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Abstract. We show that the composition hyperbolic group in the unit disc,
once transferred to act on sequence spaces, is bounded on ℓp if and only if p = 2.
We introduce some integral operators subordinated to that group which are natu-
ral generalizations of classical operators on sequences. For the description of such
operators, we use some combinatorial identities which look interesting in their
own.

Introduction

Let D = {z ∈ C : |z| < 1} be the unit disc in the complex plane C and let
O(D) denote the space of holomorphic functions on D. In [1], the spectral
study of integral operators defined by

(J µ,ν
δ f)(z) :=

1

(1−z)µ+δ(1+z)ν+δ

∫ 1

z
(1−ξ)µ(1+ξ)ν(ξ−z)δ−1f(ξ)dξ, z ∈ D,

and

(Hµ,ν
δ f)(z) :=

1

(1−z)µ−δ+1(1+z)ν−δ+1

∫ 1

−1

(1−ξ)µ(1+ξ)ν

(1− zξ)δ
f(ξ) dξ, z ∈ D,
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for suitable f ∈ O(D), µ, ν, δ ∈ R, has been approached on the basis of a
detailed analysis of the spectra of weighted hyperbolic composition groups
on D (and their infinitesimal generators). Recall, the (canonical) hyperbolic
group (ϕt)t∈R of self-analytic mappings on D is given by

ϕt(z) =
(et + 1)z + et − 1

(et − 1)z + et + 1
, z ∈ D, t ∈ R.

One can build weighted composition operators Sω(t) acting continuously
on Banach subspaces X of O(D), such as Hardy spaces, Bergman spaces,
Dirichlet spaces and others, by putting

Sω(t)(f) :=
ω ◦ ϕt

ω
(f ◦ ϕt), f ∈ X, t ∈ R,

for appropriate weights ω so that the family ((ω ◦ ϕt)ω
−1)t∈R becomes a

cocycle for (ϕt)t∈R.
The integrals defining J µ,ν

δ f and Hµ,ν
δ f can be represented as Bochner-

convergent vector-valued integrals subordinated to groups (Sω(t))t∈R in the
following way. For α, β ∈ R, put ωα,β(z) := (1− z)α(1 + z)β , z ∈ D. Then,
for suitable µ, ν, δ ∈ R,

1) J µ,ν
δ f =

∫∞
0 φδ(t)Sωµ+1,ν+δ

(t)fdt, f ∈ X , with φδ(t) := 2−δ(1− e−t)δ−1,
t > 0.

2) Hµ,ν
δ f =

∫∞
−∞ ψδ(t)Sωµ−δ+1,ν+1

(t)fdt, f∈X , z∈D, with ψδ(t) :=
2δ−1

(1+et)δ ,

t ∈ R.

Through the above representations, one can transfer information from
the spectra of Sωµ+1,ν+δ

(t) and Sωµ−δ+1,ν+1
(t) to the spectra of J µ,ν

δ and Hµ,ν
δ ,

respectively; see [1] for details.
It sounds sensible to investigate if the above facts also hold in a setting

of sequence Banach spaces and for operator groups defined by transference
of (Sω(t))t∈R to such a setting. Thus, using the standard isometry between
the usual Hardy space H2(D) and the Hilbert space ℓ2 of square sumable
sequences, one defines operator groups (Tω(t))t∈R on ℓ2 obtained as isometric
copies of (Sωα,β

(t))t∈R. Then one obtains automatically the bounded integral

operators on ℓ2 given by

J
µ,ν
δ f :=

∫ ∞

0
φδ(t)Tωµ+1,ν+δ

(t)f dt , H
µ,ν
δ f :=

∫ ∞

0
ψµ(t)Tωµ−δ+1,ν+1

(t)f dt,

f ∈ ℓ2, which in particular enjoy the same spectral picture as the one de-
scribed in [1] for J µ,ν

δ and Hµ,ν
δ .

However, it turns out that Tωα,β
(t), for t ∈ R \ {0} and α,β ∈ R, is not a

bounded operator on ℓp for every p 6= 2. This is proven in Section 2 below,
see Theorem 2.4. Thus the question on the boundedness of operators Jµ,νδ ,
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HYPERBOLIC GROUP ON SEQUENCE SPACES 3

H
µ,ν
δ on ℓp, p 6= 2, has not an obvious answer. Then we focus the paper on the

Hilbertian case, looking for presenting the above operators directly acting on
sequences, in order to get a precise idea of the difficulties which arise in the
study of boundedness in the non-Hilbertian case. In this way, our discussion
involves combinatorial identities and special functions. Section 3 is devoted
to prove such identities. Section 4 gives the integral operators in terms of
sequences, for which in particular we use estimates of the hyperbolic group
and subordinate integrals on Hardy spaces shown in the first section.

1. Estimates on Hardy spaces

For 1 ≤ p < ∞, let Hp(D) be the Hardy space on D formed by all func-
tions f in O(D) such that

‖f‖p := sup
0<r<1

(∫ 2π

0
|f(reiθ)|p

dθ

2π

)1/p

< ∞.

Let α, β ∈ R and put ωα,β(z) := (1− z)α(1 + z)β , for z ∈ D. Define the
family (Sα,β(t))t∈R of weighted composition operators on O(D) given, for
t ∈ R, f ∈ O(D) and z ∈ D, by

[Sα,β(t)f](z) :=
(ωα,β ◦ ϕt)(z)

ωα,β(z)
(f ◦ ϕt)(z)

= eβt
(

2

(et − 1)z + et + 1

)α+β

f

(
(et + 1)z + et − 1

(et − 1)z + et + 1

)

=
(1− tanh(t/2))α(1 + tanh(t/2))β

(1 + z tanh(t/2))α+β
f

(
z + tanh(t/2)

1 + z tanh(t/2)

)
.

