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s ABSTRACT: The highly enantioselective organocatalytic synthesis of dihydropyran spirocyclic compounds bearing di- and
6 trifluoromethyl groups by aldol cyclization reaction via trienamine using cyclic 2,5-dienones and different di- and
7 trifluoromethylketones is described. Using a bifunctional aminothiourea catalyst, trifluoromethyl-functionalized dihydropyran

o

spirocyclic products were obtained with good yields and enantioselectivities. Subsequent transformation with H, and Pd/C has

9 allowed the synthesis of the tetrahydropyran structure with three stereocenters. The plausible reaction mechanism was investigated

10 by computational methods.

11 l INTRODUCTION

12 Substituted tetra- and dihydropyrans are important structures
13 found in bioactive natural and pharmaceutical products.’
14 Chiral heterocycles containing trifluoromethyls in their
15 structure have attracted great interest in the agrochemical
16 and pharmaceutical industry due to the ability of the CF,
17 group to enhance the ability to modulate physical and

fl 18 biological properties.” The structures shown in Figure 1,
19 including reverse transcriptase inhibitors such as approved
20 Efavirenz A’ and antimalarial Fluoroartemisinin B," are
21 selected examples. On the other hand, spirocyclic structures
22 are present in numerous natural and unnatural products® and
23 are considered important in medicinal chemistry due to their
24 occurrence in a wide variety of biologically active molecules.’
25 For instance, Figure 1 includes heterospirocyclic compounds as
26 Oliceridine C, which acts as a safer analgesic drug,7 whereas
27 Griseofluvin D possesses antifungal properties and anticancer
28 effects in mammalian systems.” Furthermore, oscillatoxins
20 (OTXs) and aplysiatoxins (ATXs), which are cytotoxins
30 produced by some marine cyanobacteria, show potent
31 inflammatory and tumor-promoting activity through activation
32 of protein kinase C (PKC) and some of their derivatives show
33 cytotoxicity against cancer and leukemia cell lines.”

© XXXX The Authors. Published by
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Combining the three features mentioned above, the 34
synthesis of heterospirocyclic compounds with a trifluor- 35
omethyl group in their structures is highly desirable. Among all 36
of the methods developed to synthesize pyran derivatives, the 37
hetero-Diels—Alder reaction (HDA) of a diene or its analogous 38
with a carbonyl compound is one of the most widely used 39
tools.'® On the other hand, cyclic 2,5-dienones have been 40
employed as bisvinylogous precursors to synthesize spirocyclic 41
compounds efficiently, while Chen’s group carried out the 42
functionalization of the é&-site by conjugated addition and 43
vinylogous iminium-iminium catalysis to obtain the spirocyclic 44
adducts."" Our research group has more recently developed an 4s
enantioselective synthesis by Diels—Alder reactions via trien- 46
amine employing 5-substituted 2,5-dienones'” (Scheme 1). In 4751
this context, continuing with the elaboration of sophisticated 4s
and complex chiral organic entities and considering that 49
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Figure 1. Selected bioactive compounds.

Scheme 1. Synthesis of Spiro- and Heterospirocycle Adducts from 2,5-Dienones
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50 fluorine plays a key role in affecting metabolic stability and
s1 alters binding affinities between target proteins and drugs, we
s2 envisioned that the use of J-substituted 2,5-dienones and
53 trifluoromethylketones as reagents with a suitable organo-
s4 catalyst would allow the formation of sterically hindered
ss heterospirocyclic adducts containing a CF; group and a
s6 dihydropyran scaffold in their structures via a hetero-Diels—
57 Alder reaction or an aldol cyclization reaction (Scheme 1).

ss Il RESULTS AND DISCUSSION

s9 Based on the above considerations, the reaction of 2,5-dienone
60 1a and trifluoromethylacetophenone 2a was evaluated. The
61 reaction was assessed by employing different organocatalysts in

toluene at room temperature (Table 1). The quinine derivative 62 t1
I and the bifunctional amine-sulfonamide II did not promote 63
any reactivity (Table 1, entries 1—2). Fortunately, the 64
bifunctional amine-thiourea and amine-urea derivatives III— ¢s
VI were able to afford the desired heterospirocycle 3aa as a 66
major product with different conversions (Table 1, entries 3— 67
6). Although bifunctional cyclohexanediamine-thiourea deriv- 6s
atives III and V provided the heterospirocycle adducts in good 69
to excellent conversions, the 1,2-diphenylethane-1,2-diamine 70
IV led to the corresponding adducts in low conversion (Table 71
1, entries 3 and S vs. 4), with the best results in terms of 7
diastereo- and enantioselectivity obtained by using catalyst V 73
(Table 1, entry S). Cyclohexanediamine-urea VI yielded the 74
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Table 1. Catalyst Screening for the Aldol Cyclization
Reaction”

