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Abstract
The synthesis and structural details of a mixed-ligand Cu(II) coordination compound, specifically catena-poly[bis(dicyanamido)
(1,10-phenanthroline-5,6-dione)copper(II)] 1, are reported. The title compound was synthesized utilizing a solvothermal method 
by employing dicyanamide, 1,10-phenanthroline-5,6-dione (phendione) and copper(II) sulfate pentahydrate (CuSO4•5H2O) 
as the starting materials. The title compound was characterized by standard analytical and spectroscopic methods. The 3D 
structure was determined by single-crystal X-ray diffraction. Examination of the supramolecular interaction patterns indicates 
that the stability of the ladder structure is achieved by the bridging dca anions and the presence of weak hydrogen-bonding 
contacts, specifically C-H···O and C-H···N bonds, as well as C-O/N···π interactions. These interactions together contribute 
to the formation of a ladder-type infinite chain structure. The generated structure has been theoretically investigated with 
Hirshfeld surface analysis, QTAIM and NCI analysis to reveal the interaction energies and bonds present inside and between 
molecules. The non-covalent interactions present in the crystal structure were further investigated theoretically, with particular 
attention to the cooperative C ≡ N···π(py) and N···π(hole) interactions involving the dicyanamide ligand and nitrile moieties 
in the compound. The solid-state stability of compound 1 appears to be strongly influenced by the cooperative effect of 
H-bonding interactions as well as the C ≡ N···π(py) and N···π(hole) contacts, as confirmed by theoretical calculations.

Graphical Abstract

Synthesis, Structure and Theoretical Calculations of a Unique Ladder Chain Containing the Dicyanamido Ligand (dca), 
Consisting of 2 µ1,5-dca Bridged Dinuclear Cu2(dca)2Units and Having µ1,3-dca Bridges along the Chain.

One sentence essence:

catena-poly[bis(dicyanamido)(1,10-phenanthroline-5,6-dione)copper(II)] is a unique ribbon ladder, infinite chain structure 
with two differently bridged dicyanamide anions
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Introduction

Coordination polymers containing pseudohalide ligands 
(like cyanide, azide or thiocyanate anions) have been widely 
studied for their interesting magnetic and structural proper-
ties [1–6]. A more recently introduced pseudohalide ligand 
is the dicyanamide, dca, ion (see Fig. 1), which has 3 donor 
N-atoms available, and therefore can potentially bind in var-
ious ways, including bridging between two or more metal 
ions. When it acts as a bridging ligand the dimensionality 
can increase from 1D to 2D or 3D. The steric shape of the 
dca anion allows rather rigid bridging between metal ions; 
in addition the CN groups of dca may in form anion-pi inter-
molecular or intramolecular interactions [7, 8].

Early work has shown that in its anionic form dca indeed 
displays a great variability of coordination modes, both 
bridging and non bridging [9–12]. When the dca anion is 
used as a bridging co-ligand in coordination polymers with 
4,4’-bipy ligands interesting clathration, magnetic and cata-
lytic properties have been reported [13–20]. The discovery 
of long-range magnetic ordering in M(dca)2 coordination 
compounds [21–23] has further boosted the search for new 
types of dca-containing compounds. Amazingly, compounds 
containing both the end-on and the end-centre bridging have 

not yet been observed, despite the large variation used in 
non-bridging co-ligands.

So by using flat co-ligands we now have investigated 
possible new polymeric structures, making also use of 
anion-pi interactions to stabilize new structures. Controlling 
and manipulating of the metal-ligand coordination bonds 
along with non-covalent interactions [24–26] was therefore 
employed. Interactions such as hydrogen bonds, C-H···π, 
π···π, cation···π, lone pair···π and anion···π interactions 
[27] are expected to play an important role in the stabiliza-
tion and for the construction of high-dimensional supramo-
lecular architectures [28–30].

In the present work, we explore new binding modes of 
dca. The results of our hydrothermal synthesis, detailed 
description of non-covalent interactions of various 
types and strengths in the crystal structure of the catena-
poly[bis(dicyanamido)(1,10-phenanthroline-5,6-dione)
copper(II)] compound (1) will be presented and discussed, 
using also theoretical methods. The observation of two dif-
ferent bridging modes of dca in a single compound appears 
to be as unprecedented.

Materials and Methods

Materials

All chemicals were of reagent grade quality, purchased from 
commercial sources, and used without further purification.

