up
to seven pairs of Prometheus fuel types, the maximum within this group of metrics. Fewer
pairs were differentiated by the vegetation indices, with the “rumple index” distinguishing
the most fuel types. However, significant collinearity was found between this variable and
“Elev. stdev.”, leading to the selection of the next relevant index, “LHDI”.

Table 2 shows the best performance of the three classification models using the UAV
data. The best classification model was RF, reaching an OA of 81.28%. SVM-L and SVM-R
achieved OAs of 75.10% and 78.32%, respectively. Table 3 shows the confusion matrix
of the best classification model (RF). Confusion matrices of the SVM-L and SVM-R can
be found in Tables S3 and S5 of the Supplementary Materials, respectively. In general
terms, confusions were observed to primarily occur among similar fuel types, with minimal
confusion between types of different dominant strata, i.e., between shrubs (FT2 to FT4)
and trees (FT5 to FT7). The lowest hit rates were observed for FT3, which was primarily
confused with FT2 and occasionally misclassified as FT5 (resulting in omission errors) and
FT7 (both commission and omission errors). Additionally, there was confusion between FT6
and FT7, although hit rates for both types exceeded 70%. FT5 exhibited minor confusion
with FT3 and FT7, yet its hit rates surpassed 85%. FT2 and FT4 emerged as the most
accurately classified fuel types, boasting hit rates exceeding 90% and no commission errors
noted for FT4. Regarding the F-score (Table 4), the highest coefficients were observed in
FT4, followed by FT5, while the lowest coefficients were associated with the intermediate
shrub (FT3) and tree (FT6) fuel types. Results of the F-score for SVM-L and SVM-R can be
found in Tables S4 and S6 of the Supplementary Materials, respectively.
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Table 2. Performances of the three classification models using the overall accuracy (OA) coefficient
for the five selected variables of the UAV data.

Variables Model OA

Elev. P99, Elev. P10, Elev.
stdev.,

All returns > 4 m, LHDI

RF 81.28%
SVM-L 75.10%
SVM-R 78.32%

Table 3. Confusion matrix of the best UAV classification model (RF).

Fuel
Types

Predicted Prod.’s
AccuracyFT2 FT3 FT4 FT5 FT6 FT7

A
ct

ua
l

FT2 99 20 0 0 0 0 83.19%
FT3 10 42 0 10 0 8 60.00%
FT4 1 0 50 0 0 0 98.04%
FT5 0 0 0 120 0 10 92.31%
FT6 0 0 0 0 91 31 74.59%
FT7 0 8 0 10 29 191 80.25%

User’s
accuracy 90.00% 60.00% 100.00% 85.71% 75.83% 79.58%

Table 4. F-score (F) coefficient for each fuel type of the best UAV classification model (RF).

FT2 FT3 FT4 FT5 FT6 FT7

F 0.87 0.57 1.00 0.89 0.69 0.74

3.2. Classification of Prometheus Fuel Types Combining UAV and HMLS Data

The inclusion of the volume of vegetation from the HMLS voxelized dataset resulted
in a substantial enhancement of accuracy across all three classification models (Table 5) and
minimized confusion between fuel types (Table 6). Notably, the Prometheus height interval
that demonstrated the most significant improvement was the volume between 0.60 and
2 m in height. Integration of this variable boosted the RF model to achieve an OA of 95.05%.
Furthermore, there was a notable enhancement of the SVM-R model, achieving an OA of
86.17% and, to a lesser extent, in the SVM-L model, attaining an OA of 81.73%. While the
volume at other Prometheus height intervals also contributed to model improvement, its
impact was comparatively smaller (Table 5). Confusions between fuel types in the best-
performing classification model (RF) were limited to FT2 and FT3 (Table 6). Similarly, the
F-score was maximum in all fuel types except for FT2 and FT3 (Table 7), where confounding
occurred. However, both types exhibited high performances. In the case of SVM-L and
SVM-R models, confusions were observed among other fuel types, yet hit rates and the
F-score remained consistently high across all types (Tables S7–S10 of the Supplementary
Materials, respectively).

Table 5. Performances of the three classification models for UAV data incorporating the four HMLS
variables using the overall accuracy (OA) coefficient.