This family (Sα,β(t))t∈R is a C0-group of bounded operators on Hp(D)
(and on quite a number of other Banach spaces X continuously contained in
O(D)) for suitable values of α and β, see [1]. Note that Sα,β(t) = eβtSα+β,0(t)
for all α, β ∈ R and t ∈ R. Thus in the sequel we will deal with the group

Sα(t) := Sα,0(t), t ∈ R,

for simplicity. Here we give the exact estimate of the norm of operators
Sα(t), t ∈ R, on spaces Hp(D) by transferring functions on D to functions
on C+ := {z ∈ C : Re z > 0}.

Let Hp(C+) be the Hardy space of all holomorphic functions F on C+

such that

‖F‖p := sup
x>0

(∫

R

|F (x+ iy)|p dy

)1/p

< ∞, 1 ≤ p < ∞.
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Let V : Hp(C+) → Hp(D) denote the isometric isomorphism given by

(V F )(z) = 21/p(1− z)−2/pF
(1 + z

1− z

)
, z ∈ D, F ∈ Hp(C+),

whose inverse V −1 : Hp(D) → Hp(C+) is

(V −1f)(w) = 21/p(1 + w)−2/pf
(w − 1

w + 1

)
, w ∈ C

+, f ∈ Hp(D);

see [9, pp. 130–131]. For α, t ∈ R, define S̃α(t) := V −1Sα(t)V . A straight-
forward computation gives us

(1.1) (S̃α(t)F )(w) =
( 1 + w

1 + etw

)α−2/p
F (etw), w ∈ C

+, F ∈ Hp(C+).

Proposition 1.1. Let 1 ≤ p < ∞, α ∈ R and let (Sα(t))t∈R be defined
on Hp(D) by

Sα(t)f =
ωα,0 ◦ ϕt

ωα,0
(f ◦ ϕt), t ∈ R.

Then (Sα(t))t∈R is a C0-group of bounded operators on Hp(D) with

‖Sα(t)‖p = emax{−t/p,(−α+1/p)t}, t ∈ R.

Proof. Let w ∈ C+ and t ∈ R. It is readily seen that

e−t ≤

∣∣∣∣
1 + w

1 + etw

∣∣∣∣ ≤ 1, if t ≥ 0, and 1 ≤

∣∣∣∣
1 + w

1 + etw

∣∣∣∣ ≤ e−t, if t ≤ 0.

Hence

(1.2) min{1, e−t} ≤

∣∣∣∣
1 + w

1 + etw

∣∣∣∣ ≤ max{1, e−t}, t ∈ R, w ∈ C
+.

Let S̃α(t) be as prior to the proposition. By (1.1) and (1.2),

∣∣(S̃α(t)F )(w)
∣∣ ≤ Kt|F (etw)|, F ∈ Hp(C+), t ∈ R,

where Kt := max{1, et(−α+2/p)}. Hence,

‖S̃α(t)F‖p ≤ Kt sup
0<x<∞

{∫ ∞

−∞
|F (etx+ iety)|pdy

}1/p

= Kte
−t/p sup

0<x<∞

{∫ ∞

−∞
|F (x+ iy)|pdy

}1/p

= Kte
−t/p‖F‖p,
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HYPERBOLIC GROUP ON SEQUENCE SPACES 5

and so, through the isometry V , we have ‖Sα(t)‖p ≤ emax{−t/p,t(−α+1/p)} for
t ∈ R.

On the other hand, it has been shown in [1] that the spectrum of Sα(t),
t ∈ R, is

σ(Sα(t)) =
{
z ∈ C : emin{−t/p,t(−α+1/p)} ≤ |z| ≤ emax{−t/p,t(−α+1/p)}

}
,

so that the spectral radius r(Sα(t)) of Sα(t) is r(Sα(t)) = emax{−t/p,t(−α+1/p)}.
Hence one gets emax{−t/p,t(−α+1/p)} ≤ ‖Sα(t)‖p. All in all, ‖Sα(t)‖p =

emax{−t/p,t(−α+1/p)} as claimed.
That (Sα(t))t∈R is a C0-group of (bounded) operators onHp(D) is proved

in [13]. �

Remark 1.2. Asymptotic estimates of ‖Sω(t)‖, t ∈ R, for weights ω
fairly more general than the former ωα.β , are given for so called (Banach)
γ-spaces in [1], but this is not necessary here. The class of γ-spaces contains
the Hardy spaces Hp(D), for γ = 1/p.

Next, we give upper and lower estimates of norms of integral operators
on Hp(D) subordinated to (Sα(t))t∈R. For 1 ≤ p < ∞, t ∈ R, let Ωα,p denote
the vertical strip given by

Ωα,p := {λ ∈ C : min{−1/p,−α+(1/p)} ≤ ℜλ ≤ max{−1/p,−α+(1/p)}}

and put

Mα,p(t) = max{−t/p, t(−α+ 1/p)}.

Let φ : R → C be a measurable function such that
∫∞
−∞ |φ(t)|eMα,p(t) dt

< ∞. Set Θ(φ)f to denote the Bochner convergent integral defined by

Θ(φ)f :=

∫ ∞

−∞
φ(t)Sα(t)f dt, f ∈ Hp(D).

Proposition 1.3. For α, p and φ : R → C as above we have

sup
λ∈Ωα,p

∣∣∣∣
∫ ∞

−∞
φ(t)eλt dt

∣∣∣∣ ≤ ‖Θ(φ)‖p ≤

∫ ∞

−∞
|φ(t)|eMα,p(t) dt.

Moreover, if φ is nonnegative then

‖Θ(φ)‖p ≥ max
λ∈{−1/p,1/p−α}

∫ ∞

−∞
φ(t)eλt dt.

Proof. The upper estimate holds by the definition of Θ(φ) and Propo-

sition 1.1. For the lower estimate, set φ̃(λ) :=
∫∞
−∞ φ(t)eλtdt, which is abso-

lutely convergent for all λ ∈ Ωα,p. The subset Ωα,p is in fact the spectrum
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σ(∆α,p) of the infinitesimal generator ∆α,p on Hp(D), see [1, Theorem 6.8].