Physical Measurements

Elemental analysis (EA, to analyze %C, H and N) was per-
formed using a PerkinElmer 2400 series II CHNS/O analyzer. 
The infrared spectrum of the solid compound was recorded 
at room temperature in the range of 4000 –500 cm-1 by using 
a Nicolet 5SX–FTIR spectrometer equipped with a diamond 
micro-ATR accessory and working with OMNIC software.

Synthesis and Crystallization

All used chemicals were reagent grade, procured from com-
mercial sources, and used without purification. The solvents 
were purified by standard procedures.

CuSO4•5H2O (25 mg, 0.1 mmol), 1,10-phenanthroline-
5,6-dione (21 mg, 0.1 mmol) and Nadca (18 mg, 0.2 mmol) were 
dissolved in 20 mL of H2O/DMF (v/v, 3:1) and then the solution 
was sealed in a 25 mL Teflon reactor and kept under autogenous 
pressure at 403 K for 2 days. After cooling to room temperature 

Fig. 1 Potential binding sites for metal ions at the N atoms of the dicy-
anamide anion, dca
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at a rate of 10 Kh− 1, green crystals of compound 1 were obtained 
(yield 44%). Anal. Calcd. for C16H6CuN8O2: C, 47.35; H, 1.49; 
N, 27.61%. Found: C, 47.07; H, 1.58; N, 27.75%. Main IR bands 
(ATR, cm-1): ν(CN): 2302, 2241, 2172 cm-1.

Single-Crystal X-Ray Diffraction

Suitable single crystals of 1 were chosen for an X-ray dif-
fraction study. Data collection was performed on a Rigaku 
Oxford Diffraction Xcalibur diffractometer with graphite-
monochromated Mo Kα radiation (λ = 0.71073 Å). The struc-
ture was solved using the program SHELXT 2014/5 [31] 
and refined using SHELXL 2014 [32]. Empirical absorption 
corrections were performed using the CrysAlis PRO pro-
gram [33]. All non-hydrogen atoms were refined anisotropi-
cally. All H atoms were located in difference maps, and then 
treated as riding atoms in geometrically idealized positions 
with C-H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C). A 
riding model for the H atoms was employed as it is rarely, 
if ever, fruitful to attempt the refinement of H-atom coor-
dinates using X-ray diffraction data. It is worth noting here 
that whereas X-ray diffraction provides distances between 
the centroids of electron density, neutron diffraction would 
provide distances between the atomic nuclei. For most 
bonds X-Y, the distances deduced using the two techniques 
are usually identical within experimental uncertainty. How-
ever, for X-H bonds, the centroids of the electron density 
are invariable closer than the atomic nuclei, consequent 
upon the absence of non-valence shell (core) electrons in H 
atoms, and it is thus inappropriate to regard either one of the 
deduced distances as more ‘real’ or ’correct’ than the other. 
Details of crystal data, data collection, and structure solu-
tion and refinement are summarized in Table 1.

Structure analysis was performed using the Mercury 
4.0 program [34]. Crystallographic data is deposited on 
the CCDC under deposition number 2,296,121. The corre-
sponding CIF file can be accessed free of charge through 
the access structure applet on the CCDC webpage (https://
www.ccdc.cam.ac.uk/structures).

Computational Methods

The energies of the self-assembled dimers of compound 1 
were calculated using the crystallographic coordinates at the 
DFT level using the M062X functional [35] and the def2-
TZVP [36] basis set. For all calculations, the Gaussian-16 
program [37] was used. The interaction energies were com-
puted with correction for the basis set superposition error 
(BSSE) employing the Boys-Bernardi counterpoise method 
[38]. The molecular electrostatic potential (MEP) analysis 
has been performed at the same level of theory. The quan-
tum theory of atoms in molecules (QTAIM) analysis [39] 

has been performed by using the Multiwfn program [40] 
and visualized with the VMD software [41]. The use of 
NCI plot isosurfaces is a very important tool to evaluate 
non-covalent interactions because they show the molecular 
regions involved in interactions [42]. The NCI plot surfaces 
were computed at the M062X/def2-TZVP level of theory 
and represented using VMD [41]. The color scheme is red-
yellow-green-blue, with red and blue colors for repulsive 
and attractive interactions, respectively. Finally, the natural 
bond orbital (NBO) analysis [43] has been performed to 
unveil possible charge transfer processes in compound 1.

