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Resumen

Este estudio presenta una estrategia novedosa para la parametrización de la

degradación de las pilas de combustible de membrana de intercambio protónico de

alta temperatura (HTPEMFC) con mediciones experimentales limitadas. El método

propuesto identifica eficientemente los parámetros de degradación electroqúımica

para modelos 3D de pilas de combustible mediante la integración de simulaciones

computacionales y algoritmos genéticos. Se trata de un procedimiento no invasivo

que permite estimar estos parámetros que, de otro modo, seŕıan muy dif́ıciles de

medir experimentalmente. Para reducir la carga computacional asociada a la eval-

uación del modelo 3D en cada iteración de optimización, se ha desarrollado una

estrategia de desacoplamiento. Mediante un proceso iterativo, este enfoque permite

separar la resolución de la dinámica de fluidos de la electroqúımica.

Se han incorporado a estas herramientas varios modelos electroqúımicos para

describir los mecanismos de degradación que afectan al rendimiento de las pilas de

combustible. En primer lugar, se ha incorporado un modelo que describe la corrosión

del soporte de carbono en la capa cataĺıtica del cátodo y la oxidación superficial de

las part́ıculas de platino. En segundo lugar, se ha introducido una ecuación emṕırica

para representar la reducción de la conductividad protónica causada por la pérdida

de ácido fosfórico de la membrana. Por último, se han añadido dos modelos para

captar los efectos combinados de la “maduración” de Ostwald y la aglomeración del

platino, que conducen a un aumento del tamaño de las part́ıculas de platino y a la

consiguiente reducción de su actividad catalizadora.

Estos modelos han sido probados en dos casos de estudio con el fin de comprobar

el comportamiento del modelo y analizar los resultados, comparándolos con los datos

emṕıricos disponibles. En el primer caso, he integrado los modelos que abordan la

xiii



corrosión y la pérdida de ácido fosfórico, mientras que en el segundo se considera

también el crecimiento del radio de las part́ıculas de platino. Los resultados revelan

que, en un conjunto espećıfico de condiciones de funcionamiento medidas, es posible

identificar una combinación única de parámetros electroqúımicos. Esta combinación

ajusta eficazmente el modelo 3D con la curva deseada de pérdida de tiempo-voltaje

en el primer caso y, además, captura el incremento del radio medio de las part́ıculas

de platino en el segundo caso.
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Abstract

This study introduces a novel strategy for the degradation parameterization of

high-temperature proton exchange membrane fuel cells (HTPEMFCs) with limited

experimental measurements. The proposed approach efficiently identifies electro-

chemical degradation parameters for 3D fuel cell models by integrating computa-

tional simulations and genetic algorithms. It is a non-invasive procedure which

allows the estimation of these parameters otherwise very difficult to measure ex-

perimentally. To reduce the computational burden associated with evaluating the

3D model in each optimization iteration, a decoupling strategy has been developed.

Through an iterative process, this approach enables the separation of fluid dynamics

resolution from electrochemistry.

Several electrochemical models have been incorporated into these tools to de-

scribe the degradation mechanisms affecting fuel cell performance. First, a model

describing the corrosion of the carbon support in the cathodic catalytic layer and the

surface oxidation of platinum particles has been incorporated. Second, an empirical

equation has been introduced to represent the reduction in protonic conductivity

caused by the loss of phosphoric acid from the membrane. Finally, two models

have been added to capture the combined effects of Ostwald ripening and platinum

agglomeration, both leading to an increase in the size of platinum particles and a

subsequent reduction in their catalytic activity.

For these models, two case studies have been conducted to check the model

behavior and analyse the results, comparing them with available empirical data. In

the first case, I integrated models addressing corrosion and phosphoric acid loss,

while in the second case, the growth in radius of the platinum particles is also

considered. The results reveal that, under a specific set of measured operating

xv



conditions, it is possible to identify a unique set of electrochemical parameters.

