000145100 001__ 145100
000145100 005__ 20250923084436.0
000145100 0247_ $$2doi$$a10.3389/fbioe.2024.1398659
000145100 0248_ $$2sideral$$a139867
000145100 037__ $$aART-2024-139867
000145100 041__ $$adeu
000145100 100__ $$aTahsini, Vahoura
000145100 245__ $$aStorage-induced mechanical changes of porcine lenses assessed with optical coherence elastography and inverse finite element modeling
000145100 260__ $$c2024
000145100 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145100 5203_ $$aIntroduction: In an effort of gaining a better understanding of the lens mechanics, ex vivo lenses samples are often used. Yet, ex vivo tissue might undergo important postmortem changes depending on the unavoidable preservation method employed. The purpose of this study was to assess how various storage conditions and the removal of the lens capsule affect the mechanical properties of ex vivo porcine lens samples.

Methods: A total of 81 freshly enucleated porcine eyes were obtained and divided into six groups and preserved differently. In the first three groups, the lens within the intact eye was preserved for 24 h by: (i) freezing at −80°C (n = 12), (ii) freezing at −20°C (n = 12), and (iii) refrigeration at +8°C (n = 12). In the remaining groups, the lenses were immediately extracted and treated as follows: (iv) kept intact, no storage (n = 12), (v) decapsulated, no storage (n = 21), and (vi) immersed in Minimum Essential Medium (MEM) at +8°C (n = 12) for 24 h. Frozen lenses were thawed at room temperature. Each lens was compressed between two glass lamella and subjected, first to a period of relaxation during which the compression force was recorded and second to an oscillating micro-compression while the deformation was recorded with a total of 256 subsequent B-scans via optical coherence tomography. The corresponding axial strain was retrieved via phase-sensitive image processing and subsequently used as input for an inverse finite element analysis (iFEA) to retrieve the visco-hyperelastic material properties of the lenses.

Results: After freezing at temperatures of −80°C and −20°C, the cortical strains increased by 14% (p = 0.01) and 34% (p < 0.001), and the nuclear strains decreased by 17% (p = 0.014) and 36% (p < 0.001), compared to the lenses tested immediately after postmortem, respectively. According to iFEA, this resulted from an increased ratio of the nuclear: cortical E-modulus (4.06 and 7.06) in −80°C and −20°C frozen lenses compared to fresh lenses (3.3). Decapsulation had the largest effect on the material constant C10, showing an increase both in the nucleus and cortex. Preservation of the intact eye in the refrigerator induced the least mechanical alterations in the lens, compared to the intact fresh condition.

Discussion: Combining iFEA with optical coherence elastography allowed us to identify important changes in the lens mechanics induced after different preserving ex vivo methods.
000145100 536__ $$9info:eu-repo/grantAgreement/EC/H2020/956720/EU/Opto-Biomechanical Eye Research Network/OBERON$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 956720-OBERON
000145100 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145100 590__ $$a4.8$$b2024
000145100 592__ $$a0.974$$b2024
000145100 591__ $$aBIOTECHNOLOGY & APPLIED MICROBIOLOGY$$b31 / 177 = 0.175$$c2024$$dQ1$$eT1
000145100 593__ $$aBiomedical Engineering$$c2024$$dQ1
000145100 591__ $$aENGINEERING, BIOMEDICAL$$b35 / 124 = 0.282$$c2024$$dQ2$$eT1
000145100 593__ $$aHistology$$c2024$$dQ1
000145100 593__ $$aBiotechnology$$c2024$$dQ1
000145100 593__ $$aBioengineering$$c2024$$dQ2
000145100 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145100 700__ $$0(orcid)0000-0001-8219-2365$$aCabeza Gil, Iulen
000145100 700__ $$aKling, Sabine
000145100 773__ $$g12 (2024), 1398659 [12 pp.]$$pFront. Bioeng. Biotechnol.$$tFrontiers in Bioengineering and Biotechnology$$x2296-4185
000145100 8564_ $$s2857481$$uhttps://zaguan.unizar.es/record/145100/files/texto_completo.pdf$$yVersión publicada
000145100 8564_ $$s1953420$$uhttps://zaguan.unizar.es/record/145100/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145100 909CO $$ooai:zaguan.unizar.es:145100$$particulos$$pdriver
000145100 951__ $$a2025-09-22-14:46:48
000145100 980__ $$aARTICLE