Variables RF SVM-L SVM-R

UAV HMLS OA OA OA

Elev. P99, Elev.
P10, Elev. stdev.,
All returns > 4

m, LHDI

Volume < 0.60 m 83.83% 80.65% 81.00%
Volume 0.60–2 m 95.05% 81.73% 86.17%

Volume 2–4 m 83.76% 79.90% 85.85%
Volume > 4 m 82.50% 81.27% 82.15%
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Table 6. Confusion matrix of the best classification model (RF) integrating UAV and HMLS data.

Fuel Type
Predicted Prod.’s

AccuracyFT2 FT3 FT4 FT5 FT6 FT7

A
ct

ua
l

FT2 90 10 0 0 0 0 90.00%
FT3 10 40 0 0 0 0 80.00%
FT4 0 0 50 0 0 0 100.00%
FT5 0 0 0 90 0 0 100.00%
FT6 0 0 0 0 70 0 100.00%
FT7 0 0 0 0 0 70 100.00%

User’s
accuracy 90.00% 80.00% 100.00% 100.00% 100.00% 100.00%

Table 7. F-score (F) coefficient for each fuel type of the best classification model (RF) integrating UAV
and HMLS data.

FT2 FT3 FT4 FT5 FT6 FT7

F 0.90 0.80 1.00 1.00 1.00 1.00

3.3. Mapping of Prometheus Fuel Types

Figures 4 and 5 illustrate the mapping of Prometheus fuel types according to the
spatialization of the best classification model of the UAV data (RF). It is important to
note that, by disregarding the FT1 fuel type in this study, it is assumed that some pixels
classified as FT2 may actually correspond to FT1, as well as roads or bare soil. However,
for crop areas, a mask has been applied to exclude the spatialized pixels, as these areas
have not been modeled. Each figure presents three different areas, each containing two
plots representing the different Prometheus fuel types considered in this study. Additional
mapping can be found in Figures S1–S13 of the Supplementary Materials. Fuel types were
accurately determined across the entire area of 55 plots (75.34% of the total plots) and in at
least part of the area of 59 plots (80.82% of the total plots). Among shrub fuel type plots,
FT2 was correctly classified in 8 out of 11 plots (88.89%), with 2 plots classified as FT3 and 1
as FT4. In FT3 plots, the correct fuel type was mapped in 6 out of 7 plots (85.71%), with
only 1 plot misclassified as FT4. Additionally, FT4 was accurately mapped in 100% of the
plots with this observed type. Regarding tree fuel type plots, 11 out of 14 plots identified as
FT5 (78.57%) were spatialized with their correct fuel type, while 3 plots were incorrectly
classified as FT7. The highest error rate was observed in FT6 plots, with only 3 out of
12 plots (25%) being accurately spatialized. Furthermore, two additional plots contained
some FT6 pixels, albeit not in the majority, resulting in only five plots of this type (41.67%)
containing all or part of the pixels with their correct type. Misclassified FT6 plots were
consistently categorized as FT7. Finally, 22 out of 24 observed FT7 plots (91.67%) were
classified with their correct fuel type, with 100% of these plots containing some FT7 pixels.

The convergence of various fuel types depicted in the mapping enables showing
the structural heterogeneity and mixture of fuels in Mediterranean forests. The observed
ground truth represents a generalization of the fuel type across the entire plot, which
primarily relies on the predominant cover percentage (i.e., vegetation height and density)
within the plots. However, as an example, Figure 6 illustrates the heterogeneity of three
forest plots whose assigned ground truth was FT5, showcasing the structural metrics and
the diversity index that were introduced into the models. In plot “ay12”, the convergence
of FT5 and FT7 is observed, primarily due to variations in vegetation height at the 10th
percentile and different canopy cover densities above 4 m within the plot, thus indicating a
higher presence of understory in the pixels categorized as FT7. In plot “ay49”, only a small
sector is covered by FT7, primarily due to variations in canopy cover density above 4 m
compared to the rest of the plot categorized as FT5. Lastly, in plot “ay50”, variations in
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canopy cover density are again observed, but they do not appear to exert as much influence
as seen in the previous cases since the plot exhibits FT5 in its entire area.
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4. Discussion