Assume the spectral inclusion φ̃(σ(∆α,p)) ⊆ σ(Θ(φ)) holds. In this case,

‖Θ(φ)‖Hp→Hp ≥ r(Θ(φ)) ≥ supλ∈Ωα,p
|φ̃(λ)| from which we get the lower es-

timate.
Let us prove such a spectral inclusion. Assume first α = 2/p. Then

(et/pSα(t))t∈R is a uniformly bounded C0-group by Proposition 1.1, and
the claim follows by the spectral mapping theorem for uniformly bounded
C0-groups, see [12, Theorem 3.1] for a slightly more general result.

Assume now α < 2/p. By [1, Theorem 6.8], all the points in the interior
of Ωα,p lie in the point spectrum of ∆α,p, and have the function fλ(z) =
(1+z)λ

(1−z)λ+α , z ∈ D, as eigenvector. By [5, Corollary IV.3.8], it follows that fλ

is an eigenvector of Sα(t) associated to the eigenvalue eλt for all t ∈ R. As
a consequence, one has

Θ(φ)fλ =

∫ ∞

−∞
φ(t)Sα(t)fλ dt = fλ

∫ ∞

−∞
φ(t)eλt dt = φ̃(λ)fλ , λ ∈ Int(Ωα,p),

so φ̃(Int(Ωα,p)) ⊆ σpoint(Θ(φ)). Since σ(Θ(φ)) is a closed subset of C and φ̃

is continuous on Ωα,p = σ(∆α,p), one gets φ̃(Ωα,p) ⊆ φ̃(Int(Ωα,p)) ⊆ σ(Θ(φ)),
as we wanted to prove.

Finally, assume α > 2/p. Again by [1, Theorem 6.8], all the points λ of
the interior of Ωα,p lie in the residual spectrum of ∆α,p and satisfy that the
range space Rλ := Ran(λ−∆α,p) is closed and its codimension is equal to 1.
Also, Ran(eλt − Sα(t)) ⊆ Rλ for all t ∈ R, see for instance [5, Eq. (IV.3.14)].
Fix λ ∈ Int(Ωα,p). Since Rλ is closed, we have

(φ̃(λ)−Θ(φ))f =

∫ ∞

−∞
φ(t)

(
eλt − Sα(t)

)
f dt ∈ Rλ, f ∈ Hp(D).

Thus, we conclude Ran(φ̃(λ)−Θ(φ)) ⊆ Rλ, so φ̃(λ) ∈ σ(Θ(φ)). Reasoning as

in the end of the proof for the case α < 2/p, we have φ̃(Ωα,p) ⊆ φ̃(Int(Ωα,p)) ⊆
σ(Θ(φ)), as we wanted to prove.

Now, for nonnegative φ, it is clear that

sup
λ∈Ωα,p

∣∣∣∣
∫ ∞

−∞
φ(t)eλt dt

∣∣∣∣ = sup
λ∈R∩Ωα,p

∫ ∞

−∞
φ(t)eλt dt.

Then, since the latter integral is convex in the variable λ, it reaches its
maximum value at the extreme points of the interval R∩Ωα,p, namely −1/p
or 1/p− α. Then our claim follows from what we have already proven. �

Let supp(φ) denote the support of φ in R.
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HYPERBOLIC GROUP ON SEQUENCE SPACES 7

Corollary 1.4. Let α, p and φ : R → [0,∞) be as above. Suppose that
supp(φ) ⊆ (−∞, 0] or supp(φ) ⊆ [0,∞). Then

‖Θ(φ)‖p =

∫ ∞

−∞
φ(t) eMα,p(t) dt.

Proof. Under the assumption on φ it is clear that

max
λ∈{−1/p,1/p−α}

∫ ∞

−∞
φ(t)eλt dt =

∫ ∞

−∞
φ(t) eMα,p(t) dt,

and the result follows from Proposition 1.3. �

Remark 1.5. Using similar type of arguments as above, one can show
that analogous bounds to the ones given in Proposition 1.3 and Corollary
1.4 also hold for Bergman spaces and little Korenblum spaces.

2. Non-boundedness of the hyperbolic group

Since H2(D) is isometric to the space ℓ2 of complex square-summable
sequences, one obtains automatically the above estimates for the transferred
operators Tα(t) of Sα(t), t ∈ R, on ℓ2. The case p 6= 2 is very different. In
fact, we show that Tα(t) is not bounded on spaces ℓp, p 6= 2, in this section.

Set N0 := N ∪ {0}. For δ ∈ R and 1 ≤ p < ∞, let ℓpδ denote the Banach
space of sequences (f(n))n≥0 such that

‖f‖p,δ :=

( ∞∑

n=0

|f(n)|p(n+ 1)2δ
)1/p

< ∞.

Put ℓp := ℓp0 and ‖f‖p := ‖f‖p,0. Let Φ denote the correspondence between
ℓpδ and O(D) given by

(Φf)(z) :=
∞∑

n=0

f(n)zn, z ∈ D, f ∈ ℓpδ .

It is well known that Φ defines an isometry from the Hilbert space ℓ2δ
onto:

– The hilbertian Hardy space H2(D) when δ = 0,

– the hilbertian Bergman space A2(D) when δ = −1/2,

– the classical Dirichlet space D when δ = 1/2.

The family (Sα(t))t∈R is a C0-group of bounded operators on H2(D),
A2(D) and D, see [1]. Hence, the isometric copy (Tα(t))t∈R of (Sα(t))t∈R
through the isometry Φ, that is,

Tα(t) := Φ−1Sα(t)Φ, t ∈ R,
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is a C0-group of bounded operators on ℓ2δ for δ = 0,−1/2, 1/2 respectively
(and on the interpolated Banach spaces in between). Here we restrict our-
selves to consider the group Tα(t))t∈R acting on ℓ2. It will be enough to
show the key points of the matter. Then automatically we have the follow-
ing consequence of Proposition 1.1.

Corollary 2.1. The family (Tα(t))t∈R is a C0-group of bounded oper-
ators on ℓ2 with

‖Tα(t)‖2 = emax{−t/2,(−α+1/2)t} , t ∈ R.

Now, we express the group (Tα(t))t∈R acting on sequences.