This set effectively aligns the 3D model with the desired time-voltage loss curve

in the first case and, in addition, captures the increment in the average platinum

particle radius in the second case.
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Chapter 1

Introduction

1



The growing awareness of environmental issues and the ongoing increase in fossil

fuel prices are increasingly motivating the development and adoption of cleaner

energy systems. The goal is to explore alternative solutions for generating clean

energy while ensuring a consistent supply. Renewable energy sources, which are

becoming more cost-effective, are emerging as the most practical choice. While the

deployment of these energy sources has seen recent growth, their intermittent nature

requires the use of energy storage systems, known as energy vectors, to delay energy

consumption and facilitate transportation.

While hydrogen is one of the most abundant elements on Earth’s surface, it is

rarely encountered in its pure molecular form due to its highly reactive nature. How-

ever, it can be generated from various natural compounds such as water, biomass,

or hydrocarbons. The current trend emphasizes the production of hydrogen from

renewable sources rather than fossil fuels. Consequently, the electrolysis of water us-

ing renewable electricity generated from solar or wind power emerges as a promising

method to create green hydrogen, which can then be employed to power fuel cells

for energy generation. In this specific context, as green hydrogen gains recognition

as an alternative fuel, fuel cells represent the most promising technological solutions

for converting hydrogen’s clean energy into electrical power [1, 2]. These fuel cells

produce no byproducts other than heat and water, both of which can be further

utilized. Fuel cells possess several characteristics that render them particularly ap-

pealing compared to traditional energy conversion devices [3]. Among these, their

potential for high efficiency, as illustrated in Figure 1.1, and low or zero emissions

stand out. Fuel cells lack moving parts, leading to reduced losses and an extended

lifespan. Additionally, they feature a modular structure, allowing their size and

weight to be tailored to the specific application requirements. These devices have

been utilized for several decades across various sectors, including transportation,

industry, and residential applications.

2



Figure 1.1: Comparative diagram of efficiencies fuel cell versus traditional energy

conversion devices.

A fuel cell consists of two porous, electrically conductive electrodes (anode and

cathode) separated by an electrolyte that is impermeable to gases but permits ion

transfer. At the interface between the electrodes and the electrolyte resides a layer

of catalyst particles where the electrochemical reactions occur simultaneously (See

Figure 1.2).

These primary fuel cell reactions are outlined as follows:

Anode side

H2 −−→ 2H+ + 2e−

Cathode side

1
2
O2 + 2H+ + 2e− −−→ H2O

Overall

H2 +
1
2
O2 −−→ H2O

3



Under standard conditions, the theoretical voltage of the fuel cell stands at 1.23

volts.

O2 inletfuel inlet

fuel outlet O2 outlet

e-

anode cathode

electrolyte

Figure 1.2: Schematic diagram of fuel cell components.

The fundamental overall reaction is the same as that of hydrogen combustion.

However, in contrast to the combustion process, a fuel cell directly converts chemical

energy into electricity in a single step, eliminating the necessity for intermediate

stages and the use of any moving parts.

There are several types of fuel cells, which are classified as follows according to

their composition, exchanged ions and operating temperature [3]. The Figure 1.3

presents a comparative analysis of the different kinds of fuel cells.

� Alkaline fuel cells (AFCs) utilize potassium hydroxide (KOH) as the elec-

trolyte, which is retained in a matrix usually composed of asbestos. The

4



concentration of used KOH varies according to the operating temperature,

around 85 wt% for high-temperature operation (approximately 250�C) and a

lower concentration ranging from 35-50 wt% for temperatures below 120�C.

As catalyst agents, a variety of elements, including nickel, metal oxides, noble

metals and silver, can be employed.

� Molten Carbonate Fuel Cells (MCFCs) use a blend of alkaline carbonates as

the electrolyte in a ceramic matrix made of LiAlO2. Operating at temper-

atures ranging between 600 to 700�C, these cells create a highly conductive

molten salt where carbonate ions facilitate efficient ionic conduction. At these

high temperatures, the use of catalysts made from noble metals is often ren-

dered unnecessary.

� Fuel cells operating at higher temperatures (between 600 and 1000�C) employ

a solid metal oxide as the electrolyte (SOFCs). In such cells, ionic conduction

occurs through oxygen ions.