The increasing frequency and intensity of wildfires require the formulation of preven-
tion and mitigation plans to minimize adverse impacts on the territory. Mediterranean
environments rank among the most fire-prone ecosystems globally, and the looming threat
of climate change may potentially cause certain regions to acquire Mediterranean charac-
teristics in the future, thus increasing the wildfire issue [56]. Mapping of forest fuels helps
to understand fire spread and velocity within forested areas, serving as a crucial tool for
effective forest management. The findings of this study underscore the efficacy of utilizing
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UAVs equipped with LiDAR sensors for forest fuel identification, as well as the substantial
enhancement in the classification achieved through the integration of UAV and HMLS data,
particularly when identifying the understory fuel between 0.60 and 2 m in height. Overall,
the spatialization of Prometheus fuel types yielded satisfactory results, albeit encountering
some challenges with the FT6 fuel type, thus validating the utility of UAV-LiDAR systems
for fuel mapping across extensive areas.

4.1. Adequacy of the Modeled Variables in Identifying the Prometheus Fuel Types

The UAV variables introduced into the classification models were selected according
to the results given by Dunn’s test, a method already employed in previous forest-related
studies in order to determine differences between groups (e.g., [57,58]). The use of Dunn’s
test allows the variables included in the models to have a more logical explanatory meaning
than that derived from the automatic selection of other procedures (e.g., VSURF), which
tends to optimize the results by including metrics that may be similar. This may complicate
the model and make the results less interpretable. Figure 7 provides insights into the
consistency and discriminatory ability of the model variables in distinguishing between
the different fuel types. The variable “Elev. P99”, representing maximum vegetation or
canopy height, effectively differentiates between shrub fuel types (FT2, FT3, FT4) and
tree fuel types (FT5, FT6, FT7), thereby preventing confusion between these two groups.
This is consistent with other studies that have identified canopy height as an effective
metric for characterizing fuels [53,59]. Similarly, “Elev. P10” clearly distinguishes FT5
from other types. Given that this type represents forests with minimal understory, the
heights at the 10th percentile tend to be higher, aiding in correctly classifying FT6 and
FT7. The effectiveness of LiDAR-derived low vegetation height metrics for characterizing
fuels has already been observed by Domingo et al. (2020) [29]. “Elev. stdev.” reflects
the variability of height distributions, facilitating differentiation between shrub and tree
fuel types, although some overlap is observed, particularly in FT3 with FT5 and FT7.
Concerning “All returns > 4 m”, this metric is very useful for distinguishing between
tree fuel types [50]. It identifies the quantity of fuel above 4 m (indicative of tree fuel),
yet values are distributed similarly within shrub and tree fuel types, leading here to
limited discriminatory power. FT2, FT3, and FT4 exhibit minimal returns above 4 m,
likely attributed to scattered small trees or tall shrubs within the plots. Conversely, FT5
demonstrates maximum fuel above 4 m, possibly due to larger trees or denser canopy cover
inhibiting laser penetration to lower strata. Additionally, laser returns penetrating the
crowns may have been misclassified as ground, given the sparse understory vegetation in
FT5 plots. FT6 and FT7 show fewer returns above 4 m compared to FT5, suggesting smaller-
sized trees or greater canopy openness facilitating laser penetration to lower strata. The
variable “LHDI” serves to identify the relative abundance of fuel, regardless of vegetation
height. This variable has also been effective for classifying fuel types in previous work [60],
as well as for characterizing forest structures [61]. While “LHDI” may not distinguish
between shrub and tree types, it effectively discriminates between types within a dominant
stratum. “LHDI” clearly delineates FT2 from other types, which aligns logically with
FT2 being a low-shrub type characterized by minimal structural diversity. Additionally,
it facilitates strong differentiation among the three tree types, with low values in FT5,
medium values in FT6, and high values in FT7. However, “LHDI” may not differentiate
between FT3 and FT4, as these types exhibit overlapping values. Lastly, the volume between
0.60 and 2 m derived from the HMLS voxelized data demonstrates considerable variation
across fuel types, particularly among tree types. As expected, values are minimal in FT2
and FT5, reflecting the low shrub type and limited understory characteristic of these types,
respectively. Intermediate values are evident in FT3 and FT6, reflecting their transitional
nature between low (FT2) and high (FT4) shrubs and between minimal understory (FT5) and
complete vertical canopy continuity (FT7), respectively. Consequently, maximum volumes
are observed in FT4 and FT7, where vertical fuel continuity is pronounced. Furthermore,
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minimal variability is observed in FT7 values, suggesting homogeneity in volume within
this height stratum across plots.
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4.2. Capabilities of UAV-LiDAR and HMLS Systems to Classify Prometheus Fuel Types

