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BACKGROUND: Ventricular repolarization time (ECG QT and JT intervals) is associated with malignant arrhythmia. Genome-wide
association studies have identified 230 independent loci for QT and JT; however, 50% of their heritability remains unexplained.
Previous work supports a causal effect of lower serum calcium concentrations on longer ventricular repolarization time. We
hypothesized calcium interactions with QT and JT variant associations could explain a proportion of the missing heritability.

METHODS AND RESULTS: We performed genome-wide calcium interaction analyses for QT and JT intervals. Participants
were stratified by their calcium level relative to the study distribution (top or bottom 20%). We performed a 2-stage analy-
sis (genome-wide discovery [N=62532] and replication [N=59861] of lead variants) and a single-stage genome-wide meta-
analysis (N=122393, [European ancestry N=117581, African ancestry N=4812]). We also calculated 2-degrees of freedom
joint main and interaction and 1-degree of freedom interaction P values. In 2-stage and single-stage analyses, 50 and 98
independent loci, respectively, were associated with either QT or JT intervals (2-degrees of freedom joint main and interaction
P value <5x1078). No lead variant had a significant interaction result after correcting for multiple testing and sensitivity analyses
provided similar findings. Two loci in the single-stage meta-analysis were not reported previously (SPPL2B and RFX6).

CONCLUSIONS: We have found limited support for an interaction effect of serum calcium on QT and JT variant associations
despite sample sizes with suitable power to detect relevant effects. Therefore, such effects are unlikely to explain a meaningful
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proportion of the heritability of QT and JT, and factors including rare variation and other environmental interactions need to

be considered.

Key Words: calcium m ECG intervals m gene-lifestyle interaction ®m genome-wide association study m ventricular repolarization

CLINICAL PERSPECTIVE
What Is New?

Interaction serum calcium concentrations with
variant associations for QT and JT intervals do
not account for a meaningful proportion of the
missing heritability of these traits in genome-
wide association studies.

What Are the Clinical Implications?
e Rare variation and other environmental interac-
tions need to be explored.

Nonstandard Abbreviations and Acronyms

HC high calcium

LC low calcium

P,oint 2-degrees of freedom joint main and
interaction P value

P 1-degree of freedom interaction
P value

UKB United Kingdom Biobank

cardiovascular deaths globally." There are multi-

ple underlying causes, including ischemic heart
disease, inherited arrhythmic syndromes, cardiomy-
opathies, and electrolyte disturbances.? Abnormal
ventricular repolarization is an important precursor to
malignant ventricular arrhythmia, which is captured
by the QT interval on the ECG.? Because the QT in-
terval includes the QRS complex (representing ven-
tricular depolarization), the JT interval (QRS offset to
T-wave end) has attracted interest, as it includes only
the period of repolarization.® Both QT and JT intervals
are heritable; however, despite the 230 independent
loci that have been identified previously, approximately
50% of the single nucleotide variant (SNV)-based heri-
tability remains unexplained.*

To improve prevention and treatment strategies
for sudden cardiac death, there is a need to advance
our knowledge of risk markers and modifiers of dis-
ease. Serum electrolytes are established modifiers of

Sudden cardiac death accounts for over half of all
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ventricular repolarization.® In our previous Mendelian
randomization study, we found support for a causal
relationship between lower serum calcium concentra-
tions and longer ventricular repolarization time.® Of in-
terest, a 0.1 mmol/L decrease in genetically predicted
serum calcium was associated with a 3 millisecond in-
crease in the QT interval, an effect size similar to a pre-
vious observational studies.>® Calcium ions have an
important role in regulating cardiac electrophysiology
through their role in excitation-contraction coupling
and counterbalance with sodium ions during phase
of the cardiac action potential.” Severe hypocalcemia
(<1.9mmol/L) is well established to cause QT prolon-
gation and ventricular arrhythmia.® An observational
study has also reported an association of lower serum
calcium levels with sudden cardiac death, even within
the normal range of values.®

Gene—environment interactions are an important
component of the underlying genetic architecture of
complex traits. Such interactions may explain a pro-
portion of the missing heritability not identified from
main effect analyses in classic genome-wide asso-
ciation studies (GWASs).'® For ventricular repolariza-
tion, an interaction effect of hypokalemia on the QT
interval  (14.6milliseconds versus 2.7 milliseconds)
has been reported for the common missense variant
S$1103Y at SCN5SA in individuals of African ancestry.!
Pharmacogenetic drug-SNV interaction analyses for
QT and JT have also identified novel loci.'>'® However,
it is unknown whether serum calcium interacts with ge-
netic association for QT and JT intervals.

We hypothesized that low or high serum calcium
concentrations may influence genotype associations
with QT and JT intervals and may explain a proportion of
the missing heritability for these measures. Accounting
for these effects in large study samples may identify
novel biomolecular insights relevant to ventricular re-
polarization.”* We have therefore performed genome-
wide calcium (joint) interaction meta-analyses for QT
and JT intervals in over 122 000 individuals.

METHODS
Data Availability

Summary statistics from the single-stage SNV-by-
calcium interaction analysis for QT and JT intervals will
be made available on the National Human Genome
Research Institute-European Bioinformatics Institute
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Catalog of human GWASs website, https:/www.ebi.
ac.uk/gwas/.