Results and Discussion

Structure Description

In the structure of catena-poly[bis(dicyanamido)(1,10-phen-
anthroline-5,6-dione)copper(II)], 1, [(C2N3)2(C12H6N2O2)
Cu], the Cu center adopts the usual (4 + 2) coordination 
(Fig. 2): the four equatorial Cu-N distances are clustered 
around 2.0 Å, while the axial distances are both in excess 
of 2.5 Å (Table 2). The intramolecular bond distances and 
angles are normal and uneventful. The Cu geometry is typi-
cal for Cu(II) with 4 short equatorial ligand and 2 semi-
coordinating axial Cu-N contacts,

Two differently bridged dca ligands are present. Two of 
the equatorial sites are occupied by a pair of inversion-related 
dicyanamido ligands that are coordinated via the terminal N 

Table 1 Crystallographic data and refinement details for compound 1
Empirical formula C16H6CuN8O2

Formula weight 405.84
Crystal system, space group Monoclinic, P21/c
Temperature 150 K
a, b, c (Å) 7.9596 (3), 

30.2311 (11), 
6.6615 (3)

β (°) 110.509 (1)
V (Å3) 1501.34 (10)
Z 4
Radiation type MoKα

µ (mm− 1) 1.49
Crystal size (mm) 0.35 × 0.19 × 0.12
Shape/Color Block/green
Tmin/Tmax 0.735/0.841
No. of measured, independent and observed 
[I > 2σ(I)] reflections

63,221, 4595, 
4322

Rint 0.032
R [F2 > 2σ(F2)]/ wR(F2)/ S 0.031/0.079/1.16
Number of reflections 4595
Number of parameters 244
Δρmax/Δρmin (e Å−3) 0.53/-0.39
CCDC number 2,296,121
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atoms, thus generating an 12-membered ring (Fig. 2); such 
12-membered rings, as schematically shown in Fig. 1, are 
known in the literature, and a CSD search (2023) has gen-
erated over 20 structures with a variety of metal ions [44]. 
The other two equatorial sites are occupied by the bidentate 
1,10-phenanthroline-5,6-dione, coordinated via the N atoms. 
By contrast, the second dicyanamido ligand bridges two Cu 
centers related by translation along [001], in each case via one 
of the axial sites (Fig. 2), but now both the central N atom and 
one of the terminal N atoms are involved. The involvement of 
the central N is quite unusual, although not hitherto unknown 
[45]; but the two different modes in one single compound are 
unprecedented to the best of our knowledge.

The resulting coordination polymer takes the form of a rib-
bon ladder of spiro-fused rings, in which 12-membered rings 
centered at (0.5, 0.5, 0.5 + n) alternate with 20-membered rings 
centered at (0.5, 0.5, n), where n represents an integer in each 
case (Fig. 3). Within the ribbon, the shortest Cu···Cu distance 
along the chain is 6.661(3) Å, while that across the 12-mem-
bered ring is 7.063(3) Å. As said above there are two distinct 
modes of binding for the two independent dicyanamide ligands: 
one forms double bridges between two metal centers, with each 
using the two terminal N atoms, while the other employs one 
terminal N atom and the central amidic N atom to bridge Cu(II) 
ions. So, compound 1 represents the first example of a phendi-
one 3D polymeric system containing two differently bridging 
dca ligands between the same paramagnetic metal ions.

There are two short intermolecular contacts involv-
ing C-H bonds (Table 3; Fig. 4), but both exhibit C-H···A 
(A = N or O) angles less than 140°, and therefore cannot be 
regarded as being structurally significant [46].

There are four short contacts between N or O atoms and 
adjacent five and six-membered rings (Table 4; Fig. 5). The 
contact involving a pyridyl ring lies within the coordination 
polymer ribbon, and so it has no influence on the overall 
dimensionality of the structure. The other two contacts both 
involve the quinonoid ring, which is far from aromatic, as evi-
denced by the long bond C5-C6, 1.548(2) Å, linking the two 
carbonyl units. The two ribbons are linked by C-O···π stack-
ing interactions involving the five-membered ring enclosing 
the Cu atom (Table 4; Fig. 5). These weak non-covalent inter-
actions help to stabilize and establish a 2D network.