The classification of the Prometheus fuel types was conducted utilizing machine learn-
ing techniques, a methodology widely employed in previous studies with satisfactory
outcomes (e.g., [29,32,50,62]), although recent studies have also shown promising results
in fuel classification modeling based on deep learning methods [62–65]. The RF model
emerged as the most effective in this study, achieving the highest overall accuracy among
the models tested. RF also yielded the most balanced confusion matrices, primarily demon-
strating confusion between similar fuel types and minimal errors between types of different
dominant strata. The SVM-L and SVM-R models also exhibited satisfactory overall accu-
racies. In this sense, all the classification models improved their performance compared
to those conducted by Hoffrén et al. (2023) [32] on almost the same study plots. That
work offers a robust validation of the capacity of the UAV-LiDAR system employed in this
study, given the similarity in the study area and the use of identical machine learning tech-
niques, albeit Hoffrén et al. (2023) [32] used variables derived from UAV photogrammetric
data. Notably, all fuel types were classified more accurately with the UAV-LiDAR system
compared to the photogrammetric UAV data, with significant improvements observed,
particularly in the classification of FT3, FT4, and FT6 types. These findings are consistent
with those reported by Wallace et al. (2016) [66], who similarly compared UAVs with LiDAR
and photogrammetric sensors in dry sclerophyll eucalypt forest stands, noting that both
systems could effectively describe terrain and canopy properties, although the performance
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of photogrammetric UAVs was compromised in densely forested areas. This aspect was
also observed by Hillman et al. (2021) [33] again in sclerophyll eucalypt forests, who noted
underperformance in characterizing canopy and below-canopy structures. Furthermore,
the results from classification models presented here improve upon fits of fuel classification
models based on ALS and multispectral data reported in previous studies (e.g., [29,67,68]),
though they are somewhat lower compared to those of García et al. (2011) [50], who
applied decision rules to the classification outputs. Hoffrén et al. (2023) [27] achieved lower
classification accuracies when using LiDAR data from NASA’s Global Ecosystem Dynamics
Investigation satellite system, though performances were comparable to this study when
LiDAR-derived metrics were combined with multispectral imageries from Landsat-8 OLI.

The integration of UAV variables with vegetation volume data derived from HMLS-
voxelized point clouds yielded a significant enhancement in the classification models.
The fuel volume between 0.60 and 2 m reached the most promising results for the models,
although other heights strata also contributed to improving accuracies, but to a lesser extent.
This outcome aligns logically with the operational characteristics of HMLS systems, which,
operating from the ground, are less susceptible to canopy bounce effects compared to UAVs.
Consequently, this integration minimized confusion between similar fuel types and notably
eradicated them almost entirely, with the inclusion of vegetation volume between 0.60 and
2 m. In this study, we benefited from HMLS data collected in a prior work [38], which
aimed to characterize Prometheus fuel types using high-density voxels (5 cm3) generated
from HMLS point clouds. In that study, the analysis of the vertical distribution of fuels
based on the voxels for each observed fuel type revealed significant confusion in field
identification between types FT2-FT3, FT5-FT6, and FT6-FT7, consistent with the highest
error rates observed in this study (FT3) and in Hoffrén et al. (2023) [32] (FT3 and FT6).
Therefore, the HMLS system effectively captured the structural heterogeneity of understory
fuels—a prevalent scenario in Mediterranean forests—and minimized confusion between
Prometheus fuel types by amalgamating its data with UAV-LiDAR data. This synergy
between both systems has also demonstrated effectiveness in previous studies [33], albeit
with slightly superior estimates achieved by TLS in identifying elevated canopy cover in a
dry schlerophyll forest. Furthermore, Hyyppä et al. (2020) [34] found better identification
of forest understory attributes using a ground-based mobile laser scanner (MLS) and an
under-canopy UAV system in a boreal forest. Additionally, the fusion of UAV and MLS data
facilitated the effective quantification of post-fire tree structures in a mixed forest in Western
Canada [69]. Other authors underscore the importance of combining TLS, MLS, and UAV
systems for validating spaceborne LiDAR, radar, and optical missions [70]. Despite these
promising findings, the use of ground-based LiDAR systems may not always be practical
in terms of productivity, as data collection requires more time and access within the forest,
which can be challenging due to terrain obstacles (e.g., steep slopes, water masses, or rocky
cliffs), dense vegetation, or wildlife. In contrast, UAVs enable faster data collection over
larger areas without direct penetration into forests, offering a significant advantage. Thus,
in this study we cannot spatialize the UAV-HMLS model because it was impracticable to
collect data in the whole UAV flight areas in terms of time, cost, and effort. In this sense,
the capacity of UAVs themselves to cover greater extents and generate fuel maps presents a
very valuable opportunity for effective forest management.