Code Availability

Codes are available from the original software used for
each analysis.

Study Cohorts

A total of 18 studies (and their substudies) contributed
to calcium-stratified GWAS interaction meta-analyses
for QT and JT, comprising a total maximum sample
size of 122393 (117581 [96.1%)] European, 4812 [3.9%)]
African) (Table S1, Data S1 and S2). These included
members of the CHARGE (Cohorts for Heart and
Aging Research in Genomic Epidemiology) consor-
tium.'® All participating institutions had approval from
their relevant local medical ethics committee, and
written informed consent was obtained at a study
level from all individuals. Cohorts included in associa-
tion analyses were predominantly population based.
Before genotype imputation, study-specific genotype
quality control filters were applied, including call rate,
Hardy-Weinberg equilibrium P value, and minor allele
frequency (Table S2). The majority of studies used the
1000 genomes phase 3 reference panel'® for impu-
tation, with a smaller proportion using the Haplotype
Reference Consortium (r1.1 2016) panel'” or TOPMed
Freeze 5'8 (Table S2).

Phenotyping of Participants
ECG acquisition and annotation was performed at a
study level, including calculation of QT and JT inter-
vals in milliseconds (ms) (Table S3). Individuals were
included in the study if serum calcium concentration
(mmol/L) was also available. Across all participat-
ing studies, serum calcium concentrations were pre-
dominantly within normal limits, with a small number
of individuals with abnormal values (average mini-
mum 1.86mmol/L, average maximum 2.94mmol/L)
(Table S3). For 10 studies, samples for calcium meas-
urement were taken on the same day as the ECG re-
cording (total N=84 833 [Table S3]). For the remaining
8 studies (N=37760), measurements were typically
taken within a day or week. As serum calcium concen-
trations are typically stable over time,'”® these studies
were included in the meta-analysis as small degrees
of variation are unlikely to significantly impact alloca-
tion of individuals to high calcium (HC) or low calcium
(LC) strata. We have performed sensitivity analyses
(described subsequently) to evaluate the effects of this.
Individuals were excluded at a study level if they
had a QRS duration >120milliseconds (as a surrogate
marker for cardiovascular disease), right or left bundle-
branch block, atrial fibrillation or flutter on ECG, prior
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diagnoses of myocardial infarction or heart failure,
were pregnant at the time of ECG acquisition, or if a
pacemaker or implantable cardiac defibrillator had
been inserted. Additionally, if the data were available,
individuals using digitalis medication, class | or Il an-
tiarrhythmics, or established QT prolongation medica-
tion were excluded (Table S4). In total, there were 3
studies where medication data were not available. This
represents a total of 18203 individuals (14.5% of the
meta-analysis sample size); however, the proportion
of these individuals on QT-prolonging medication will
be small (eg, approximately 1.8% of UK Biobank [UKB]
individuals with ECG data were on these medication
after applying all other exclusions).

Statistical Analysis
For each study before performing the GWAS, an impu-
tation quality cutoff Rsg>0.5 (or similar in IMPUTE) and
minor allele frequency filter >1% was applied. Population
substructure was accounted for using genetic principal
components or linkage disequilibrium calculated from
hard-call genotyped SNVs.?° Individuals of European
and African ancestry were analyzed separately. When
applicable, a kinship matrix (or hard-call genotyped
SNVs in BOLT-LMM) was used to account for related-
ness between individuals. Mandatory covariates in-
cluded in the GWAS model were age, sex, height, and
body mass index as performed in standard QTAT
GWAS.* Correction of QT and JT intervals for heart rate
was applied by also including heart rate in the linear re-
gression model, as done in previous studies.* Additional
cohort-specific covariates were included when appropri-
ate, such as cohort recruitment site or genotyping array.
To perform the GWAS, each cohort first divided in-
dividuals into different strata to represent exposure to
HC or LC according to their serum calcium concentra-
tion relative to the study distribution:

HC:

1. Exposed group (HC-exposed): Individuals with
a serum calcium concentration in the top 20%
of the study distribution.

2. Unexposed group (HC-unexposed): Individuals
not in HC-exposed group (ie, serum calcium in
the bottom 80% of the study distribution).

LC:

1. Exposed group (LC-exposed): Individuals with
a serum calcium concentration in the bottom
20% of the study distribution.

2. Unexposed group (LC-unexposed): Individuals
not in LC-exposed group (ie, serum calcium in
the top 80% of the study distribution).


https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
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Subsequently, for each ECG trait (QT and JT) and
stratum (HC-exposed, HC-unexposed, LC-exposed,
and LC-unexposed) GWASs were performed using an
additive genetic effect model (Equation 1):

P~Gsps+C+g+e Q]

Where P is the phenotype (QT or JT), G is the gen-
otype at SNV s, g is the fixed effect size of SNV s, C is
a matrix of covariates, g is a random effect capturing
unequal relatedness, and e is the random effect of re-
sidual errors.?!

The GWAS software used was chosen at cohort-
level: either ProbABEL (v.0.5.0),22 MMAP (v.04.2018),23
SAIGE,? SNPTEST (v2.5.4),% BOLT-LMM,%° RVTEST
(v.10.2017),%6 or Regscan.?” In addition, to permit cal-
culation of main effect beta estimates, a GWAS was
also performed for each ECG trait including all individ-
uals irrespective of serum calcium concentration.