� The aforementioned fuel cells share the characteristic that the ions exchanged

between the cathode and anode are anions. However, Proton Exchange Mem-

brane Fuel Cells (PEMFCs) utilize a thin proton-conducting polymer mem-

brane as the electrolyte, enabling the exchange of hydrogen protons. PEMFCs

can operate within the temperature range of 60 to 80�C (LTPEMFC) or above

100�C (HTPEMFC), achieved through modifications to the electrolyte com-

pound. A particular case within HTPEMFCs is the Phosphoric Acid Fuel

Cell (PAFC), which utilizes phosphoric acid as the electrolyte within a matrix

typically composed of SiC. These fuel cells operate at temperatures between

150 and 220�C. In terms of the catalyst layer, platinum on a carbon support

is commonly employed.

5



O2 inletfuel inlet

fuel outlet O2 outlet

H2

H2O

H2

H2

H2

e-

CO2

H2O

H2O

(CO)

(CO)

(CH4)

OH-

H+

CO3
=

O=

O2

O2

O2

O2

H2O

H2O

CO2

AFC

LTPEMFC

MCFC

SOFC

PAFC

anode cathode

electrolyte

HTPEMFC

60-80ºC

100-200ºC

150-220ºC

65-250ºC

600-700ºC

600-1000ºC

Figure 1.3: Comparative diagram of fuel cell types. Operating reactions and tem-

peratures.

Among the presented fuel cell types, PEM fuel cells have garnered the most

significant attention. This heightened interest is due to their simplicity, practicality,

quick start-up capabilities, and proven performance across a wide range of applica-

tions. This preference stems from their ability to operate at lower temperatures, as

depicted in the diagram shown in Figure 1.3. As a result, PEM cells require fewer

auxiliary components for their operation and demonstrate increased resistance to

various degradation processes that tend to become more pronounced at higher tem-

peratures. Given these distinctive attributes and their promising future prospects,

the primary focus of the current thesis has centered on investigating degradation

phenomena in such devices.
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PEM fuel cells consist of multiple components, starting with two current col-

lectors (CCs) located at the edges. Reactive fluids, typically hydrogen and air, are

introduced into the gas flow channels (GFCs) and travel through the gas diffusion

layers (GDLs) to reach the electrodes. In the centre, there is an ion exchange mem-

brane acting as electrolyte, which separates the anodic and cathodic catalyst layers

(CLs). The catalyst layers play a pivotal role in facilitating the electrochemical

reactions at both the anode and cathode. Typically, these catalyst layers consist of

carbon-supported platinum nanoparticles or other noble metals. During operation,

hydrogen gas is supplied at the anode, where it undergoes the hydrogen oxidation

reaction (HOR), releasing protons and electrons. Protons are conducted through

the membrane to the cathode, while electrons travel through an external circuit to

reach the cathode, creating an electrical current in the process. At the cathode,

oxygen gas is supplied, and it combines with the transported protons and electrons

to undergo the oxygen reduction reaction (ORR), producing water as a byproduct.

In this electrochemical process, the ORR typically dominates the overall operation

of the fuel cell due to its slower kinetics compared to the HOR. The membrane as-

sembly plays a crucial role in facilitating the transport of protons while maintaining

separation between the anode and cathode gases, allowing the fuel cell to generate

electrical power efficiently.
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Figure 1.4: Single-cell components within a stack. Figure extracted from [4]
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Figure 1.5: Single-cell scheme for PEMFCs.
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Perfluorosulfonic acid polymers like Nafion are commonly used as ion exchange

membranes (solid electrolytes) in LTPEMFCs. However, for HTPEMFCs operating

at higher temperature ranges, membranes doped with phosphoric acid, such as PBI

membranes, prove to be better choices. Nafion is not appropriate as electrolyte for

temperatures above 80�C due to its diminished proton conductivity and mechanical

stability [5]. In contrast, PBI membranes doped with phosphoric acid demonstrate

favorable proton conductivity, even in a water-deprived environment at temperatures

over 100�C [6, 7]. Furthermore, PBI membranes are less expensive than Nafion mem-

branes [8]. The primary advantages associated with HTPEMFCs can be outlined as

follows: Firstly, they exhibit higher tolerance to impurities, specifically in terms of

CO adsorption, in comparison to LTPEMFCs [9, 10]. This characteristic enables the

utilisation of reformed hydrocarbons instead of pure hydrogen [11], eliminating the

requirement for gas pre-purification in reforming systems. Secondly, the elevated

operating temperature of HTPEMFCs results in a larger temperature differential

with the surrounding environment, thereby making heat dissipation more manage-

able. Nonetheless, the elevated temperatures also introduce certain drawbacks, such

as prolonged start-up times and increased demands on components to ensure both

thermal and mechanical stability. Thirdly, in HTPEMFCs, water exists primarily

in the vapor phase, reducing the complexity of the fuel cell system.