Contacts on the Hirshfeld Surface

Analysis of intermolecular interactions using the Hirsh-
feld surface represents a tool to gain detailed insight into 

Table 2 Cu-N distances (Å)
Cu-N1 1.9936 (12) Cu-N10 2.0103 (13)
Cu-N11 1.9545 (15) Cu-N15i 1.9606 (14)
Cu-N21 2.5094 (13) Cu-N23ii 2.7359 (14)
Symmetry codes: (i) 1 - x, 1 - y, 1- z ; (ii) x, y, 1 + z

Table 3 Hydrogen-bond geometry (Å, °)
D-H···A D-H H···A D···A D-H···A
C3-H3···N21iii 0.95 2.54 3.312 (2) 139
C8-H8···O5iv 0.95 2.36 3.102(3) 134
Symmetry codes: (iii) x-1, y, z; (iv) x + 1, -y + 3/2, z + 1/2

Fig. 3 Part of the crystal structure showing the formation of a coordi-
nation polymer ribbon running parallel to [001]

Fig. 2 The structure of the compound shows the different coordina-
tion modes of the two dicyanamido ligands (with N13, resp.N23). Dis-
placement ellipsoids are drawn at the 50% probability level and the 
atoms marked with ‘a’, ‘b’ or ‘c’ are at the symmetry positions (x, y, 
-1 + z), (x, y, 1 + z) and (1 - x, 1 - y, 1 - z), respectively
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the crystal packing. The fingerprints of the contacts on the 
Hirshfeld surface (Fig. 5) were obtained from the software 
CrystalExplorer17 [47]. The proportion of contacts on the 
Hirshfeld surface and their enrichment was computed with 
the MoProViewer software [48]. The contact enrichment 
ratio Exy between chemical species X and Y is obtained by 
comparing the actual contacts Cxy in the crystal with those 
computed as if all types of contacts had the same probability 
to form [49]. Contacts with Exy values larger than unity are 

Table 4 Short C-N···π and C-O···π contacts (Å, o)
C-X···Cg X···Cg C···Cg C-X···Cg
C24-N25···Cg1i 3.571 (2) 3.171 (2) 87.00 (13)
C24-N25···Cg2i 3.360 (2) 3.496 (2) 87.00 (13)
C24-N25···Cg4ii 2.928 (2) 3.131 (2) 89.03 (14)
C6-O6···Cg4iii 3.118 (2) 4.264 (2) 158.19 (16)
Symmetry codes: (i) x, y, -1 + z; (ii) x, y, z; (iii) x, 1.5-y, -0.5 + z
Cg1, Cg2 and Cg4 represent the centroids of the rings respectively 
[Cu(1)-N(1)-C(4B)-C(6B)-N(10), [N(1)-C(2)-C(3)-(4)-C(4 A)-C(4B)], 
[C(4 A)-C(4B)-C(6B)-C(6 A)-C(6)-C(5), respectively

Fig. 5 C-N···π and C-O···π 
interactions in the structure in 
compound 1

 

Fig. 4 C-H···N and C-H···O 
hydrogen bond interactions in 
compound 1
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over-represented. The chemical nature of contacts and their 
enrichment in the crystal structure are shown in Table 5.

The fingerprint plots (Fig. 6) of the interaction distances 
around the tricyclic molecule show that the Cu···N coordi-
nation is the shortest contact with a central spike at small 
distances. The two other symmetric spikes at short distance 
correspond to the C-H···O = C weak hydrogen bonds. The 
distance fingerprint plot is remarkable for the absence of 
H···H contact at short distances, the closest contacts being 
at 3.2 Å, which is much larger than values around 2.2 Å 
generally observed in crystal packings containing organic 
molecules, which corresponds to about twice the van der 
Waals radius of the H atom.

The compounds in the asymmetric unit have several 
strong H-bond acceptors (C = O and C ≡ N) but only weak 
C-H donors. The most abundant contact is constituted by the 
N···Cu2+ coordination and it is also most enriched at ENCu = 
3.1 (Table 5). The copper cation is surrounded mostly by six 
nitrogen atoms and does not interact at all with the oxygen 
atoms. The other major contacts are C···C, C···N, C···H 
and N···H due to the abundance of C and N atoms.

The weak hydrogen bond O···H-C is the second most 
enriched contact at EOH = 2.33 and is quite over-represented 

Table 5 Analysis of contacts on the Hirshfeld surface. Reciprocal con-
tacts X···Y and Y···X are merged. The second line shows the chemical 
content on the surface. The surface content, the proportion of contact 
types between chemical species is given followed by their enrichment 
ratio. The major contacts as well as the major enriched ones are high-
lighted in bold characters. In order to obtain integral Hirshfeld surfaces 
around each of the 4 moieties constituting the asymmetric unit, the 
calculation was performed on an ensemble of entities in the crystal 
packing that are not in contact with each other. At the end of the table, 
the contacts were regrouped in terms of hydrophobic (C and H) and 
hydrophilic (N, o, Cu2+) atoms
Atom
Surface %