Quiality control of GWAS summary statistics sub-
mitted by each cohort was performed centrally using
standardized steps with the EasyQC R-package (ver-
sion 9.2).28 In brief, allele frequencies (AF) of variants
were compared with the reference panel used by the
original study and outliers (AF difference>0.2) were
removed. To ensure only high-quality SNVs were se-
lected, variants with a product of minor allele count
and imputation quality (minor allele count*Rsq) <20
were excluded. Quantile-quantile plots, P value, and
Z-statistic plots and lambdas were manually inspected
for each study to identify analytical errors and uncor-
rected population stratification.

Two-Stage SNV-by-Calcium Interaction
GWAS Meta-Analyses for QT and JT

The primary analysis was a 2-stage analysis (Figure 1).
Participating studies were split into discovery and
replication cohorts (Table). Manhattan and quantile-
quantile plots for each stage were generated using the
R package QQman (v.0.1.8).

The discovery phase included 16 studies and their
substudies, with individuals of European ancestry only
(total N=62532). For each group (HC-exposed, HC-
unexposed, LC-exposed, LC-unexposed) and for each
ECG trait (QT and JT), a full GWAS meta-analysis was
performed using an inverse variance-weighted, fixed
effects model with METAL (version released March 25,
2011).2° Variants were excluded from the meta-analysis
if present in <2 studies or had a meta-analysis sam-
ple size <2000 in the exposed group. To estimate the
main effects of SNV associations with QT and JT, a
meta-analysis was also performed including all indi-
viduals irrespective of their serum calcium concentra-
tion. Subsequently, SNV-strata specific joint P values
(2-degrees of freedom [df] main and interaction [P o
Equation 2]) and interaction P values (P, Equation 3)

J Am Heart Assoc. 2024;13:e034760. DOI: 10.1161/JAHA.123.034760

Variant-Calcium Interaction on QT and JT Intervals

between each exposed and unexposed stratum (HC-
exposed versus HC-unexposed, LC-exposed versus
LC-unexposed) were calculated using the EasyStrata
R package (v8.6).%°

N 1
PioNT = D, ( .ZQ> ~X2(N) @

By — B

se(ﬂ1)2+se(ﬁ2)2

Where g is the effect size estimates of stratum |,
SE is the corresponding SE of stratum |, and N is the
sample size of the stratum.®°

All variants from the discovery analysis with a
Pont<1x1076 were subsequently grouped into loci
using the following method. For each lead variant
(smallest P,5,y7) ina 1 mb region, linkage disequilibrium
correlations were calculated using the 1000 genomes
reference panel in PLINK (v1.9) including individuals of
European and African ancestry.'®3' Locus boundaries
were defined as either £500kb from the lead SNV or a
region containing variants with an r>>0.1 with the lead
SNV, whichever was greater. Overlapping loci were
merged to create a list of lead variants representing
each locus. These lead variants were subsequently
taken forward for replication.

Replication of each lead variant was performed in
a meta-analysis of 2 cohorts of European ancestry
(N=55049) and a further 3 cohorts of African ancestry
(N=4812), a total of 5 cohorts with N=59861 across
both ancestries (Table; Figure 1). The lead variants were
declared replicated if meeting the following criteria:

P|NT: NN(O,1)

©)

1. A 2-df main and interaction joint test P value
less than a Bonferroni-corrected threshold for
the number of lead variants tested for rep-
lication in each analysis (P;q<[0.05/number
of loci]).

2. Concordant direction of beta effect size esti-
mates between discovery versus replication.

3. Pjonr genome-wide significant (<5x107-8) in a
combined meta-analysis of discovery and rep-
lication cohorts. A locus was declared novel if
no SNV from previous published QT or JT main
effect GWASs mapped within its boundaries.*
Table S5 contains a list of all previously reported
loci for QT (N=195) and JT (N=172).

To identify support for an interaction effect of calcium
on the association of genotypes with QT and JT, 1-df
interaction P values (P,) were reviewed for each repli-
cated lead variant and declared significant if meeting a
Bonferroni-corrected threshold (<0.05/number of unique



202 ‘g Jequieidas uo Aq Bio'sfeuinofeye//:dny wouy papeojumoq

Young et al

Variant-Calcium Interaction on QT and JT Intervals

Variant exclusions for QC

MAF < 0.1, INFO > 0.5
MAC*Imputation quality < 20 v
AF outliers

Two-stage SNV-by-calcium

QT JT GWAS meta-analysis

Discovery

-

European ancestry
16 studies, total sample size = 62,532
Full genome-wide meta-analyses for each
_— strata (N=4) ~
“ and ECG trait (QT and JT) using METAL T~

—

High calcium ]

Exposed (top 20% of Unexposed (bottom

[ Low calcium ]

Exposed (bottom |(Unexposed (top 80%

~A

. L 80% of calcium 20% of calcium of calcium
calau:\r_i;tgrlgbsutlon) distribution) 2-df joint main and distribution) distribution)
o N=49,110 interaction (Pjoy7) and 1-df N=12,621 N=49,485
interaction (P,;) P-values
calculated between strata for
each ECG trait using
EasyStrata
[ Exposed vs Unexposed Exposed vs Unexposed ]

Variants with (P,q,\; <1x107) grouped into loci
QT: H-Calcium: 61 loci, L-Calcium: 62 loci
JT: H-Calcium: 62 loci, L-Calcium: 60 loci

Replication

European (N=55,049) and African (N=4,812) ancestries
5 studies, total N=59,861

Lead variants at loci meeting discovery phase criteria
2-df joint P-values calculated using the same method as
for discovery analyses

Replicated if:
1) Pyt < (0.05/number of independent loci in each analysis)
2)Concordant direction of main effect beta estimates
3) Pyoint <5%107 in the combined discovery and replication

analysis il
Number of loci
QT: H-Calcium: 40, L-Calcium: 38
JT: H-Calcium: 42, L-Calcium: 42
Figure 1. Overview of the primary analysis performed in this study.