(0]
(0] [y
m+ )L Cat. (20 mol%)
Ph CF5 BA (20 mol%)
Toluene 1M
t,2d

CF3

NH, V.X=$) H,
v VI, (X = 0)
entry  cat. conv. [%]°  3aa:3aa’®  ee 3aa [%]7  ee 3aa’ [%]7
1° 1 >5
2° Il >5
3 111 75" 57:43 —34 -30
4 v 20¢ 65:35 46 38
5 A 90" 66:34 98 87
6 Vi 70" 64:36 41 65
7' \' >95" 66:34 99 >99

“The reactions were performed with ketone 1a (0.2 mmol), 2,2,2-
trifluoroacetophenone 2a (0.1 mmol), catalyst (20 mol %), and BA
(20 mol %) in toluene (100 yL, 1 M) at room temperature.
Conversions were measured by '"H NMR and "F NMR of crude
reaction mixtures considering the 2,2,2-trifluoroacetophenone 2a
limiting reagent. “Diastereomeric ratios were measured by '"H NMR
and "F NMR of crude reaction. “Enantiomeric excesses measured by
high-performance liquid chromatography (HPLC) correspond to the
major enantiomer (2R,6R)-3aa and (2R,6S)-3aa’. Negative values
indicate that the opposite enantiomer is formed. “40% of BA was
employed. F45% of conversion for 3aa and 3aa’ and 30% for a mixture
of different adducts. $15% of conversion for 3aa and 3aa’ and 5% for a
mixture of different adducts. "15—10% of aldol adducts were
observed. ‘The reaction was performed with ketone 1a (2 mmol),
2,2,2-trifluoroacetophenone 2a (0.5 mmol), catalyst (20 mol %), and
benzoic acid (20 mol %) in toluene (500 uL, 1 M) at 30 °C. BA =
Benzoic acid.

desired adducts in a similar diastereomeric ratio, but with
lower conversion and enantioselectivity than its analogous
thiourea derivative V (Table 1, entry 6). It should be
mentioned that in all cases, a mixture of aldol adducts was
observed as minor products (<15% in most cases). Further
optimization was performed with the best organocatalyst V
using different amounts of reagents and catalyst and a variety
of solvents and acidic additives (see the SI for details). None of
these modifications had a significant impact, although 30 °C
and the use of 4 equiv of 2,5-dienone la were required to
achieve better and reproducible results (Table 1, entry 7).
Having determined the best reaction conditions, we
investigated the general nature of this process was investigated.
The results of a series of experiments are shown in Table 2.
First, a selection of aryl-substituted trifluoromethylketones
2a—h bearing electron-donating and electron-withdrawing
groups was successfully tested affording spirocyclic adducts
3aa—ah and 3aa—ah’ with moderate diastereoselectivities,

moderate to good yields and moderate to excellent
enantioselectivities for both diastereoisomers (Table 2, entries
1—8). Interestingly, 2-thyenyl-substituted 2i was also a suitable
reagent, achieving the corresponding cycloadducts in 72%
yield, 58:42 diastereomeric ratio, 99% ee for 3ai, and 90% ee
for 3ai’ (Table 2, entry 9). The alkenyl-substituted
trifluoromethyl ketone 2j gave rise to the corresponding
spirocycles in moderate yield (47%) and 66:34 diastereomeric
ratio and slightly lower enantioselectivity for both diaster-
eoisomers (80% for 3aj and 90% ee for 3aj’) (Table 2, entry
10). Then, a set of aromatic difluoromethylketones 2k—m
were also evaluated affording the desired adducts 3ak—am and
3ak—am’ in moderate to excellent yields, 60:40 diastereomeric
ratio, and excellent enantioselectivities for both diaster-
eoisomers (Table 2, entries 11—13). Unfortunately, mono-
fluorinated a-fluoroacetophenone 2n did not provide the
desired cycloadduct (Table 2, entry 14). Finally, a good result
was obtained for the S-phenyl-substituted 2,5-dienone 1b
yielding the corresponding spirocycles 3ba and 3ba’ in a
moderate diastereomeric ratio. Moreover, only one diaster-
eoisomer 3ba could be isolated in moderate yield and high
enantiomeric excess (Table 2, entry 15). To demonstrate the
synthetic value of this methodology, the model reaction was
performed at 1 mmol scale affording the desired cycloadducts
in slightly lower yield and enantioselectivity (Table 2, entry 1,
in parentheses) and allowing organocatalyst V to be recovered
(see the SI). Adducts 3aa and 3aa’ were crystallized and its
absolute (2R,6R)-configuration for 3aa and absolute (2R,6S)-
configuration for 3aa’ were unequivocally confirmed by
monocrystal X-ray diffraction (XRD) analysis, assuming the
same absolute configuration for the series of products 3 and 3.