Proposition 2.2. Let α ∈ R, f ∈ ℓ2 and t ∈ R. We have

(2.1) (Tα(t)f)(n) =
∞∑

k=0

aαn,k(t)f(k), n ∈ N0,

where

aαn,k(t) :=
2α(tanh(t/2))n+k

(et + 1)α

min{n,k}∑

j=0

(
−k − α

n− j

)(
k

j

)
(tanh(t/2))−2j

= 2α
min{n,k}∑

j=0

(
−k − α

n− j

)(
k

j

)
(et − 1)n+k−2j

(et + 1)n+k+α−2j
, n, k ∈ N0.

Proof. Let z ∈ D, t ∈ R and f ∈ ℓ2. Then

∞∑

n=0

(Tα(t)f)(n)z
n = (ΦTα(t)f)(z)

with

(ΦTα(t)f)(z) = (Sα(t)Φf)(z) =

(
1− tanh(t/2)

1+z tanh(t/2)

)α

(Φf)

(
z+ tanh(t/2)

1+z tanh(t/2)

)

= (1− tanh(t/2))α
∞∑

k=0

f(k)
(z + tanh(t/2))k

(1 + z tanh(t/2))k+α

= (1− tanh(t/2))α
∞∑

k=0

f(k)
k∑

n=0

(
k

n

)
zn(tanh(t/2))k−n

×

∞∑

j=0

(
−k − α

j

)
(z tanh(t/2))j

Analysis Mathematica
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= (1− tanh(t/2))α
∞∑

n=0

zn
∞∑

k=0

f(k)

min{n,k}∑

j=0

(
−k−α

n−j

)(
k

j

)
(tanh(t/2))n+k−2j,

whence the statement follows. �

Remark 2.3. For fixed k ∈ N0, taking the function f(z) := zk in the
above proposition one directly gets
(2.2)

∞∑

n=0

aαn,k(t)z
n =

(
1− tanh(t/2)

1+z tanh(t/2)

)α( z+ tanh(t/2)

1+z tanh(t/2)

)k

, z ∈ D, α, t ∈ R.

By Corollary 2.1, Tα(t) is bounded on ℓ2 and its norm can be exactly
computed. These facts are not simple to prove directly from formula (2.1).

Since ℓp and Hp(D) are not isomorphic for p 6= 2, the above argument
is useless when we wonder whether or not Tα defines a C0 group on ℓp.
Actually, the next result gives a negative answer for all p 6= 2.

Theorem 2.4. Let 1 ≤ p < ∞ with p 6= 2, and let α, t ∈ R, t 6= 0. Then
Tα(t) does not define a bounded operator on ℓp.

Proof. Fix t 6= 0 throughout all the proof. Let β ∈ R and set gβ(z) :=

(1 + z tanh(t/2))−β for z ∈ D. Then gβ is a holomorphic function in the
open disc of radius |1/ tanh(t/2)| > 1 centered at z = 0 and therefore the

sequence of its Taylor coefficients gβ(n) = aβn,0, n ∈ N0, belongs to ℓ1 for all

β ∈ R. Since 1/gβ = g−β , the convolution operator Kβ defined by Kβf :=
Φ−1(gβ Φ(f)), f ∈ ℓp, is an invertible bounded operator on ℓp for all p ∈
[1,∞].

On the other hand, from the definition of Tα(t) prior to Corollary 2.1 it
follows readily that

(∀α, β ∈ R) Tα(t) = (1− tanh(t/2))α−βKα−βTβ(t).

Hence, given a fixed α ∈ R, one has that Tα(t) is a bounded operator on ℓp

if and only if Tβ(t) is a bounded operator on ℓp for all β ∈ R. Next, we
proceed differently depending on p.

(1) Case p = 1. It is known that a composition mapping

f 7→ Φ−1 ◦ (Φ(f) ◦ g)

is bounded on ℓ1 if and only if g(z) = cz, with |c| = 1, see [11, p. 38]. Then,
it follows that T0(t) is not a bounded operator on ℓ1.
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10 L. ABADIAS, J. E. GALÉ, P. J. MIANA and J. OLIVA-MAZA

(2) Case 1 < p < 2. If T0(t) were a bounded operator on ℓp, then its
adjoint operator T0(t)

∗, which is given by

(T0(t)
∗f)(k) =

∞∑

n=0

a0n,k(t)f(n), k ∈ N0,

would be a bounded operator on ℓp
′

(where 1/p+ 1/p′ = 1), with norm
‖T0(t)

∗‖p′ = ‖T0(t)‖p < ∞. For k ∈ N0, let evk denote the evaluation map-
ping evkf = f(k). It is readily seen that

‖evkT0(t)
∗‖ℓp′→C =

( ∞∑

n=0

|a0n,k(t)|
p

)1/p

=: Ck,p,

so Ck,p ≤ ‖T0(t)
∗‖p′ for all k ∈ N0. But, we also have by (2.2) and [14, Theo-

rem 1] that Ck,p ∼ k(2/p)−1 → ∞ as k → ∞, whence one gets a contradiction.

(3) Case 2 < p < ∞. Assume T1 is a bounded operator on ℓp. Then we
have

‖evnT1(t)‖ℓp→C =

( ∞∑

k=0

|a1n,k(t)|
p′

)1/p′

=: Dn,p′ ,

so Dn,p′ ≤ ‖T1(t)‖p for all n ∈ N0. It is readily seen that

a1n,k(t) = (−1)n+ka1k,n(t)

for all n, k ∈ N0, so Dn,p′ =
(∑∞

k=0 |a
1
k,n(t)|

p′
)1/p′

. Reasoning as at the be-

ginning of the proof and using (2.2), one obtains

Ap′

( ∞∑

k=0

|a0k,n(t)|
p′

)1/p′

≤

( ∞∑

k=0

|a1k,n(t)|
p′

)1/p′

≤ Bp′

( ∞∑

k=0

|a0k,n(t)|
p′

)1/p′

, n ∈ N0,

for some constants Ap′ ,Bp′ > 0 independent of n. By [14, Theorem 1] again,
Dn,p′ ∼ Cn,p′ → ∞ as n → ∞, which is a contradiction. �

3. Some identities of sums of binomial coefficients

In this section we give results about finite series involving binomial coef-
ficients which seem to be unknown and will be useful to describe the integral
operators subordinated to the group (Tα(t)t∈R presented in Section 4.
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The following proposition can be proved by a combinatorial argument
based on induction on k ∈ N0. Instead, we have chosen to give a complex
variable proof.