AF indicates allele frequency; df, degrees of freedom; GWAS, genome-wide association study; MAC, minor allele count; MAF, minor
allele frequency; N, number; P, interaction effect P value; P o\, joint (main and interaction effect) P value; and SNV, single nucleotide

variant.

independent loci). 1-df interaction P values <0.05 but
greater than the Bonferroni-corrected threshold were
considered to identify suggestive support for an inter-
action effect.

To determine whether between-ancestry (European
versus African) heterogeneity may influence our results
(which could be by affecting replication of discovery
lead variants or identification of support for interaction
effects), between-ancestry main effect heterogeneity P

J Am Heart Assoc. 2024;13:e034760. DOI: 10.1161/JAHA.123.034760

values were calculated by performing a meta-analysis
of the European ancestry meta-analysis versus the
African ancestry meta-analysis within METAL.?® A
between-ancestry heterogeneity P value <0.01 was
used to declare evidence of heterogeneity for each
lead variant brought forward to replication. As some
heterogeneity was observed at a minority of loci, rep-
lication was repeated in the 2 European ancestry co-
horts only (N=55049).
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Table. Cohorts Included in the GWAS Meta-Analyses

Discovery (EA only) Replication (EA)
Sample Sample

Study size Study size

ARIC 7789 LIFELINES- 9426

UGLI

BRIGHT 1201 UKB 45623

CHRIS 4410 Total 55049

CHS 1408

INGI-CAR 355

INGI-FVG 781 Replication (AA)

INTER99 5928 Study Sample size

KORA-F3 2639 ARIC 2399

KORA-S4 2354 MESA 1182

LIFELINES-CS 12092 UKB 1231

MESA 2006 Total 4812

MICROS 515

NEO 5173

OGP 435

ORCADES 1710

RS-1 1544

RS-2 1372

RS-3 2559

SHIP 2885

SHIP-TREND-1 833

SHIP-TREND-2 2429

VIKING 1868

Total 62532

AAindicates African ancestry; ARIC, Atherosclerosis Risk in Communities
study; BRIGHT, British Genetics of Hypertension study; CHRIS, The
Cooperative Health Research in South Tyrol study; CHS, Cardiovascular
Health Study; EA, European ancestry; GWAS, genome-wide association
study; INGI-CAR, ltalian Network of Genetic Isolates-Carlantino; INGI-
FVG, ltalian Network of Genetic Isolates-Friuli Venezia Giulia; INTER99,
A Randomised Non-pharmacological Intervention Study for Prevention
of Ischaemic Heart Disease; KORA, Cooperative Health Research in the
Region Augsburg; LIFELINES-CS, Lifelines Cohort Study Cyto SNP subset;
LIFELINES-UGLI, Lifelines Cohort Study University Genetics Lifelines
Initiative subset; MESA, Multi-Ethnic Study of Atherosclerosis; MICROS,
Microisolates in South Tyrol; NEO, Netherlands Epidemiology of Obesity;
OGP, Ogliastra Genetic Park; ORCADES, Orkney Complex Disease Study;
RS, Rotterdam study; SHIP, Study of Health in Pomerania; UKB, UK Biobank;
and VIKING, Viking health study.

Single-Stage Full Cohort Discovery
SNV-by-Calcium Interaction GWAS
Meta-Analyses for QT and JT Intervals

To maximize power for the discovery of interac-
tion effects with calcium, a single-stage interaction
meta-analysis was also performed using all cohorts
(N=122393, Figure 2). For this analysis, variants were
excluded if their sample size was <60% of the total
sample size (N<73436) to ensure findings are not
driven by a minority of studies. Variants were declared

J Am Heart Assoc. 2024;13:e034760. DOI: 10.1161/JAHA.123.034760
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significant if the joint main and interaction effect was
genome-wide significant (P on<5x1078) and without
evidence for between-study heterogeneity (heteroge-
neity P value >0.01). The 1-df interaction P values were
declared significant if meeting a Bonferroni-corrected
threshold (<0.05/number of loci in each analysis).

Sensitivity Analyses

Five sensitivity analyses were performed to test whether
our study design influenced our findings (Figure 2):

1. Serum sampling for calcium measurements
on a different day to ECG acquisition could
introduce noise and prevent the detection of
significant interactions. Therefore, the single-
stage all cohorts SNV-by-calcium interaction
GWAS meta-analyses were repeated including
only studies where these data were collected on
the same day (10 studies, N=84833) (Table S3).

