000145193 001__ 145193 000145193 005__ 20241003094705.0 000145193 0247_ $$2doi$$a10.1103/PhysRevD.110.063027 000145193 0248_ $$2sideral$$a139978 000145193 037__ $$aART-2024-139978 000145193 041__ $$aeng 000145193 100__ $$aO’Shea, Tomás$$uUniversidad de Zaragoza 000145193 245__ $$aSolar chameleons: Novel channels 000145193 260__ $$c2024 000145193 5060_ $$aAccess copy available to the general public$$fUnrestricted 000145193 5203_ $$aWe revisit the flux of chameleons (light scalar particles which could play a role in the dark energy phenomenon) produced in the interior of the Sun. Our novel analysis incorporates various important details and new processes that have previously been overlooked, including the impact of the bulk magnetic field profile, as well as Primakoff production of chameleons in the electric fields of electrons and ions. In this paper we consider only the contributions of transverse photons. The production of chameleons from longitudinal electromagnetic excitations will be presented in a dedicated follow-up work. Demanding that the total flux of chameleons does not exceed 3% of the solar luminosity leads to the stringent upper limit on the chameleon-photon conformal coupling βγ≲1010, assuming that the height of the chameleon potential is set to the dark energy scale Λ=2.4 meV, and independently of other couplings to matter. Although this bound is tighter than current upper limits on βγ from the CAST helioscope, these limits will have to be reassessed in terms of the updated solar chameleon flux we have computed. We argue that solar chameleons, potentially detectable in next-generation helioscopes such as IAXO, can be used to probe a region of chameleon parameter space that has yet to be covered. 000145193 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E21-23R$$9info:eu-repo/grantAgreement/EC/H2020/788781/EU/Towards the detection of the axion with the International Axion Observatory/IAXOplus$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 788781-IAXOplus$$9info:eu-repo/grantAgreement/ES/MICINN/PGC2022-126078NB-C21$$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108122GB-C31 000145193 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000145193 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000145193 700__ $$aDavis, Anne-Christine 000145193 700__ $$aGiannotti, Maurizio$$uUniversidad de Zaragoza 000145193 700__ $$aVagnozzi, Sunny 000145193 700__ $$aVisinelli, Luca 000145193 700__ $$aVogel, Julia K. 000145193 7102_ $$12004$$2038$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Astronomía y Astrofísica 000145193 7102_ $$12004$$2390$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Atóm.Molec.y Nucl. 000145193 773__ $$g110, 6 (2024), 063027 [17 pp.]$$pPhys. rev. D$$tPhysical Review D$$x2470-0010 000145193 8564_ $$s583863$$uhttps://zaguan.unizar.es/record/145193/files/texto_completo.pdf$$yVersión publicada 000145193 8564_ $$s2651207$$uhttps://zaguan.unizar.es/record/145193/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000145193 909CO $$ooai:zaguan.unizar.es:145193$$particulos$$pdriver 000145193 951__ $$a2024-10-03-08:56:49 000145193 980__ $$aARTICLE