000145175 001__ 145175
000145175 005__ 20250410140952.0
000145175 0247_ $$2doi$$a10.1007/s10476-024-00047-4
000145175 0248_ $$2sideral$$a140006
000145175 037__ $$aART-2024-140006
000145175 041__ $$aeng
000145175 100__ $$0(orcid)0000-0003-2453-7841$$aAbadias, L.$$uUniversidad de Zaragoza
000145175 245__ $$aOn the hyperbolic group and subordinated integrals as operators on sequence Banach spaces
000145175 260__ $$c2024
000145175 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145175 5203_ $$aWe show that the composition hyperbolic group in the unit disc, once transferred to act on sequence spaces, is bounded on l<sup>p</sup> if and only if p = 2. We introduce some integral operators subordinated to that group which are natural generalizations of classical operators on sequences. For the description of such operators, we use some combinatorial identities which look interesting in their own.
000145175 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E26-17R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-10579GB-I00$$9info:eu-repo/grantAgreement/ES/MCINN/PID2022-137294NB-I00$$9info:eu-repo/grantAgreement/ES/UZ/UZ2019-CIE-01
000145175 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145175 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145175 700__ $$0(orcid)0000-0003-0398-6883$$aGalé, J. E.$$uUniversidad de Zaragoza
000145175 700__ $$0(orcid)0000-0001-9430-343X$$aMiana, P. J.$$uUniversidad de Zaragoza
000145175 700__ $$0(orcid)0000-0001-8546-5883$$aOliva-Maza, J.$$uUniversidad de Zaragoza
000145175 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático
000145175 773__ $$g51 (2024), [22 pp.]$$pANALYSIS MATHEMATICA$$tANALYSIS MATHEMATICA$$x0133-3852
000145175 8564_ $$s706068$$uhttps://zaguan.unizar.es/record/145175/files/texto_completo.pdf$$yVersión publicada
000145175 8564_ $$s1252506$$uhttps://zaguan.unizar.es/record/145175/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145175 909CO $$ooai:zaguan.unizar.es:145175$$particulos$$pdriver
000145175 951__ $$a2025-04-10-14:07:03
000145175 980__ $$aARTICLE