2. |Interaction effects may be easier to detect if
directly comparing extremes of the serum cal-
cium concentration distribution. To test this, we
repeated the SNV-by-calcium interaction meta-
analysis for QT and JT using EasyStrata, by
calculating the joint main and interaction effect
estimates between the top 20% (HC-exposed)
and bottom 20% (LC-exposed) GWAS meta-
analyses (N=50151).

3. As the criteria used to define each stratum may
influence the detection of interaction effects,
analyses were repeated in UKB only (N=45624)
having recategorized individuals as “exposed” if
in the top 1% of the HC group or bottom 1% of
the LC group. Joint (main and interaction) and
interaction effects between the 1% exposed
and 99% unexposed for each HC and LC group
were recalculated using EasyStrata and com-
pared with the UKB analysis using the original
definition (Exposed group=top or bottom 20%).

4. As differences in serum albumin concentration
may have a small impact on the categorization
of individuals to different strata by modifying cal-
cium binding,® analyses in UKB only (N=45624)
were repeated using serum albumin-corrected
calcium concentrations as the exposure. LC
or HC groups were defined as the bottom or
top 20% of individuals in the serum albumin-
corrected calcium distribution. Significant loci
were compared with the original UKB analysis
using serum total calcium.

5. We were interested if including calcium as a
categorical variable in the model along with the
interaction term SNV*calcium, would yield dif-
ferent findings compared with our approach
using EasyStrata. To address this question,
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Single-stage SNV-by-calcium

QT JT GWAS meta-analysis

All cohorts:
European (117,581) and African (N=4,812) ancestry
Total N=122,393

Full genome-wide meta-analyses for each strata and
ECG trait
Pyonr and Py calculated using EasyStrata

v

Number of loci at Pyq,; <5x10°8 &
between-study heterogeneity P>0.01
QT: H-Calcium: 73, L=Calcium: 73
JT: H-Calcium: 81, L-Calcium: 76

Sensitivity analyses
(5)

e

- | T

UKB only (N=45,624):
Test for interaction
effects when
recategorizing
“exposed” individuals
as top or bottom 1%
of individuals

P «
Interaction effects
recalculated
comparing individuals
in the top 20%
calcium distribution
with bottom 20%
(N=50,151)

—

UKB only: Comparison
of using EasyStrata
versus including
calcium as a categorical
variable and interaction
term (SNP*calcium) in
the model

Meta-analysis of only
studies with ECG and
serum calcium
measurements on the
same day (N=84,833)

UKB only (N=45,624):
Repeat analysis using
albumin corrected
calcium
measurements

Figure2. Overview of the single-stage all cohorts interaction analysis and subsequent sensitivity
analyses.

GWAS indicates genome-wide association study; N, number; P, interaction effect P value; P,q, joint
(main and interaction effect) P value; SNV, single nucleotide variant; and UKB, UK Biobank study.

we performed this analysis in UKB (N=45509)
(Data S3).

For sensitivity analyses 1 through 4, significant find-
ings were reported for variants where the P was
genome-wide significant (<5x1078). Lead variant inter-
action effect P values were reported significant if below
a Bonferroni-corrected threshold (<0.05/number of lead
variants for each trait) to account for multiple testing.

Follow-Up of Novel Loci

For lead variants at each “novel” locus previously not
reported for QT or JT, variant annotation was per-
formed using Variant Effect Predictor, RegulomeDB
(v2.0.3) and Combined Annotation Dependant
Depletion (v1.6) platforms.3?-3* To identify potential ef-
fects on tissue-specific gene expression, a look up was
performed using Genotype-Tissue Expression data
(version 8) for overlap of lead variants and their prox-
ies (r*>0.8) with lead expression quantitative trait loci
variants.®*3% Colocalization analyses were performed
using the R package COLOC(version 5.1.0.1).3" These
colocalization analyses use Bayesian statistical meth-
ods to calculate a posterior probability for a variant
being causal in both analyses (>75%). GWAS catalog
and Phenoscanner were used to investigate pleiot-
ropy and cross-trait association of our novel loci, by

J Am Heart Assoc. 2024;13:e034760. DOI: 10.1161/JAHA.123.034760

identifying any previously reported GWAS associations
(P <5x1078) of any other traits or diseases for variants in
strong linkage disequilibrium (*>0.8) with the lead vari-
ant.383° The Open Targets Gene to Locus pipeline was
used as an additional source to identify potential can-
didate genes at loci.*>*' This pipeline uses a machine-
learning model to weight evidence sources including
distance from variant to gene transcription start site,
colocalization and chromatin interaction data, and pre-
dicted variant pathogenicity.

Post Hoc Power Calculations

The Quanto+ program* was used to calculate the
power to detect a calcium interaction effect in a similar
total sample size (120000) for an SNV with a minor al-
lele frequency of 10% and a genome-wide significance
level (<5x1078).