H
18.1

C
38.9

N
26.1

O
7.7

Cu
9.2

H
C
N
O
Cu

0.8
12.5
12.0
6.1
1.6

16.4
14.5
7.5
4.1

% contacts
0.4
1.4
21.6

0.2
0.1

0

H
C
N
O
Cu

0.26
1.05
1.42
2.33
0.34

1.30
0.81
1.35
0.40

enrichment
0.06
0.37
3.10

0.27
0.06

0

HPhob HPhil HPhob x HPhil
Surface %
Contacts %
Enrichment

57.0
29.7
0.91

43.0
23.7
1.28

45.8
0.93

Fig. 6 Fingerprint plots of the main contacts on the Hirshfeld surface around the organic molecule C12N2O2H6
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To obtain an integral Hirshfeld surface around each moi-
ety (Cu2+ cation and the three organic ligands), a set of enti-
ties not in contact with each other in the crystal packing 
were selected (Fig. 7).

The C···C contacts are quite abundant and are moder-
ately over-represented. Heterocycles have a good propensity 
to form aromatic stacking due to the possibility of electro-
static complementarity between electronegative and electro-
positive regions within the cycles [50]. The tricyclic organic 
molecule has notably electropositive C = O carbon atoms. 
Moreover, the dicyanamide anion, NCNCN- bears electro-
negative carbon atoms that are accessible at the molecular 
surface. It has to be noticed that C···O contacts are moder-
ately over-represented (ECO=1.35); there is notably an attrac-
tive Cδ+=Oδ···Cδ+=Oδ- relatively short contact between C5 
and O6 atoms (autostereogram in Fig. 8 and also Fig. 6). All 
self-contacts, except C···C, are avoided with Exx values equal 
to or close to zero, as they represent electrostatic repulsion.

The Hirshfeld surface around the four moieties of the 
asymmetric unit is constituted by a majority of hydropho-
bic atoms (C and H-C), which represent 57% in proportion. 
When the contacts are regrouped in terms of hydrophobic 
(Hphob) and hydrophilic (Hphil) atoms, the contacts between 
Hphil atoms are slightly over-represented (E = 1.28, bottom 
of Table 5), presumably due to the strong enrichment of the 
N···Cu2+ coordination contacts. On the other hand, the con-
tacts between Hphil atoms as well as the cross contacts Hphob 
x Hphil are both moderately under-represented.

Theoretical Study

In compound 1, the theoretical study focuses on the uncon-
ventional N···π-hole (CN) and CN···π interactions. Figure 9 
shows the molecular electrostatic potential (MEP) surface 
of compound 1 to investigate the most positive and most 
negative regions of the molecule. The MEP surface of the 
asymmetric unit of 1 shows that the most negative region 
(-57 kcal/mol) corresponds to the N-atom of the nitrile 
group from the dicyanamide ligand, whereas the most posi-
tive region is located around the Cu(II) ion (+ 60 kcal/mol), 
thus indicating that the interaction between the terminal 
N15 atom of the nitrile group and the Cu(II) ion is favoured 
from an electrostatic point of view. Interestingly, the MEP 
is also positive (+ 5.0 kcal/mol) at the C-atom of the cyano 
group, whereas the MEP value at the N-atom of the dicyana-
mide ligand is negative (-29 kcal/mol), thus evidencing the 
formation of N···π-hole (CN) interactions.

The interaction energy of the self-assembled dimer of 1 is 
relatively large (ΔE1 = -10.3 kcal/mol) due to a combination 
of C-H···N hydrogen bonds, N···C ≡ N, C ≡ N···π(py) and 
N···π intermolecular interactions. To evaluate the contribution 
of N···C ≡ N interactions, we have computed a theoretical 

at Exy=2.33. The N···H-C hydrogen bonds are more abun-
dant, but less enriched, as the nitrogen atoms are involved in 
the coordination of the copper cation.