On the other hand, in LTPEMFCs, the presence of liquid-phase water improves

proton conductivity across the membrane, reducing ohmic losses and consequently

enhancing cell performance. However, excessive liquid water can obstruct the pores

of gas diffusion layers and catalyst layers, impeding gas transport and subsequently

affecting the rates of the HOR and ORR electrochemical reactions. This potential

blockage highlights the significance of water management as a crucial element in the

design of LTPEMFCs.

In addition to the advantages mentioned earlier, higher operating temperatures

introduce certain challenges. These challenges include increased degradation rates

and the already mentioned extended start-up times. The longer start-up times are

due to the necessity of maintaining temperatures above the boiling point of water

to prevent the removal of phosphoric acid from the membrane. As a result of these
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considerations, Low Temperature Proton Exchange Membrane Fuel Cells (LTPEM-

FCs) are primarily designed for use in the transportation sector. On the other hand,

High Temperature Proton Exchange Membrane Fuel Cells (HTPEMFCs) are better

suited for small-scale stationary power generation applications. Multiple cells are

usually arranged in a series configuration to create a fuel cell stack, as depicted in

Figure 1.6 in order to provide enough power in most applications.

HTPEMFC stacks offer a promising solution for reducing emissions, especially

in stationary applications where the excess heat generated can also be harnessed.

However, a significant obstacle to their commercialization is their limited lifespan,

as they currently do not meet durability requirements to a satisfactory degree [12].

Figure 1.6: Stack of fuel cell. Figure extracted from [13].

In spite of considerable progress in the development of fuel cell technology in

recent years, component degradation is still a primary obstacle to the extensive de-

ployment of this emerging technology. There are several degradation mechanisms

that can deteriorate the PEMFCs performance, significantly impacting on their op-
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erational conditions and overall lifespan. Some degradation phenomena are shared

by both LTPEMFCs and HTPEMFCs, with a noteworthy example being the degra-

dation of the catalyst layer, particularly at the cathode, due to carbon support

corrosion and platinum degradation mechanisms [14]. Another common degrada-

tion issue is the loss of proton conductivity across the membrane [15]. Since the

materials used for the membrane [11] are different between LTPEMFCs and HT-

PEMFCs, their degradation mechanisms are also distinct in this region. A schematic

diagram illustrating the primary degradation mechanisms in an HTPEM-type fuel

cell is presented in Figure 1.7.

cathodeelectrolyte CL

PA
migration

Pt
dissolution

Carbon
corrosion

Pt
agglomeration

Figure 1.7: Diagram of the phenomena of degradation.
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Carbon is commonly selected as the supporting material for Pt particles in fuel

cells due to its cost-effectiveness, which contributes to reduce the overall cost of fuel

cells. Nevertheless, carbon corrosion is prone to occur under specific conditions, such

as high oxygen concentration and the presence of water [16], hence this degradation

phenomenon predominantly affects the cathode side of the fuel cell. As a result, the

active surface area of the catalyst decreases due to the detachment of Pt particles

from the carbon support, resulting from weakened Pt/C attachment caused by car-

bon oxidation. This degradation also leads to a reduction in the catalyst layer itself

[17]. Moreover, carbon oxidation can reduce the hydrophobicity of the carbon sur-

face, leading to phosphoric acid flooding and increased mass transfer losses within

the electrode. The main consequence of carbon support degradation is the rise of

the internal ohmic resistance in the fuel cell, attributed to a contact resistance in-

crease [18]. Carbon support corrosion in HTPEM fuel cells is comparable to that in

LTPEM fuel cells, as both employ a similar electrode structure utilising Pt/C com-

position. However, the higher operating temperature in HTPEMFCs renders them

more susceptible to electrochemical carbon corrosion, although this is partially mit-

igated by lower relative humidity levels [19]. This phenomenon can also manifest on

the anode side under fuel starvation conditions [20, 21], where water electrolysis and

carbon oxidation take place to supply the necessary protons and electrons for the

ORR at the cathode. Fuel starvation can arise from inadequate flow distribution and

abrupt current changes due to transient conditions such as startup and shutdown.