Lemma 3.1. Let ν∈R and k∈N0, λ∈R such that λ 6= 0,−1,−2, . . . ,−k.
Then

(3.1)
k∑

j=0

(
ν + j

k

)(
k

j

)
(−1)j

j + λ
=

1

k + 1

(
ν − λ

k

)(
λ+ k

k + 1

)−1

.

Proof. Let ν, k, λ be as in the statement. It is readily seen that

(
ν + j

k

)(
k

j

)
(−1)j =

(
−ν − 1

j

)(
ν

k − j

)
for j = 0, 1, . . . , k,

so that proving (3.1) is equivalent to prove
(3.2)

(k+1)

(
λ+k

k+1

) k∑

j=0

(
−ν−1

j

)(
ν

k−j

)
1

λ+j
=

(
ν−λ

k

)
, j = 0, 1, . . . , k.

The two members, on the left and on the right, of equality (3.2) are poyno-
mials in λ (also in ν) of degree k. Thus, in order to prove (3.2), it is enough
to show that (3.2) holds for k + 1 different λ in R. In fact, we are going to
show that (3.2) is fulfilled by every λ ∈ N.

So let N be a natural number. Note that

(k + 1)

(
N + k

k + 1

)
=

(k +N) · · · (k + 1)

Γ(N)
.

Define

FN (z) :=
1

Γ(N)

∞∑

k=0

k∑

j=0

(
−ν − 1

j

)(
ν

k − j

)
(k + 1) · · · (k +N)

N + j
zk, z ∈ D.

We see below that indeed FN (z) is an absolutely convergent series in D.
Clearly, (3.2) for λ = N is equivalent to the equality FN(z) = (1+ z)ν−N ,

z ∈ D. The claim of the proposition will be established as soon as we prove
the latter equality.

Let GN be in O(D) given by

GN (z) :=

∞∑

k=0

k∑

j=0

(
−ν − 1

j

)(
ν

k − j

)
1

N + j
zk+N , z ∈ D,
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12 L. ABADIAS, J. E. GALÉ, P. J. MIANA and J. OLIVA-MAZA

so that FN (z) = 1
Γ(N) G

(N)
N (z), for every z ∈ D. Without loss of generality

we can assume ν < 0 since (3.1) is polynomial in ν.
For z ∈ D we have

GN (z) := zN
∞∑

k=0

k∑

j=0

(
−ν − 1

j

)(
ν

k − j

)
1

N + j
zk

= zN
( ∞∑

k=0

(
ν

k

)
zk
)( ∞∑

k=0

(
−ν − 1

k

)
1

N + k
zk
)

= (1 + z)ν
∞∑

k=0

(
−ν − 1

k

)
1

N + k
zk+N =: (1 + z)νhN (z),

with

h′
N (z) =

∞∑

k=0

(
−ν − 1

k

)
zk+N−1 = zN−1(1 + z)−ν−1

= (1 + z − 1)N−1(1 + z)−ν−1

=
N−1∑

m=0

(
N − 1

m

)
(1 + z)m(−1)N−1−m(1 + z)−ν−1

=
N−1∑

m=0

(
N − 1

m

)
(−1)N−1−m(1 + z)m−ν−1.

Hence,

hN (z) =
N−1∑

m=0

(
N − 1

m

)
(−1)N−1−m (1 + z)m−ν

m− ν
+ CN (ν), z ∈ D,

where CN (ν) is constant in z.
Thus we have, for z ∈ D,

GN (z) =
N−1∑

m=0

(
N − 1

m

)
(−1)N−1−m (1 + z)m−ν

m− ν
+ CN (ν)(1 + z)ν ,

and therefore

FN (z) =
1

Γ(N)
G

(N)
N (z) =

1

Γ(N)
CN (ν) ν(ν−1) · · · (ν−N+1)(1+z)ν−N .
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Moreover, since hN (0) = 0, we get

CN (ν) = −
N−1∑

m=0

(
N − 1

m

)
(−1)N−1−m 1

m− ν
,

whence

CN (ν) = (−1)N
N−1∑

m=0

(
N − 1

m

)
(−1)m

∫ 1

0
tm−ν−1 dt

= (−1)N
∫ 1

0

N−1∑

m=0

(
N − 1

m

)
(−t)mt−ν−1dt = (−1)N

∫ 1

0
(1− t)N−1t−ν−1 dt

= (−1)NB(N ;−ν) = (−1)N
Γ(N)Γ(−ν)

Γ(N − ν)
.

As a consequence,

FN(z) =
(−1)N

Γ(N)

Γ(N)Γ(−ν)

Γ(N − ν)
ν · · · (ν −N + 1)(1 + z)ν−N = (1 + z)ν−N ,

as desired.The proof is finished. �

Lemma 3.2. Let n, k ∈ N0 and λ ∈ R such that
|n−k|+λ

2 6= 0,−1, . . . ,
−min{n, k}. Then

min{n,k}∑

i=0

(
n+ k − i

k

)(
k

i

)
(−1)i

n+ k − 2i+ λ

=
(−1)min{n,k}

2(min{n, k}+ 1)

( n+k−λ
2

min{n, k}

)( n+k+λ
2

min{n, k}+ 1

)−1

.

Proof. First of all, note that
(n+k−i

k

)(k
i

)
=

(n+k−i
n

)(n
i

)
. Thus we have

(
n+ k − i

k

)(
k

i

)
=

(
n+ k − i

min{n, k}

)(
min{n, k}

i

)
.

Applying the change of index j = min{n, k} − i, one has

σ :=

min{n,k}∑

i=0

(
n+ k − i

min{n, k}

)(
min{n, k}

i

)
(−1)i

n+ k − 2i+ λ
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14 L. ABADIAS, J. E. GALÉ, P. J. MIANA and J. OLIVA-MAZA

=
(−1)min{n,k}

2

min{n,k}∑

j=0

(
max{n, k}+ j

min{n, k}

)(
min{n, k}

j

)
(−1)j

j + |n−k|+λ
2

.