RESULTS

Two-Stage SNV-by-Calcium QT and JT
Interaction GWAS Analyses

In a genome-wide discovery meta-analysis of 16 stud-
ies (22 substudies with 62532 individuals of European

ancestry), lead variants at 61, 62, 62, and 60 loci for
QT-HC, QT-LC, JT-HC, and JT-LC, respectively, met
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the predetermined P,q,r threshold (<1x1076) for test-
ing in replication (Table, Figure 1, Data S1). The rep-
lication meta-analysis (total N=59861) included 2
European ancestry (N=55049) and 3 African ancestry
(N=4812) cohorts, for a total replication sample size of
59861 participants (Table). In total, 40, 38, 42, and 42
independent lead variants for QT-HC, QT-LC, JT-HC,
and JT-LC, respectively, met all 3 criteria to declare
significance after the replication stage ([1] P o 1<0.05/
number of lead variants tested in each analysis, [2]
concordant direction of beta effect size estimates and
[3] Pjon7<5x10-8 when combining discovery and repli-
cation cohorts) (Figure 1, Table S6). These correspond
to 53 unique and independent loci across all 4 analy-
ses. All 53 loci have been previously reported as asso-
ciated with QT or JT intervals in main-effects standard
GWAS analyses.

None of the lead variant P reached a Bonferroni-
corrected threshold for significance (P;<0.05/number
of loci), indicating that the association at each locus
was primarily driven by the main variant effect after
accounting for serum calcium concentration. Plots
comparing effect size estimates for exposed versus
unexposed strata are shown in Figure 3. A linear trend
and high correlation in effect size estimates (Spearman
correlations 0.97-0.98) were observed when compar-
ing strata. Specifically, SNVs with large effect sizes
in the exposed group also had large effect sizes in
the unexposed group, that is, effect sizes for variant
associations in each stratum were similar. Five vari-
ants had suggestive support for an interaction effect
(Pn1<0.05 but >Bonferroni corrected P p). These were
lead variants at loci for QT-LC ([P, ;=0.023, for NKX2-
5], [Ppi=0.047, for RNF150]), JT-HC ([P,\;=0.025,
for KCNQ4], [Pn=0.034, for CASR]), and JT-LC
(Pn1=0.026, for KLF12) (Table S6).

To determine whether between-ancestry (European
versus African) heterogeneity was present in the rep-
lication analysis and potentially affected our findings,
we performed a lookup of main effect heterogeneity
P values for all lead variants brought forward from dis-
covery to replication. The between-ancestry heteroge-
neity P value for a QT or JT lead variant was <0.01
for 5 loci (NOSTAP, KCNHZ2, LAPTM4B, SLC4A3, and
RNF207) (Table S6). NOSTAP and KCNH2 consistently
give the strongest association signals for QT and JT
(by P value) and with large effect sizes. Their effects are
easier to detect in smaller studies, but the larger effect
size estimates may be more susceptible to slight dif-
ferences between studies. However, the heterogeneity
could also be due to true differences in effect sizes.

Because there was some evidence of between-
ancestry heterogeneity at some loci, a European
ancestry replication analysis was performed for com-
parison. There was no substantial difference in the
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results for 38, 37, 41, and 43 independent loci identi-
fied for QT-HC, QT-LC JT-HC, and JT-LC, respectively
(Table S7). These corresponded to 52 unique and in-
dependent loci across all 4 analyses and all were re-
ported in the primary analysis. None of the lead variant
Pt reached a Bonferroni-corrected threshold for sig-
nificance (P,;<0.05/number of loci).

Single-Stage SNV-by-Calcium QT and JT
Interaction GWAS Meta-Analyses for All
Cohorts

To maximize power for discovery of interaction effects
with calcium, we performed single-stage SNV-by-
calcium QT and JT interaction GWAS meta-analyses
including all cohorts. Variants not present in >60% of
the full meta-analysis sample (N=122393) and vari-
ants with between-study heterogeneity P values <0.01
were excluded after meta-analysis for quality control
filtering. Variants were declared significant if the joint
main and interaction effect P value was genome-wide
significant (P<5x1078). P oy quantile-quantile and
Manhattan plots are in Figures S1 through S5.

In total, 72, 73, 81, and 76 genome-wide significant
independent loci were identified for QT HC, QT-LC, JT-
HC, and JT-LC, respectively (Table S8). These loci cor-
responded to 98 unique and independent loci across
all analyses. Two of the loci have not been reported
previously for QT or JT (SPPL2B and RFX6). The lead
variant P were >0.05 for SSPL2B and RFX6, indicat-
ing that the associations were driven by the main ef-
fect. Across all 98 unique loci, P were not significant
after correction for multiple testing.

We also scanned the entire data set for variants

for suggestive support (P;<1x1075). P, values were
between 2.7x10~" and 7.9x10~7 for lead variants at 6
unique and independent loci: 2 each for QT-LC, JT-
HC, and JT-LC (Figure 4). One lead variant maps
within the boundaries of a previously reported locus
(4:84853269:A:G, candidate genes SEC31A/COPS4).4
The other 5 loci have not been reported for either QT
or JT associations (Table S9).
The calcium-sensing receptor (CASR) locus explains
the largest proportion of the variance of serum cal-
cium concentration (0.5%)*® and is a significant locus
in main effects GWASs for QT and JT.* A lookup of
variants at this locus indicated the minimum P, ; were
9.6x1074, 1.4x1078, 2.4x107%, and 6.3x107° for QT-
HC, QT-LC, JT-HC, and JT-LC, respectively. The val-
ues do not meet our threshold for suggestive support
(P7<1x1076).

Power Calculations

In designing the study, we expected to have adequate
power to detect interaction effects, because studies
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Figure 3. Comparison of main effect beta estimates between exposed and unexposed groups in low or high calcium serum

concentrations for QT and JT.