4.3. Fuels Mapping from UAV Data

The analysis of the spatialized fuel types within the forest plots yielded good overall
correspondences with the ground truth observations. In some cases, the plots exhibited a
mix of several fuel types, as depicted in Figure 6—an expected scenario given the inherent
heterogeneity of fuel types, particularly in Mediterranean areas, characterized by high forest
structural complexity. Primary challenges arose in categorizing the FT6 fuel type, which was
inaccurately spatialized in many of its corresponding plots, and furthermore, there were
few such pixels spatialized in general on the maps. In all plots where FT6 was misclassified,
the spatialized fuel type was FT7, which confirms the high confusion between these
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two fuel types already observed in many previous studies [29,32,49,50,68]. Discrepancies
between the hit rate percentages of FT6 in the RF classification model, which were relatively
high, and the resulting mapping could potentially be attributed to the tendency of RF
models to overfit, a phenomenon documented in prior studies [71,72]. Additionally, these
confusions may stem from a limitation of the model variables in discerning between FT6
and FT7. Examination of the complete results of Dunn’s test (Table S2 of the Supplementary
Materials) reveals that none of the variables were able to differentiate between these two
types. Furthermore, Figure 7 illustrates that the distribution of values of the UAV variables
in FT6 and FT7 consistently overlap, unlike other fuel types, where such overlap is absent
in at least one variable. However, it is important to note the converse scenario, wherein the
FT3 fuel type obtained the highest error rates in the classification model, yet all observed
FT3 type plots, except one, were correctly assigned their respective fuel types in the maps.
Ultimately, despite some observed limitations, the maps of fuel types have shown good
performance and confirm UAV-LiDAR systems as powerful tools for better understanding
the distribution of fuels across large areas.

Fuel maps are critical tools for improving decision-making and risk management of
wildfires, especially in highly fire-prone regions such as Mediterranean ecosystems. These
maps aid in the development of structural mitigation plans, including activities such as
clearing, grazing, scrub removal, and periodic necromass cleaning over time. Furthermore,
their integration with other cartographic data adds significant value to improve fire risk
prevention over ecosystems and populations. In this study, the Prometheus fuel types were
successfully classified and mapped across the UAV flight areas. Although it is outside
the scope of our research, scaling up from our small test areas to a landscape scale, which
is more effective for establishing fire management strategies, could be achieved through
multi-sensor integration. The collection of highly accurate UAV data offers a method that
improves both the time efficiency and accuracy of traditional forest inventory based on
fieldwork while enhancing the precision of data obtained from remote sensors, such as ALS
or SLS, which is critical in complex environments like Mediterranean forest landscapes.
In this way, UAV data would serve as the ground truth for subsequently spatializing the
results to larger areas using sensors that cover broader spatial scales.