Now, by Lemma 3.1,

σ =
(−1)min{n,k}

2(min{n, k}+ 1)

(
max{n, k} − |n−k|+λ

2

min{n, k}

)( |n−k|+λ
2 +min{n, k}

min{n, k}+ 1

)−1

=
(−1)min{n,k}

2(min{n, k}+ 1)

( n+k−λ
2

min{n, k}

)( n+k+λ
2

min{n, k}+ 1

)−1

.

The proof is finished. �

Lemma 3.3. Let n, k ∈ N0. We have

min{n,k}∑

i=0

(
n+ k − i

k

)(
k

i

)
(−1)i

n+ k − 2i+ 1
=

(−1)min{n,k}

n+ k + 1
.

Proof. Applying Lemma 3.2 with λ = 1 one obtains

min{n,k}∑

i=0

(
n+ k − i

k

)(
k

i

)
(−1)i

n+ k − 2i+ 1

=
(−1)min{n,k}

2(min{n, k}+ 1)

( n+k−1
2

min{n, k}

)( n+k+1
2

min{n, k}+ 1

)−1

=
(−1)min{n,k}

2

1
n+k+1

2

=
(−1)min{n,k}

n+ k + 1
,

as we wanted to show. �

4. Integrals subordinated to the hyperbolic group

Let α, β, µ ≥ 0. Here we deal with the operators formally given by

J
µ,ν
δ = 2−δ

∫ ∞

0
(1− e−t)δ−1e(ν+δ)tTµ+ν+δ+1(t) dt,

H
µ,ν
δ =

∫ ∞

−∞

2δ−1

(1 + et)δ
e(ν+1)tTµ+ν−δ+2(t) dt.

Versions of the above operators have been treated in [1] (with Sα(t) in-

stead Tα(t) in J
µ,ν
δ and H

µ,ν
δ ) or in [6] (with S̃α(t) instead Tα(t) in J

µ,ν
δ ). We
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next discuss the boundedness of the above operators on the space ℓ2, and
give their expressions in terms of sequences.

Let B denote the Beta function and 2F1 the gaussian hypergeometric
function of integral representation

2F1(a, b; c; z) :=
Γ(c)

Γ(c−b)Γ(b)

∫ 1

0
sb−1(1−s)c−b−1(1−zs)−a ds,

z ∈ C \ [1,+∞), for a, b, c ∈ C with Re c > Re b > 0; see for example [7, For-
mula 9.111].

4.1. Siskakis type operators on sequences. For all ρ > 0, ν ∈ R,
let Mν,ρ be given by

Mν,ρ := lim
D∋z→−1

∞∑

j=0

(
ν + j

j

)
zj

ρ+ j
,

where the series converges absolutely for all z ∈ D. By [7, Formula 9.102],
one has

(∀ν < 1) Mν,ρ =
∞∑

j=0

(
ν + j

j

)
(−1)j

ρ+ j
,

with absolute convergence if ν < 0, and non-absolute otherwise.

Proposition 4.1. Let µ > −1/2, δ > 0, ν + δ < 1/2. Then J
µ,ν
δ is a

bounded operator on ℓ2 with

‖Jαδ,+‖ℓ2→ℓ2 = 2−δB(δ, 1/2 +min{µ,−ν − δ})

such that, for all n ∈ N0 and f ∈ ℓ2,

(Jαδ,+f)(n) =

∞∑

k=0

(min{n,k}∑

j=0

(
−k−µ−ν−δ−1

n−j

)(
k

j

)
E(n, k, j, µ, ν, δ)

)
f(k),

where, for k ∈ N0 and 0 ≤ j ≤ min{n, k},

E(n, k, j, µ, ν, δ) := B(n+ k + δ − 2j, µ+ 1)

× 2F1(−ν, n+ k + δ − 2j;n+ k + µ+ δ − 2j + 1;−1).

Proof. The boundedness of J
µ,ν
δ on ℓ2 for µ > −1/2, δ > 0, ν + δ <

1/2 and the exact value of its norm are direct application of Corollary 1.4,
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with p = 2 and φ(t) = 2−δ(1− e−t)δ−1e(ν+δ)t, t ∈ R, since Sµ+ν+δ+1(t) and
Tµ+ν+δ+1(t) are unitarily equivalent for every t ∈ R. In effect,

‖Jµ,νδ ‖ℓ2→ℓ2 = ‖J µ,ν
δ ‖H2→H2 = 2−δ

∫ ∞

0
(1− e−t)δ−1e−t(1/2+min{µ,−ν−δ}) dt

= 2−δ

∫ ∞

0
(1− x)δ−1x1/2+min{µ,−ν−δ}−1 dx

= 2−δB(δ, 1/2 + min{µ,−ν − δ}).

Now, by Proposition 2.2 we have, for f ∈ ℓ2 and n ∈ N0,

(Jµ,νδ f)(n) = 2−δ
∞∑

k=0

(∫ ∞

0
(1− e−t)δ−1e(ν+δ)taµ+ν+δ+1

n,k (t) dt

)
f(k),

where
∫ ∞

0
(1− e−t)δ−1e(ν+δ)taµ+ν+δ+1

n,k (t) dt

= 2µ+ν+δ+1

∫ ∞

0

min{n,k}∑

j=0

(
−k − µ− ν − δ − 1

n− j

)(
k

j

)

×
(et − 1)n+k−2j

(et + 1)n+k+µ+ν+δ+1−2j
(1− e−t)δ−1e(ν+δ)t dt

= 2µ+ν+δ+1

min{n,k}∑

j=0

(
−k − µ− ν − δ − 1

n− j

)(
k

j

)

×

∫ ∞

0
e−(µ+1)t (1− e−t)n+k+δ−2j−1

(1 + e−t)n+k+µ+ν+δ+1−2j
dt

= 2µ+ν+δ+1

min{n,k}∑

j=0

(
−k − µ− ν − δ − 1

n− j

)(
k

j

)

×

∫ 1

0
xµ

(1− x)n+k+δ−2j−1

(1 + x)n+k+µ+ν+δ+1−2j
dx,

with

∫ 1

0
xµ

(1− x)n+k+δ−2j−1

(1 + x)n+k+µ+ν+δ+1−2j
dx

Analysis Mathematica



HYPERBOLIC GROUP ON SEQUENCE SPACES 17

= 2−µ−ν−1B(n+ k + δ − 2j, µ+ 1)

× 2F1(−ν, n+ k + δ − 2j;n+ k + µ+ δ − 2j + 1;−1),

by [7, Formula 3.197(8)] and [7, Formula 9.131(1)]. �

We now take a closer look at the case µ = 0, ν = −δ.