Furthermore, if oxygen is present on the anode side, reactions are reversed, leading

to ORR occurring on the anode side while the carbon oxidation reaction (COR)

and water electrolysis take place on the cathode side [22]. The crossover of species

from the cathode to the anode, besides reducing the efficiency of the fuel cell, can

induce a temporal blockage of some parts of the catalysts. Moreover, abrupt voltage

changes can potentially harm the Membrane Electrode Assembly (MEA). Some of

these factors may also account for the typically lower thickness of the cathode layer

compared to the anode layer following Accelerated Stress Tests (ASTs) involving

startup-shutdown cycles [23, 24]. In conclusion, carbon corrosion has been identi-

12



fied as a critical degradation mechanism, particularly in transportation applications,

which is further accelerated by the presence of Pt as a catalyst [25].

In addition to its contribution to carbon support deterioration, platinum also

experiences degradation phenomena. Initially, platinum nanoparticles exhibit a high

specific surface area as they are effectively dispersed on the carbon support, which

promotes catalytic reactions. However, the combination of electrical potential, high

temperature, and humidity within the cathode catalyst layer renders them suscep-

tible to degradation [26]. These unfavorable conditions give rise to distinct catalyst

degradation mechanisms, each contributing to the overall deterioration of platinum

nanoparticles.

Platinum nanoparticles naturally tend to aggregate and form larger particles in

order to minimize surface energy. One degradation mechanism involves the dissolu-

tion of Pt particles into platinum ions within the ionomer phase, followed by their

deposition to form bigger particles. This phenomenon, known as Ostwald ripening

[27, 28], is more pronounced in smaller particles due to their higher Gibbs free en-

ergy [29]. As the smaller Pt particles dissolve and redeposit onto larger particles,

the particle size in the catalyst layer increases [30, 31], leading to a decrease in the

overall effective surface area of Pt and a consequent reduction in its catalytic capac-

ity. During the platinum dissolution process, some of these particles may migrate

to other regions of the Membrane Electrode Assembly (MEA) where reactive gases

are not available [21, 32]. This migration can occur through water transport or

within the membrane due to concentration gradients. Both phenomena significantly

contribute to the degradation of fuel cell performance. Simultaneously, neighboring

platinum particles undergo sintering, leading to their agglomeration and formation

of larger particles. This phenomenon, referred to as platinum agglomeration, is

well-documented [33]. This agglomeration process, linked to carbon support corro-

sion, leads to a reduction in the Electrochemically Active Surface Area (ECSA) of

the catalyst. This effect is particularly pronounced on the cathode side due to the

higher electrode potential [34, 35]. As mentioned above, carbon support corrosion

contributes to the agglomeration process, as the loss of the carbon support causes
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the detachment of platinum particles, facilitating their migration and subsequent

agglomeration with neighboring particles [36].

In conclusion, both Ostwald ripening and particle agglomeration result in an

overall increase in the average particle size within the cathode catalyst layer. This

growth leads to a reduction in the specific surface area and, consequently, a de-

crease in the electrochemical surface area (ECSA). The decline in ECSA is con-

sidered the primary degradation mechanism under long-term operating conditions,

which eventually reduces the fuel cell efficiency [14]. The kinetics of platinum dis-

solution, migration, and agglomeration are accelerated at high temperatures and

during dynamic operating conditions, such as startup-shutdown cycles [37]. Fur-

thermore, during the carbon corrosion process, platinum surface oxides can form

(Pt + H2O −−→ PtO + 2H+ + 2e−). The presence of these oxygen molecules in

conjunction with platinum contributes to the degradation of the catalyst layer by

diminishing its catalytic activity. Due to the requirement for water presence, this

phenomenon is more likely to take place on the cathode side as well.

