000145147 001__ 145147
000145147 005__ 20241220133821.0
000145147 0247_ $$2doi$$a10.1002/cplu.202400410
000145147 0248_ $$2sideral$$a139989
000145147 037__ $$aART-2024-139989
000145147 041__ $$aeng
000145147 100__ $$aBarriendos, Irati
000145147 245__ $$aStereocontrol of Metal-Centred Chirality in Rhodium(III) and Ruthenium(II) Complexes with <i>N<sub>2</sub>N'P</i> Ligand
000145147 260__ $$c2024
000145147 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145147 5203_ $$aRh(III) and Ru(II) complexes, [RhCl2(κ4‐N2N'P‐L)][SbF6] (1) and [RuCl2(κ4‐N2N'P‐L)] (2), were synthesised using the tetradentate ligand L (L=N,N‐bis[(pyridin‐2‐yl)methyl]‐[2‐(diphenylphosphino)phenyl]methanamine). In each case only one diastereomer is detected, featuring cis‐disposed pyridine groups. The chloride ligand trans to pyridine can be selectively abstracted by AgSbF6, with the ruthenium complex (2) reacting more readily at room temperature compared to the rhodium complex (1) which requires elevated temperatures. Rhodium complexes avoid the second chloride abstraction, whereas ruthenium complexes can form the chiral bisacetonitrile complex [Ru(κ4‐N2N'P‐L)(NCMe)2][SbF6]2 (5) upon corresponding treatment with AgSbF6. The complex [RhCl2(κ4‐N2N'P‐L)][SbF6] (1) has also been used to synthesise polymetallic species, such as the tetrametallic complex [{RhCl2(κ4‐N2N'P‐L)}2(μ‐Ag)2][SbF6]4 (6) which was formed with complete diastereoselectivity and chiral molecular self‐recognition. In addition, a stable bimetallic mixed‐valence complex [{Rh(κ4‐N2N'P‐L)}{Rh(COD)}(μ‐Cl)2][SbF6]2 (7) (COD=cyclooctadiene) was synthesised. These results highlight the significant differences in chloride lability between Rh3+ and Ru2+ complexes and demonstrate the potential for complexes to act as catalyst precursors and ligands in further chemistry applications.
000145147 536__ $$9info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/PID2021-122406NB-100$$9info:eu-repo/grantAgreement/ES/MCIU/CTQ2018-095561-BI00
000145147 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000145147 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145147 700__ $$aAlmárcegui, Íber
000145147 700__ $$aCarmona, María
000145147 700__ $$aTejero, Álvaro G.
000145147 700__ $$aSoriano-Jarabo, Alejandro
000145147 700__ $$aBlas, Carlota
000145147 700__ $$aAguado, Zulima
000145147 700__ $$aCarmona, Daniel
000145147 700__ $$0(orcid)0000-0001-8054-2237$$aLahoz, Fernando J.
000145147 700__ $$0(orcid)0000-0002-7063-1292$$aGarcía-Orduña, Pilar
000145147 700__ $$0(orcid)0000-0002-6160-3046$$aViguri, Fernando$$uUniversidad de Zaragoza
000145147 700__ $$0(orcid)0000-0002-8845-0174$$aRodríguez, Ricardo
000145147 7102_ $$12010$$2760$$aUniversidad de Zaragoza$$bDpto. Química Inorgánica$$cÁrea Química Inorgánica
000145147 773__ $$g89, 10 (2024), e202400410 [16 pp.]$$pChemPlusChem$$tChemPlusChem$$x2192-6506
000145147 8564_ $$s6852420$$uhttps://zaguan.unizar.es/record/145147/files/texto_completo.pdf$$yVersión publicada
000145147 8564_ $$s3039275$$uhttps://zaguan.unizar.es/record/145147/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145147 909CO $$ooai:zaguan.unizar.es:145147$$particulos$$pdriver
000145147 951__ $$a2024-12-20-13:37:43
000145147 980__ $$aARTICLE