000145089 001__ 145089
000145089 005__ 20250923084436.0
000145089 0247_ $$2doi$$a10.1021/acsomega.4c06475
000145089 0248_ $$2sideral$$a139925
000145089 037__ $$aART-2024-139925
000145089 041__ $$aeng
000145089 100__ $$aBastante, Pablo
000145089 245__ $$aThe conductance and thermopower behavior of pendent trans-coordinated Palladium(II) complexes in cingle-molecule junctions
000145089 260__ $$c2024
000145089 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145089 5203_ $$aThe present work provides insight into the effect of connectivity within isomeric 1,2-bis(2-pyridylethynyl)benzene (bpb) palladium complexes on their electron transmission properties within gold|single-molecule|gold junctions. The ligands 2,2′-((4,5-bis(hexyloxy)-1,2-phenylene)bis(ethyne-2,1-diyl))bis(4-(methylthio)pyridine) (Lm) and 6,6′-((4,5-bis(hexyloxy)-1,2-phenylene)bis(ethyne-2,1-diyl))bis(3-(methylthio)pyridine) (Lp) were synthesized and coordinated with PdCl2 to give the trans-Pd(Lm or p)Cl2 complexes. X-ray photoelectron spectroscopy (XPS) measurements shed light on the contacting modes of the molecules in the junctions. A combination of scanning tunneling microscopy–break junction (STM–BJ) measurements and density functional theory (DFT) calculations demonstrate that the typical lower conductance of meta- compared with para-connected isomers in a molecular junction was suppressed upon metal coordination. Simultaneously there was a modest increase in both conductance and Seebeck coefficient due to the contraction of the HOMO–LUMO gap upon metal coordination. It is shown that the low Seebeck coefficient is primarily a consequence of how the resonances shift relative to the Fermi energy
000145089 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E31-23R$$9info:eu-repo/grantAgreement/EC/H2020/767187/EU/Quantum Interference Enhanced Thermoelectricity/QuIET$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 767187-QuIET$$9info:eu-repo/grantAgreement/ES/MDM/CEX2018-000805-M$$9info:eu-repo/grantAgreement/ES/MICINN/PID2020-114882GB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2022-141433OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PRE2019-091388$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-131318B-I00
000145089 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145089 590__ $$a4.3$$b2024
000145089 592__ $$a0.773$$b2024
000145089 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b81 / 239 = 0.339$$c2024$$dQ2$$eT2
000145089 593__ $$aChemical Engineering (miscellaneous)$$c2024$$dQ1
000145089 593__ $$aChemistry (miscellaneous)$$c2024$$dQ2
000145089 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145089 700__ $$aDavidson, Ross J.
000145089 700__ $$aAl Malki, Wafa
000145089 700__ $$aSalthouse, Rebecca J.
000145089 700__ $$0(orcid)0000-0002-4729-9578$$aCea, Pilar$$uUniversidad de Zaragoza
000145089 700__ $$0(orcid)0000-0001-9193-3874$$aMartin, Santiago$$uUniversidad de Zaragoza
000145089 700__ $$aBatsanov, Andrei S.
000145089 700__ $$aLambert, Colin J.
000145089 700__ $$aBryce, Martin R.
000145089 700__ $$aAgrait, Nicolas
000145089 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000145089 773__ $$g9, 36 (2024), 38303-38312$$pACS Omega$$tACS OMEGA$$x2470-1343
000145089 8564_ $$s4131308$$uhttps://zaguan.unizar.es/record/145089/files/texto_completo.pdf$$yVersión publicada
000145089 8564_ $$s3304085$$uhttps://zaguan.unizar.es/record/145089/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145089 909CO $$ooai:zaguan.unizar.es:145089$$particulos$$pdriver
000145089 951__ $$a2025-09-22-14:47:12
000145089 980__ $$aARTICLE