Ion exchange membranes also undergo degradation processes caused by the mi-

gration of phosphoric acid. In a PA-doped PBI membrane, each PBI unit typically

interacts directly with only two acid molecules [38]. Consequently, when the acid

doping level exceeds two, there are excess free PA molecules within the membrane,

which contribute to the proton conduction mechanism. However, the mobile nature

of these molecules poses a challenge in terms of their fixation, leading to potential

migration to other fuel cell components or even escape from the fuel cell altogether,

with a consequent decrease in performance [39]. One of the primary mechanisms

contributing to the loss of PA which negatively affects the performance of HTPEM-

FCs, is the elimination of PA excess during the initial stages of the cell’s lifetime, as

reported by Lin et al. [40]. PA loss during long-term operation has been extensively

studied and described in works such as those by Wannek et al. , Yu et al. , Oono et

al. , and Lang et al. [35, 37, 41, 42].
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Figure 1.8: The SEM photographs of MEA cross section befores and after 500h

continuous aging test. Figure extracted from [43].

Several strategies have been implemented to minimize the rate of degradation

in the catalyst layer, including the development of new materials that exhibit en-

hanced resistance to the challenging conditions within the layer, optimization of

stack design, and the refinement of operation control strategies to prevent the most

adverse conditions for fuel cell components [12]. Currently, these control strategies

can be bolstered by increasingly sophisticated physical models that facilitate the

consideration of both fuel cell operation and the interplay of various degradation

mechanisms over time [44, 45]. For this purpose, an accurate assessment of each

degradation process, including its underlying causes, is a fundamental step toward

the successful implementation of detailed degradation models.

The study of degradation processes in fuel cells can be approached through

two methods: experimental investigations and numerical simulations. These ap-

proaches complement each other, as numerical models need to be validated through

laboratory experiments. However, numerical modeling and simulation offer certain
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advantages over experimental methods. Not only are they more cost-effective, but

they also enable a deeper understanding of the internal processes occurring within

fuel cells. This is particularly useful in the analysis of catalyst layers, since their

small thickness and complex assembly process make it challenging to monitor in-

ternal electrochemical phenomena experimentally. By employing numerical models,

researchers gain a complete insight into the dynamic complexities within the catalyst

layers, facilitating an in-depth understanding and thorough analysis of degradation

phenomena. The modeling of hydrogen fuel cells and their degradation processes,

which involve complex electrochemical phenomena, often relies on empirical or semi-

empirical equations [46]. However, due to the inherent difficulties in measurement,

certain unknown parameters need to be characterised other than experimentally.

The accurate determination of these parameters is essential to ensure the proper

functioning of numerical models, as the reliability of the simulation depends on the

values assigned to these parameters. Fortunately, the same numerical models can

be used to help in the parameter characterization.

Extensive research has been dedicated to parameter characterization. For this

purpose, using a high spatial resolution comes at a considerable computational costs

in terms of resolution time. As a result, many models employ simplified representa-

tions, such as equivalent circuit models, to emulate the physical and electrochemical

mechanisms taking place within fuel cells. These simplified models aim to capture

the fundamental aspects of fuel cell behavior while maintaining computational effi-

ciency. A particular focus has been placed on optimization algorithms that enhance

the computational efficiency of these zero-dimensional models [47–53]. However,

it is important to note that the parameters obtained through this approach may

not be suitable for simulating dimensional models as they do not provide a com-

prehensive understanding of the internal mechanisms occurring within the fuel cell,

some of them related to 3D transport. Thus, further investigation and refinement

of parameter characterization techniques are necessary to ensure the accurate rep-

resentation of fuel cell behavior in higher-dimensional simulations. Despite the in-

creased computational cost associated with parameter identification in dimensional

fuel cell models, noteworthy progress has been made in this area [54, 55]. Losantos
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et al. [46, 56] have developed an advanced strategy for parameter identification that

integrates 3D computational simulation models of HTPEMFCs with genetic algo-

rithms for optimization. In the present study, this 3D strategy has been adapted

to model degradation processes with the aim of identifying specific degradation pa-

rameters. The novel contribution of [46] lies in the simultaneous integration of the

most influential degradation phenomena observed during the deterioration of HT-

PEMFC under normal operating conditions. By encompassing these phenomena,

their approach offers a comprehensive understanding of the complex degradation

mechanisms inherent in the fuel cell system.
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Targets