Fig. 8 Autostereogram along the c axis. (a horizontal, b vertical) show-
ing the crystal packing. A short O…C = O bond at 2.931 Å distance is 
shown as dotted line

 

Fig. 7 Hirshfeld surfaces around all moieties constituting the asym-
metric unit. The surface is colored according to the inner atom. Car-
bon: black, hydrogen: grey, oxygen: red, nitrogen: light blue, copper: 
dark blue
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represented. QTAIM analysis of this dimer shows the pres-
ence of two bond CPs (small red spheres) and bond paths 
between the sp3-hybridized N-atom of the dicyanamide 
ligand and the C-atoms of the nitrile moiety, thus confirming 
the formation of N···C ≡ N interactions. They are character-
ized by green NCI plot isosurfaces interconnecting the N and 
C-atoms. Moreover, NBO analysis has also been performed 
to characterize the N···C ≡ N interaction. The formation of 
N···C ≡ N interaction implies an electron donation from a lone 
pair of the sp3 N-atom of the dicyanamide ligand to an empty 
anti-bonding π* C-N orbital. For the studied compound, the 

model where the pyridine rings coordinated to the Cu(II) 
atoms were replaced by NH3 groups (Fig. 10, red arrows). As 
a result, the interaction energy in this structural model is posi-
tive ΔE2 = + 3.21 kcal/mol where the C-H···N hydrogen bonds 
and C ≡ N···π(py) and N···π interactions are not formed. This 
result suggests that the existence of H-bonds, C ≡ N···π(py) 
and N···π interactions are necessary for the formation of 
N···C ≡ N contacts, indicating a strong cooperativity effect.

Figure 11 shows the distribution of bond CPs and bond 
paths of the self-assembled dimer mentioned previously. 
Moreover, the superimposed NCI plot surfaces are also 

Fig. 10 Self-assembled dimer 
of 1 showing C-H···N hydro-
gen bonds (black dashed lines), 
N···C ≡ N (red and greed dashed 
lines), C ≡ N···π(py) (blue and 
light blue dashed lines) and N···π 
(purple dashed lines) interactions. 
Distances are in Å

 

Fig. 9 MEP surface (0.001 a.u. 
isosurface) of compound 1 
computed at M062X/def2-TZVP 
level of theory
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using single-crystal X-ray diffraction. In this compound, the 
phendione ligand and dicyanamide anions create an unprec-
edented ladder-type network, with both 1,5-bridging and 
1,3-bridging dca anion. Several non-covalent interactions 
including C-H···N/O hydrogen bonds, C-O···π and C-N···π 
stacking interactions play an important role in structural 
stabilization. The identification of non-covalent interactions 
was accomplished by the utilization of Hirshfeld surface 
analysis. Theoretical calculations on the supramolecular 
trinuclear unit observed in the crystal structure of 1 reveal 
that also H-bonding interactions combined with the N···π-
stacking contacts play an important role in the solid-state 
stability of compound 1. The presence of two large NCI 
isosurfaces located between the nitrile moiety and the pyri-
dine ring, reveals the existence of C ≡ N···π(py) stacking 
interactions.
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results revealed the existence of two donor-acceptor orbital 
interactions, LP N13 → π* C22-N21 and LP N13 → π* C24-
N25, with E(2) energy values of 0.41 and 0.39 kcal/mol, 
respectively. It is important to note that the orbital contribu-
tion is very low, indicating that the N···C ≡ N interaction is 
dominated by electrostatic and dispersion effects, in accor-
dance with the MEP results. Thus, this noncovalent contact 
can be defined as an N···C ≡ N (π-hole) interaction.

As shown in Fig. 11, two large NCI plot isosurfaces are 
located between the nitrile moiety and the pyridine ring, 
thus revealing the existence of C ≡ N···π(py) stacking 
interactions. In order to further evidence the existence of 
C ≡ N···π(py) stacking interactions and the importance of 
orbital effects, NBO analysis of the dimer shown in Fig. 10 
has been performed. The results show electron donation 
from the occupied π (C-C) orbital of the pyridine ring to the 
antibonding (C-N) orbital of the dicyanamide ligand, with 
a concomitant stabilization energy of 0.16 kcal/mol. The 
existence of such electron donations is an indicative of the 
presence of C ≡ N···π(py) stacking interactions.

The existence of C-H···N hydrogen bonds is confirmed by 
QTAIM analysis, which shows for each contact a bond cp. 
and bond path interconnecting the H and N-atoms. Finally, the 
presence of N···π interactions has been confirmed by the pres-
ence of a bond CP, bond path and green isosurfaces between 
the terminal N-atom of the nitrile moiety and the C-atom of the 
carbonyl group in the combined QTAIM/NCI plot analysis.

Concluding Remarks

A new mixed-ligand Cu(II) compound, catena-
poly[bis(dicyanamido)(1,10-phenanthroline-5,6-dione)
copper(II)] (1) was synthesized and structurally characterized 

Fig. 11 Combined QTAIM (bond CPs in red and bond paths as black lines) and NCI plot index isosurfaces for a self-assembled dimer of 1
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