Corollary 4.2. Let δ > 0, f ∈ ℓ2, n ∈ N0, and set Jδ := J
0,−δ
δ . Then

(Jδf)(n) =

∞∑

k=0

(−1)min{n,k}+n

2(min{n, k}+ 1)
c(n, k)f(k),

where

c(n, k) := lim
D∋z→−1

∞∑

j=0

(
δ−1+j

j

)(
(n+k−δ−j)/2

min{n, k}

)(
(n+k+δ+j)/2

min{n, k}+ 1

)−1

zj .

Moreover, the series in j converges absolutely for all z ∈ D. The limit
in z can be intertwined with the series in j for δ < 2, and in this case the
series in j converges absolutely for δ < 1.

Proof. Let dk be the term multiplying f(k) in Proposition 4.1. First
we notice

E(n, k, i, 0,−δ, δ) = B(n+ k + δ − 2i, 1)

× 2F1(δ, n+ k + δ − 2i;n+ k + δ − 2i+ 1;−1) = Mδ−1,n+k+δ−2i,

see [7, Subsection 9.10]. Then

dk =

min{n,k}∑

i=0

(
−k − 1

n− i

)(
k

i

)
E(n, k, i, 0,−δ, δ)

=

min{n,k}∑

i=0

(−1)n−i

(
n+k− i

k

)(
k

i

)
lim

D∋z→−1

∞∑

j=0

(
δ−1+j

j

)
zj

n+k+δ−2i+j

= lim
D∋z→−1

∞∑

j=0

(
δ−1+j

j

)
(−1)nzj

min{n,k}∑

i=0

(
n+k−i

k

)(
k

i

)
(−1)i

n+k+δ−2i+j

= lim
D∋z→−1

∞∑

j=0

(
δ−1+j

j

)
zj

(−1)min{n,k}+n

2(min{n, k}+1)

( n+k−δ−j
2

min{n, k}

)( n+k+δ+j
2

min{n, k}+1

)−1

,

where we have applied Lemma 3.2 in the latter equality. The convergence
criterion as z → −1 is derived from the definition of Mν,µ prior to Proposi-
tion 4.1. �
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Remark 4.3. The above operators Jµ,νδ are bounded on ℓ2 since they are
subordinated, through L1-functions, to the group (Tµ+ν+δ+1(t))t∈R which is
formed by bounded operators on ℓ2. However, operators Tµ+ν+δ+1(t), t ∈ R,
are not bounded on ℓp, for p 6= 2 according to Theorem 2.4. Thus the fol-
lowing question is in order.

Question. Are operators J
µ,ν
δ bounded on ℓp for 1 ≤ p ≤ ∞?

This question does not seem to be simple in view of the formulae in
Proposition 4.1 or Corollary 4.2.

We further illustrate this question with the case µ = 0, δ = 1, ν = −1.
For these values in J

µ,ν
δ one obtains the operator J0,−1

1 which, up to a con-
stant, corresponds to the Siskakis operator J given by

J f(z) :=
1

1− z

∫ z

1

f(ξ)

1 + ξ
dξ, z ∈ D.

on Hp(D); see [1] and [13]. By using the Taylor series of (1 + ξ)−1 in the
integral, then integrating and then dividing by (1− z) one gets that, in terms
of sequences, the operator J corresponding to J is J : (an) 7→ (bn) where

bn =

∞∑

k=n

(−1)k+1 1

k + 1

k∑

j=0

(−1)jaj , n ≥ 0.

Thus, since J is bounded on H2(D) [13], or by Proposition 4.1 above, we
have

( ∞∑

n=0

∣∣∣∣
∞∑

k=n

(−1)k+1

k + 1

k∑

j=0

(−1)jaj

∣∣∣∣
2)1/2

≤ 2

( ∞∑

n=0

|an|
2

)1/2

.

We wonder if the inequality remains true if one changes exponents 2 and 1/2
by p and 1/p respectively, p 6= 2, in it, and replaces the (best) constant 2
with a suitable constant Cp.

4.2. Hilbert matrix type operators on sequences. For µ, ν, δ ∈ R,
let Hµ,ν

δ be the weighted Hilbert type operator given by

H
µ,ν
δ :=

∫ ∞

−∞
2δ−1 e(ν+1)t

(1 + et)δ
Tµ+ν−δ+2(t) dt.

Proposition 4.4. Let min{µ,ν} > −1/2, min{δ−µ, δ−ν} > 1/2. Then
H
µ,ν
δ is a bounded operator on ℓ2 with

max
λ∈{µ,ν}

2δ−1B(λ+ 1/2, δ − λ− 1/2) ≤ ‖Hµ,ν
δ ‖ℓ2→ℓ2
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≤ 2δ−1

(
2F1(δ, γ; γ + 1;−1)

γ
+

2F1(δ, γ̃; γ̃ + 1;−1)

γ̃

)
,

where γ = min{µ+1/2, δ−ν−1/2} and γ̃ = min{ν+1/2, δ−µ−1/2}, such
that

(Hα
µ,δf)(n)(4.1)

= 2µ+ν+1
∞∑

k=0

(min{n,k}∑

j=0

(
−k − µ− ν + δ − 2

n− j

)(
k

j

)
D(n, k, j, µ, ν, δ)

)
f(k)

for all n ∈ N0 where, for k ∈ N0 and 0 ≤ j ≤ min{n, k},

D(n, k, j, µ, ν, δ) = (−1)n+kB(n+ k − 2j + 1, ν + 1)

× 2F1(n+ k + µ+ ν − 2j + 2, ν + 1;n+ k + ν − 2j + 2;−1)

+B(n+ k − 2j + 1, µ+ 1)

× 2F1(n+ k + µ+ ν − 2j + 2, µ+ 1;n+ k + µ− 2j + 2;−1).