Considering the role of hydrogen in the context of the energy transition and the

acknowledgement of Proton Exchange Membrane Fuel Cells (PEMFCs) as one of

the viable technologies for its utilization, the thorough examination of degradation

phenomena assumes paramount importance. Accordingly, the primary goal of this

work is to develop a computational code that enables the numerical simulation

of degradation processes occurring in high-temperature polymer fuel cells. Low-

temperature polymer fuel cells include liquid water management and are left for

further work. To achieve this objective, the project has been subdivided into a

series of tasks, which are outlined in detail below:

� Original polarization curve and parametric identification. The first

essential step involves establishing the initial state of the fuel cell, serving as

the starting point for subsequent degradation processes. In fuel cell simu-

lations, some electrochemical parameters values essential for the calculations

are initially poorly known. Therefore, the first step is to adapt the model pro-

posed by Losantos et al. [46] enabling the characterization of these parameters

through experimental data and obtain the initial polarization curve of the fuel

cell.

� Development of a 3D model for fuel cell degradation. For this task,

the starting point has been the original model designed for computational

simulations, allowing the determination of voltage for each current density

point on the polarization curve. The degradation phenomena are included in

the model, with a specific focus on those affecting the catalyst layer of the

cathode and the proton exchange membrane. These time-evolving phenomena

lead to a decline in voltage at each current density point. The modeling is

implemented in a numerical code.

� Parametric identification of degradation. Similar to the non-degradation

model, certain electrochemical parameters are unknown and need to be char-

acterized. This thesis introduces a methodology for parameterizing the degra-
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dation of High-Temperature Proton Exchange Membrane Fuel Cells through

the application of genetic algorithms. This approach successfully minimizes

computational costs by decoupling resolution of fluid dynamics through an

iterative process. A second code is developed for this target.

� Development of a 3D model for post-degradation state analysis. The

code developed for the second target enables the calculation of voltage loss

during uninterrupted operation of the fuel cell under constant current density

for a specified duration. However, it is interesting to be able to visualize the

post-operation polarization curve of the fuel cell. To fulfill this objective, a

third code is developed.

The content distribution across chapters is structured as follows: Chapter 2

presents the equations governing the operation of the fuel cell, along with the models

employed in the catalyst layers to establish the relationship between current density

and overpotential. This allows the polarization curve of the fuel cell to be obtained.

In Chapters 3 and 4, detailed explanations are provided regarding the consid-

ered degradation phenomena and the respective employed formulations. Chapter 3

introduces the combined model addressing carbon support corrosion and platinum

oxidation, along with the formulation adopted to represent the loss of phosphoric

acid in the membrane. Chapter 4 explains the two processes responsible for the

growth in size of platinum particles: Ostwald ripening and the agglomeration of

platinum particles.

The primary computational challenge in fuel cell studies arises from the lim-

ited availability of specific parameter values. Therefore, the process of parameter

identification, employing optimization techniques, becomes indispensable. Chap-

ter 5 explains the methodology developed by Losantos et al. [46] for characterizing

parameters of the High-Temperature Proton Exchange Membrane fuel cell in its non-

degraded state (initial state). Then, in Chapter 6, the developed model is detailed,

which allows the characterization of unknown parameters associated with the consid-

ered degradation phenomena. Both chapters present results from two case studies,

facilitating the validation of the model through comparison with experimental data.
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Once the characterization processes have been completed, Chapter 7 presents

the results derived from multiple simulations conducted under diverse operating

conditions. While the results in this chapter lack experimental validation, they do

permit a qualitative analysis of the functionality of the developed models. Finally,

Chapter 8 draws the thesis to a close by summarizing key conclusions and outlining

areas for future research.
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Chapter 2

Catalyst layer models
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Table 2.1: Nomenclature.