5. Conclusions

The identification and mapping of forest fuels play a crucial role in wildfire prevention
and mitigation efforts. The integration of two remote sensing technologies, LiDAR and
UAVs, known for their efficacy in estimating vegetation structural characteristics, as well as
the use of machine learning-based classification algorithms, has facilitated the classification
of Prometheus fuel types in Mediterranean forest stands and the generation of fuel maps
with high levels of accuracy. While further research is necessary to explore the potential
and limitations of these instruments, as well as their integration with other platforms
and sensors (such as TLS, multispectral, or hyperspectral imaging), the findings of this
study underscore the capabilities of UAV-LiDAR systems as high-valuable instruments to
identify and map forest fuels and, ultimately, for improving efficient management of forest
ecosystems at local and regional scales.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16183536/s1, Figure S1: Mapping of Prometheus fuel types
from the best classification model (RF) of the UAV data at 20 m spatial resolution. (1) Plots “al01”
and “al02”. (2) Plots “al05”, “al06”, “al07”, “al08”, and “al09”. (3) Plot “ay01”; Figure S2: Mapping
of Prometheus fuel types from the best classification model (RF) of the UAV data at 20 m spatial
resolution. (1) Plots “ay02” and “ay03”. (2) Plots “ay04” and “ay08”. (3) Plots “ay05” and “ay09”;
Figure S3: Mapping of Prometheus fuel types from the best classification model (RF) of the UAV data
at 20 m spatial resolution. (1) Plot “ay07”. (2) Plots “ay10” and “ay11”. (3) Plots “ay12”, “ay49”, and
“ay50”; Figure S4: Mapping of Prometheus fuel types from the best classification model (RF) of the
UAV data at 20 m spatial resolution. (1) Plots “ay13” and “ay14”. (2) Plot “ay16”. (3) Plots “ay19”
and “ay20”; Figure S5: Mapping of Prometheus fuel types from the best classification model (RF) of

https://www.mdpi.com/article/10.3390/rs16183536/s1
https://www.mdpi.com/article/10.3390/rs16183536/s1


Remote Sens. 2024, 16, 3536 17 of 20

the UAV data at 20 m spatial resolution. (1) Plot “ay21”. (2) Plot “ay22”. (3) Plot “ay28”; Figure S6:
Mapping of Prometheus fuel types from the best classification model (RF) of the UAV data at 20 m
spatial resolution. (1) Plots “ay29” and “ay31”. (2) Plot “ay30”. (3) Plots “ay44” and “ay45”; Figure S7:
Mapping of Prometheus fuel types from the best classification model (RF) of the UAV data at 20 m
spatial resolution. (1) Plot “ay46”. (2) Plot “un02”. (3) Plot “un03”; Figure S8: Mapping of Prometheus
fuel types from the best classification model (RF) of the UAV data at 20 m spatial resolution. (1) Plot
“un04”. (2) Plot “un05”. (3) Plots “un11” and “un12”; Figure S9: Mapping of Prometheus fuel
types from the best classification model (RF) of the UAV data at 20 m spatial resolution. (1) Plot
“un13”. (2) Plot “un28”. (3) Plot “vi14”; Figure S10: Mapping of Prometheus fuel types from the
best classification model (RF) of the UAV data at 20 m spatial resolution. (1) Plots “vi15” and “vi16”.
(2) Plots “vi19” and “vi20”. (3) Plot “vi27”; Figure S11: Mapping of Prometheus fuel types from the
best classification model (RF) of the UAV data at 20 m spatial resolution. (1) Plots “vi29” and “vi30”.
(2) Plots “vi36” and “vi37”. (3) Plots “vi38” and “vi41”; Figure S12: Mapping of Prometheus fuel
types from the best classification model (RF) of the UAV data at 20 m spatial resolution. (1) Plot
“zu30”. (2) Plot “zu31”. (3) Plot “zu32”; Figure S13: Mapping of Prometheus fuel types from the best
classification model (RF) of the UAV data at 20 m spatial resolution. (1) Plot “zu35”. (2) Plot “zu38”.
(3) Plots “zu201” and “zu202”; Table S1: Description and general characteristics of the forest plots.
XY coordinates in ETRS89/UTM zone 30N (EPSG: 25830); Table S2: Number of pairs of Prometheus
fuel types able to differentiate (value 1 means Dunn’s test, p ≤ 0.05) by the UAV variables; Table S3:
Confusion matrix of the SVM-L classification model of the UAV data; Table S4: F-score (F) coefficient
for each fuel type of the SVM-L classification model of the UAV data; Table S5: Confusion matrix
of the SVM-R classification model of the UAV data; Table S6: F-score (F) coefficient for each fuel
type of the SVM-R classification model of the UAV data; Table S7: Confusion matrix of the SVM-L
classification model of the UAV-HMLS data; Table S8: F-score (F) coefficient for each fuel type of
the SVM-L classification model of the UAV-HMLS data; Table S9: Confusion matrix of the SVM-R
classification model of the UAV-HMLS data; Table S10: F-score (F) coefficient for each fuel type of the
SVM-R classification model of the UAV-HMLS data.
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