Correlation plots comparing replicated lead variant main effect estimates between “unexposed” (x-axis) and “exposed” (y-axis)
groups using values from the combined discovery and replication meta-analysis. Main effect estimates are plotted in milliseconds
along with 95% Cls. Cor indicates Pearson correlation coefficient. Points in red indicate those with a 1-degree of freedom interaction

P value <0.05.
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Figure 4. Manhattan plot for each single-stage SNV-by-calcium interaction analysis 1-df joint P values.

Joint 1-degree of freedom P values from the single-stage all cohorts genome-wide high calcium-SNV interaction meta-analysis
for the QT interval. (A) QT high calcium, (B) QT low calcium, (C) JT high calcium, (D) JT low calcium. Study-level linear regression
summary statistics for exposed (top or bottom 20% of serum calcium distribution) and unexposed (top or bottom 80% of serum
calcium distribution) were meta-analyzed separately before calculation of joint (main and interaction) effect P values. Variants within
the boundaries of previously reported loci for QT and JT are highlighted in green. y axis: log P values, x axis: chromosome and base
pair position (hg19). df indicates degrees of freedom; and SNV, single nucleotide variant.
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Figure 4. Continued

with similar sample sizes had significant findings.** program,* to compute power values at various minor
To confirm that we had sufficient statistical power, allele frequencies for our approximate sample size
we performed a post hoc analysis using the Quanto+ (120000 participants).
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At our sample size, and with correction for multiple
testing (genome-wide significance, P<5x1078), we had
at least 80% power to detect true gene by environment
interaction effects of 2.75milliseconds for SNVs with
minor allele frequency values of 10%. For comparison,
main effects of 3.76milliseconds, 3.85milliseconds,
4.75milliseconds, and 7.06 milliseconds have been re-
ported for variants at NOSTAP, SCN5A, KCNH2, and
KCNET, respectively. The analysis indicates that our
study was unlikely to have been underpowered for clin-
ically relevant calcium interaction effects on SNV asso-
ciations with QT and JT. The analysis instead supports
an interpretation of lack of significant interactions.

Sensitivity Analyses

Four sensitivity analyses were performed to test
whether our study design influenced our findings.

1. To test whether inclusion of studies with serum
calcium measurements and ECG acquisition
on different days introduced noise that pre-
vented detection of a true interaction effect,
we repeated the analyses after excluding such
studies. In total, 84 833 individuals of European
ancestry from 10 different studies (69.6% of the
original sample size) were included. Compared
with the single-stage discovery meta-analysis,
no additional loci were identified and no lead
variant had a significant P, value after apply-
ing a Bonferroni-correction for multiple testing
(Table $10).

2. Using all cohorts, joint main and interaction ef-
fects P values were also calculated directly com-
paring individuals in the top and bottom 20% of
the serum calcium distribution (N=50151). In
total, 24 loci for QT and 27 for JT, were genome-
wide significant with a between-study heteroge-
neity P value >0.01 (Table S11). None of the lead
variants had P values and beta estimates for
these 2 strata were highly correlated (Figure S6).

3. To test whether our definition of “high” and “low”
calcium affected detection of interaction effects,
we repeated the interaction analysis in UKB-
only participants (N=45624) after reclassifying
individuals as “exposed” if calcium levels were
in the top 1% (for the HC group) or the bottom
1% (for the LC group). For the 30, 33, 34, and 37
genome-wide significant loci (P,qy) for QT-HC,
QT-LC, JT-HC, and JT-LC, respectively, no lead
variant had a significant Py (Table S12).

4. We also assessed whether stratifying individuals
into high or low groups by serum calcium lev-
els corrected for aloumin concentrations yielded
different results in UKB (N=45624). Compared
with the UKB analyses where serum calcium
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was not corrected for albumin concentration,
there were no significant differences in P g Or
Py (Table $13).

5. Comparing our methodological approach using
EasyStrata versus analysis with inclusion of cal-
cium as a categorical variable and the interaction
term SNV*calcium in the model, we observed
high correlations for P,qr (20.91), Py (20.89),
and interaction betas (>0.96) across all inter-
action analyses indicating it is unlikely that our
conclusions would significantly alter by using a
different approach (Data S3, Figure S7).

Bioinformatic Investigation of “Novel” Loci
From the Single-Stage SNV-by-Calcium
All Cohorts Interaction Analysis

For the 2 “novel” loci found in the single-stage inter-
action analysis, both lead variants are noncoding.
The nearest genes are RFX6 for rs12201457 on chro-
mosome 6 and SPPL2B for rs3746287 on chromo-
some 19. rs3746287, in strong linkage disequilibrium
(?=0.86) with a lead expression quantitative trait locus
variant for SPPL2B in left ventricular tissue. However,
there was no support for colocalization (posterior
probability 4=4.4x107%). There were no significant
findings when testing the lead variants and their prox-
ies (r*>0.8) for long-range promotor interactions. The
variant rs12201457 at RFX6 has previously been re-
ported to be associated with height.*® A search on
PhenoScanner revealed it is located within a cluster of
elements with distal enhancer-like signature and asso-
ciated with methylation of 3 CpG sites (cg20376953,46
€g2037695,4 cg06608376). It is also associated with
expression of FAMZ26F, alias CALHME6 (calcium homeo-
stasis modulator) from expression quantitative trait loci
blood derived expression data in 26 353 individuals.*®

DISCUSSION

In these large SNV-by-calcium interaction meta-
analyses for QT and JT intervals with >120000 indi-
viduals, there was limited support for SNV-by-calcium
interaction effects. In the single-stage analysis, we
identified 2 previously unreported loci for QT (RFX6
and SPPL2B), but both findings were primarily driven
by the SNV-main effects only.