In order to get a better understanding of the reaction, DFT
calculations were carried out. We computationally studied
(m062x/cc-pvtz/smd = toluene//m062x/cc-pvdz) the reac-
tion between la and 2a. Any attempt of locating transition
structures corresponding to a concerted pathway, i.e., a hetero-
Diels—Alder reaction, failed, and the structures located
corresponding to a stepwise process. So, we propose the
catalytic cycle outlined in Scheme 2. We did not detect
nonlinear effects (NLE) in the reaction supporting the
proposed mechanism (see the SI). Thus, after the formation
of the enamine EN from the catalyst TH and compound 1la
(which could be detected by positive mode electrospray
ionization mass spectrometry (ESI-MS) spectrum of the
reaction mixture, see the SI), the addition on each face of
the ketone 2a results in two diastereomers of IN, as a
consequence of the presence in the molecule of the thiourea
moiety. Subsequently, intramolecular cyclization can take place
on two diastereotopic faces in each isomer, resulting in four
possible isomers in PR and two pairs of enantiomers in the
final product after hydrolysis and catalyst regeneration.

We studied the transformation of enamine EN into PR.
After an exhaustive exploration of the potential energy surface
(for details, see the SI), we located two transition structures
corresponding to the nucleophilic attack of the enamine by Re
and Si faces of the trifluoromethyl ketone, [TS1-(R) and TS1-
(S)]. Interestingly, these transition structures showed only a
H-bond between the carbonyl oxygen and the thiourea moiety
(Figure 2). In fact, other transition structures showing the
classical chelate thiourea-carbonyl group presented higher
barriers due to the strain derived from the intramolecular
disposition of the involved groups. For instance, a classical
coordination between the carbonyl oxygen and both thiourea
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Table 2. Scope of the Reaction”

(e}

o Cat. V (20 mol%)
QL ol *
RZ “CXF, BA (20 mol%)
Toluene 1M
1a, (R' = Me) 30 °C, 2d
1b, (R' = Ph) 2a-n
, Yield dr ee3 ee3y , Yield dr ee3 ee3’
ey 3 3 6P 33 el o) Y3 961 33 (%] [%]¢
o
Ph 83 6634 99 >99
1 8 66 6535 76 6
> (65) (67:33) (88) (88) ’
3aa'
J
9 72 58142 >99  go
2 70 62:38 88 88 | 10 47 6634 83 8o
3 65 6634 80 59 | 1 52 60:40 >99 g9
4 54 6733 88 88 | 12 75 6040 94 g4
OMe
5 51 6535 90 95 | 13 91 60:40 94 94
6 55 6832 98 88 | 14 nr - - -
7 57 6337 73 84 15 37 6337 94 nd

“The reactions were performed with ketone 1 (2 mmol), 2,2,2-trifluoroacetophenone 2a (0.5 mmol), catalyst (20 mol %), and benzoic acid (20
mol %) in toluene (500 uL, 1 M) at 30 °C. bYields refers to a 3:3' diastereoisomeric mixture. “Diastereomeric ratios were measured by '"H NMR
and '>F NMR of crude reaction mixtures. “Enantiomeric excesses measured by HPLC correspond to the major enantiomer (2R,6R)-3aa and
(2R,6S)-3aa’. “Yield for isolated 3ba. BA = Benzoic acid. nd = not determined

