000145119 001__ 145119
000145119 005__ 20240926122722.0
000145119 0247_ $$2doi$$a10.3390/w16172434
000145119 0248_ $$2sideral$$a139929
000145119 037__ $$aART-2024-139929
000145119 041__ $$aeng
000145119 100__ $$aJojoa-Sierra, Sindy D.$$uUniversidad de Zaragoza
000145119 245__ $$aLevofloxacin Degradation, Antimicrobial Activity Decrease, and Potential for Water Disinfection Using Peroxydisulfate Activation by Ag/TiO2 under Sunlight
000145119 260__ $$c2024
000145119 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145119 5203_ $$aWater quality and usability are global concerns due to microbial and chemical pollution resulting from anthropogenic activities. Therefore, strategies for eliminating contaminants are required. In this context, the removal and decrease in antibiotic activity (AA) associated with levofloxacin (LEV), using TiO2 and Ag/TiO2 catalysts, with and without sunlight and peroxydisulfate, was evaluated. Additionally, the disinfection capacity of catalytic systems was assessed. The catalysts were synthesized and characterized. Moreover, the effect of Ag doping on visible light absorption was determined. Then, the photocatalytic treatment of LEV in water was performed. The materials characterization and EPR analyses revealed that LEV degradation and AA decrease were ascribed to a combined action of solar light, sulfate radical, and photocatalytic activity of the TiO2-based materials. Also, the primary byproducts were elucidated using theoretical analyses (predictions about moieties on LEV more susceptible to being attacked by the degrading species) and experimental techniques (LC-MS), which evidenced transformations on the piperazyl ring, carboxylic acid, and cyclic ether on LEV. Moreover, the AA decrease was linked to the antibiotic transformations. In addition, the combined system (i.e., light/catalyst/peroxydisulfate) was shown to be effective for E. coli inactivation, indicating the versatility of this system for decontamination and disinfection.
000145119 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B43-23R$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/PRTR-C17.I1$$9info:eu-repo/grantAgreement/ES/MICINN/AEI/TED2021-129267B-I00$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-127287NB-I00$$9info:eu-repo/grantAgreement/ES/NextGenerationEU/PRTR
000145119 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145119 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145119 700__ $$aJaramillo-Paez, Cesar
000145119 700__ $$aSerna-Galvis, Efraím A.
000145119 700__ $$0(orcid)0000-0002-1827-1250$$aGarcía-Rubio, Inés
000145119 700__ $$aHidalgo, María C.
000145119 700__ $$aNavío, José A.
000145119 700__ $$0(orcid)0000-0003-3014-0322$$aOrmad, María P.$$uUniversidad de Zaragoza
000145119 700__ $$aTorres-Palma, Ricardo A.
000145119 700__ $$0(orcid)0000-0002-7456-4912$$aMosteo, Rosa$$uUniversidad de Zaragoza
000145119 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000145119 773__ $$g16, 17 (2024), 2434 [17 pp.]$$pWater (Basel)$$tWater (Switzerland)$$x2073-4441
000145119 8564_ $$s3276403$$uhttps://zaguan.unizar.es/record/145119/files/texto_completo.pdf$$yVersión publicada
000145119 8564_ $$s2648506$$uhttps://zaguan.unizar.es/record/145119/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145119 909CO $$ooai:zaguan.unizar.es:145119$$particulos$$pdriver
000145119 951__ $$a2024-09-26-10:59:51
000145119 980__ $$aARTICLE