Proof. As regard the estimates for the norm of Hµ,ν
δ , note first that,

by Corollary 1.4, one has

‖Hµ,ν
δ ‖ℓ2→ℓ2 ≤ 2δ−1

∫ ∞

−∞

e(ν+1)t

(1 + et)δ
eMµ+ν−δ+2,1/2(t) dt

= 2δ−1

(∫ 0

−∞

e−tmax{−ν−1/2,µ−δ+1/2}

(1 + et)δ
dt+

∫ ∞

0

etmax{ν+1/2,δ−µ−1/2}

(1 + et)δ
dt

)

= 2δ−1

(∫ ∞

1

xδ−γ̃−1

(1 + x)δ
dx+

∫ ∞

1

xδ−γ−1

(1 + x)δ
dx

)

= 2δ−1

(
2F1(δ, γ; γ + 1;−1)

γ
+

2F1(δ, γ̃; γ̃ + 1;−1)

γ̃

)
,

where γ and γ̃ are as in the statement and we have applied [7, Formula
3.194(2)] in the last step. So we conclude that the integral

∫ ∞

−∞
e(ν+1)t(1 + et)−δTµ+ν−δ+2(t) dt

converges in the Bochner sense for µ, ν, δ as in the statement, and obtain the
claimed upper bound for ‖Hµ,ν

δ ‖ℓ2→ℓ2 . For the lower bound of the norm we
just apply directly Proposition 1.3.
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As for the action of Hµ,ν
δ on sequences we have, for f ∈ ℓ2 and n ∈ N0,

(Hµ,ν
δ f)(n) = 2µ+ν−1

∞∑

k=0

f(k)

min{n,k}∑

j=0

(
−k − µ− ν + δ − 2

n− j

)(
k

j

)

×

∫ ∞

−∞
e(ν+1)t (et − 1)n+k−2j

(1 + et)n+k+µ+ν+2−2j
dt,

with

∫ ∞

−∞

e(ν+1)t(et − 1)n+k−2j

(1 + et)n+k+µ+ν+2−2j
dt

=

∫ 1

0

(
(−1)n+kxν + xµ

) (1− x)n+k−2j

(1 + x)n+k+µ+ν+2−2j
dx.

Then the formula of the statement follows by [7, Formula 3.197(8)]. �

Remark 4.5. Take µ = ν = 0 and δ = 1 in the formula of Hµ,ν
δ on se-

quences. Since 2F1(α,m;α, z) = 2F1(m,α;α, z) = (1−z)−m, see [7, Formula
9.121(1)]), we have

D(n, k, j, 0, 0, 1) =
1

2

(−1)n+k + 1

n+ k − 2j + 1
.

Then by Proposition 4.4 we obtain

(H0,0
1 f)(n) =

∞∑

k=0

f(k)

min{n,k}∑

j=0

(
−k − 1

n− j

)(
k

j

)
(−1)n+k + 1

n+ k − 2j + 1

=
∞∑

k=0

f(k)

min{n,k}∑

j=0

(−1)n−j

(
n+ k − j

n− j

)(
k

j

)
(−1)n+k + 1

n+ k − 2j + 1

=
∞∑

k=0

f(k)((−1)n + (−1)k)

min{n,k}∑

j=0

(
n+ k − j

k

)(
k

j

)
(−1)j

n+ k − 2j + 1

=
∞∑

k=0

f(k)((−1)n + (−1)k)
(−1)min{n,k}

n+ k + 1
=

∞∑

k=0

1 + (−1)n+k

n+ k + 1
f(k),

where we have used Lemma 3.3 in the last-but-one equality. That is, the
operator H0,0

1 is the so called reduced Hilbert matrix operator [1,2], whose
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corresponding integral formula on functions f in O(D) is

H0,0
1 f(z) :=

∫ 1

−1

f(ξ)

1− zξ
dξ, z ∈ D.

Thus we have by Proposition 4.4 that H0,0
1 is bounded on ℓ2. Nonethe-

less, a better result is known: let H ≡ H be the Hilbert matrix operator
given by

(Hf)(z) =

∫ 1

0

f(w)

1− zw
dw, z ∈ D,

or, alternatively, by

(Hf)(n) =
∞∑

k=0

1

n+ k + 1
f(k) n ∈ N0,

for f ∈ O(D) with Taylor coeficients (f(n))∞n=0 (provide the integral con-
verges), see [3,4,10]. The Hilbert inequality tells us that H is a bounded
operator on ℓp for every 1 < p < ∞, see [8]. Define the operator Ω: O(D)
→ O(D) given by (Ωf)(z) := f(−z). Then (Φ−1ΩΦf)(n) = (−1)nf(n), for
n ∈ N0 and f ∈ ℓ2 where Φ is as in Section 2. It is readily seen that
H0,0

1 = H +ΩHΩ, whence it follows that

(H0,0
1 f)(n) = (Φ−1H0,0

1 Φf)(n)

= ((H+ (Φ−1ΩΦ)H(Φ−1ΩΦ))f)(n) =
∞∑

k=0

1 + (−1)n+k

n+ k + 1
f(k),

for all n ∈ N0. In consequence, H0,0
1 extends from ℓ2 ∩ ℓp to a bounded op-

erator from ℓp into itself.
Let us call the operator H

µ,ν
δ given in (4.1) the generalized reduced

Hilbert matrix operator of indexes µ, ν, δ.

Question. Is the operator H
µ,ν
δ bounded on ℓp for 1 < p < ∞ ?

In other words, we wonder if there is a multiparameterized extension
of the classical Hilbert inequality for sequences which would apply to H

µ,ν
δ

in (4.1).
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