156 amino groups or a cyclohexane ring conformation different
157 from a chair resulted in a penalty of 7—8 kcal/mol (see the SI).
158 The corresponding diastereomeric zwitterionic intermediates
159 IN-(R) and IN-(S) showed an (E)-configuration for the newly
160 formed double bond. In the second step, the nucleophilic
161 attack of the oxygen atom to form the spiro compound takes

place by the two diastereomeric faces of the corresponding 162
intermediate, leading to the four possible products having 163
(RR)- and (R,S)-configurations coming from IN-(R), and 164
(S,S)- and (S,R)-configurations coming from the disfavored 165
intermediate IN-(S). We located the four transition structures, 166
although only those leading to (R,R)- and (R,S)-isomers, both 167
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Scheme 2. Proposed Catalytic Cycle mol). Both levels of theory used were shown to be sufficiently 174
accurate to correctly predict the results observed experimen- 175
tally, even though by considering also the transition structures 176
coming from disfavored IN-(S), the level of theory m062x/cc- 177
pvtz/smd = toluene provided better results. 178
The corresponding energy profile (SI) clearly points out the 179
second step, dealing with TS-(R,R) and TS-(R,S), as the rate- 1s0
determining one. Accordingly, it should be possible to detect 181
some compounds derived from iminium intermediate IN such 182
as the corresponding aldol product. 183
The reaction is a stepwise process resulting from the induced 184
polarity caused by the coordination of the ketone carbonyl 1ss
group with the thiourea moiety. This coordination has the 186
additional effect of stabilizing the zwitterionic intermediate. It 187
needs to be broken to allow the nucleophilic attack of the 188
oxygen, thereby requiring more energy and becoming the rate- 189
determining step. 190
To demonstrate the applicability of the developed method- 191
ology, the dihydropyran spirocyclic 3aa adduct was easily 192
transformed in the tetrahydropyran derivative 4aa with an 193
almost quantitative yield and high diastereomeric ratio by 194
hydrogenation using Pd/C (Scheme 3). On the other hand, 1953

—_

—_ = =

Scheme 3. Synthetic Transformations of Adduct 3aa

H,, Pd/C (10 %)

AcOEt
4aa; 96%
91:9dr
3aa; >99% ee LiA|H4
(0.0) (0.0) (2.7) (3.5)
q THF

5aa; >99%
50:50 dr

the reduction of the carbonyl group by LiAlH, to the 196
corresponding alcohol was performed affording the spirocycle 197

TS2-(R,R) TS2-(R,S)

Saa in quantitative yield and 50:50 diastereomeric ratio. The 198

(3.8) (0.9) (4.0) (0.6) adduct 4aa was crystallized, and its absolute (2R4R,6S)- 199
configuration was unequivocally elucidated by XRD analysis 200

(see the SI). 201

3aa 3aa B CONCLUSIONS 202

Figure 2. Transition structures corresponding to the formation of 3aa In summary, a new aldol cyclization reaction using cyclic 2,5- 203

and 3aa’. Plain (m062x/cc-pvtz/smd = toluene//m062x/cc-pvdz)
and italic (wb97xd/def2tzvp//wb97xd/def2svp/smd = toluene)
correspond to relative values (given in kcal/mol) between transition
structures of the same row.

dienones and fluoromethylketones has been exploited in the 204
synthesis of di- and trifluoromethylated dihydropyran spiro- 20s
cycles. It should be noted that the use of a bifunctional 206
aminothiourea catalyst is necessary to obtain the desired 207
heterospirocycles with good to high yields and enantioselectiv- 208

168 coming from the favored intermediate IN-(R), were ities. Subsequent one-step, operationally simple transforma- 209

169 considered. The energy differences between transition tions provide direct entry to other enantioenriched fluorome- 210

170 structures correctly predict the preferential formation of the thylated di- and tetrahydropyrans. Computational evidence 211

171 first stereogenic center with an (R)-configuration (difference of supports the key role of the bifunctional organocatalyst in 212

172 2.7 and 3.5 kcal/mol) and the formation of (R,R)- and (R,S)- promoting the reaction as a stepwise process through the aldol 213

173 isomers in a similar amount (difference of 0.2 and 0.3 kcal/ reaction followed by cyclization. 214
E https://doi.org/10.1021/acs.joc.4c01839
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