Gene—environment interactions contribute to the
genetic architecture of complex traits and disease.'® By
studying these interactions in a gene-by-environment
GWAS analysis framework, novel loci have been iden-
tified for lipid and blood pressure traits using sample
sizes similar to the size of our study.*44°

Of the 2 previously unreported loci identified in this
study at genome-wide significance, the candidate

12
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genes are FAM26F (alias CALHM®6) and SPPL2B.
FAMZ26F is the pore-forming component of a voltage-
gated ion channel with calcium homeostasis activity.*°
It is mainly expressed in immune system cells including
cardiac macrophages; however, it is also expressed at
low levels in cardiac endothelial and muscle cells.

In this study, for all lead variants for QT and JT
(including the 2 previously unreported loci), SNV-by-
calcium P, did not reach a Bonferroni-corrected
threshold for significance (0.05/number of loci), sup-
porting an interpretation that the association at each
locus was primarily driven by the main variant effect
even after stratification by serum calcium concen-
tration. Scanning the entire genome for interaction P
values of suggestive significance (P, w<1x107°) led to
consideration of 6 loci, although replication is neces-
sary in a separate large cohort to determine whether
the results represent true interaction effects.

We have previously shown using large-scale
population-level data that lower serum calcium con-
centrations are associated with an increase in ven-
tricular repolarization time and provided support for a
causal relationship.>® Therefore, we hypothesized the
existence of SNV-by-calcium interactions with QT and
JT intervals that may provide additional insights into
the biomolecular mechanisms regulating the effects of
calcium on these ECG measures. Previous QT and JT
main effect GWAS meta-analyses have reported as-
sociations at loci for L-type calcium channel subunits
(CACNB2) and calcium regulation (ATP2A2, PLN).4%!
Low extracellular calcium concentrations can prolong
the cardiomyocyte action potential duration through
inactivation of the L-type calcium current.®> Genes in-
volved in calcium current modulation are rare causes
of congenital long QT syndromes including CACNATC
(Timothy syndrome) and CALM1-3 (types 14-16).53%4
However, we did not identify an interaction effect at
these loci, nor at the CASR locus. CASR explains 0.5%
of the variance of serum calcium and is a genome-
wide significant locus for QT and JT intervals in main
effects GWAS.#43 Sensitivity analyses also suggest
that the thresholds chosen to define HC and LC levels
in the populations studied did not significantly influ-
ence our results.

Our findings therefore suggest that the associations
of common and low frequency genetic variation for
QT and JT intervals are not substantially influenced by
circulating extracellular calcium concentrations in the
general population. This work also suggests that an
interaction effect of serum calcium does not explain
a meaningful proportion of the missing SNV-based
heritabilities for QT and JT. Effects of small changes
in extracellular calcium on genetic associations with
ventricular repolarization duration may be mitigated
by extensive intracellular regulation that maintain cal-
cium homeostasis and therefore not observed as an
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interaction effect.® It is also possible that more subtle
interactions such as anatomical (spatial) characteristics
are not captured by an epidemiological study design
and may account for the absence of evidence for inter-
action in this study, despite adequate power. Genetic
predisposition to QT and JT interval prolongation and
the effects of serum calcium are likely to be additive (as
supported by our previous Mendelian randomization
study)® and therefore further work is necessary to ex-
plore potential to increase susceptibility for ventricular
arrhythmia.

Limitations

The power to detect associations due to interaction
effects is reduced, compared with main effect GWAS
analyses. Therefore, larger sample sizes have potential
to identify new findings. However, the size of our study
(>120000 with approximately 24 000 individuals classi-
fied as having either low or high serum calcium levels)
is comparable to sizes of other gene-by-environment
interaction GWAS meta-analyses that had significant
findings. Moreover, power calculations suggested we
had at least 80% power to detect clinically meaningful
effect sizes of 2.75 milliseconds.*4%® This meta-analysis
contains primarily cohorts of European ancestry, and
we did not have sufficient sample size for individuals of
African ancestry to permit a discovery and replication
analysis in this ancestry alone. Further investigation is
necessary to determine whether effects may be pre-
sent in individuals of non-European ancestry, although
such data (with serum calcium and ECGs) are currently
not yet available. Our study tested for an interaction
effect on variants with a minor allele frequency >0.01.
Rare coding variation may be more susceptible to
changes in extracellular calcium concentration; how-
ever, large sample sizes for such analyses were not
available for this study.

CONCLUSIONS

We have found limited support for SNV-by-calcium
interaction effects on common and low-frequency
genotype associations for QT and JT intervals despite
adequate power. Our study indicates interaction ef-
fects do not explain a meaningful proportion of the un-
explained heritability of these traits, and therefore other
factors including rare variation and other environmental
interactions need to be considered.
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