Symbol Description Symbol Description

C Mass fraction Greek letters

D Diffusivity (m2s−1) α Transfer coefficient

Eac Energy activation (J mol−1) γ Pressure dependency coefficient

F Faraday constant (C mol−1) ε Porosity

j Current density (Am−2) or (Am−3) η Overpotential (V )

j0 Exchange current density (Am−2) or (Am−3) µ Dynamic viscosity (Pa s)

K Permeability (m2) ρ Density (kg m−3)

M Molecular weight (kg mol−1) σ Proton conductivity (S m−1)

n Number of electrons involved in the electrode reaction φ Potential (V )

P Pressure (Pa)

R Universal gas constant (J mol−1K−1) Superscripts and subscripts

T Temperature (K) a Anode

u⃗ Velocity vector (m s−1) c Cathode

V Cell Voltage (V ) CL Catalyst layer

Veq Theoretical reversible cell potential (V ) eff Effective

x Mole fraction i and j Chemical species:H2, O2 or H2O

p Protonic

ref Reference conditions
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Table 2.2: Aglomerate model nomenclature.

Symbol Description Symbol Description

aagg Effective agglomerate surface area (m−1) Vagg Agglomerate volume (m3)

ACL Catalyst layer area (m2) VC Carbon volume (m3)

CPA PA mass fraction VCL Catalyst layer volume (m3)

D(I),O2 O2 diffusivity in ionomer (m2s−1) VI Ionomer volume (m3)

Er Effective factor VI,agg Ionomer volume inside the agglomerate (m3)

f Pt mass ratio VPt Platinum volume (m3)

HO2 Henry’s constant (Pa m3mol−1) VPt/C Pt/C particles volume (m3)

LI Volume fraction of ionomer phase VδI Ionomer film thickness volume (m3)

LI,agg Volume fraction of ionomer inside the agglomerate δI Ionomer film thickness (m)

LPt/C Volume fraction of Pt/C particles εCL Volume fraction of the void space

LPt/C,agg Volume fraction of Pt/C particles inside the agglomerate κc Reaction rate constant (s−1)

mC Carbon loading (kg m−2) ρC Carbon density (kg m−3)

mPt Platinum loading (kg m−2) ρPt Platinum density (kg m−3)

Nagg Total number of agglomerates Φ Thiele’s modulus

ragg Agglomerate radius (m) χPA PA mole fraction

tCL CL thickness (m)
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The current model, presented by Losantos et al. [46], consists of a 3D steady-

state, incompressible, isothermal flow. This flow is characterized as a single-phase

gas, typical in a high-temperature fuel cell. Some assumptions are considered in

this approach: firstly, the catalyst layers are treated as infinitely thin, secondly,

a constant electric potential is maintained along the electrodes, and lastly, proton

migration through the membrane follows Onsager’s principle, as proposed by Valiño

et al. [57], leading to equal current density spatial distributions in both the anode

and cathode catalyst layers, i.e., ja = jc.

The equations describing the operation of the fuel cell are presented below:

� Mass conservation (Navier-Stokes)

∇ · (ρu⃗) = 0 (2.1)

� Momentum conservation in a porous medium

1

ε2
∇ · (ρu⃗u⃗) = −∇P +

1

ε
∇ (µ∇u⃗)− µu⃗

K
(2.2)

� Species transport

∇ · (u⃗C) = ∇
�
Deff∇C

�
(2.3)

� Proton transport across the membrane

φp
CLc − φp

CLa =
j

σ
= Veq − ηc − ηa − V (2.4)

� Nernst equation

Veq = Veq,ref +
RT

nF
ln

PH2P
0.5
O2

PH2O

(2.5)

Each of these Equations from (2.1) to (2.4) are employed in several regions of

the fuel cell. A schematic representation of the different domains and boundary

conditions is presented in Figure 2.1. The meaning of each parameter is provided in

Table 2.1.
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Figure 2.1: Outline of equations and domains of application. In channels perme-

ability and porosity are K = ∞ and ε = 1 respectively.

Table 2.3: Boundary conditions. The colours indicate the locations where each

boundary condition is applied according to Figure 2.1. Subscripts i and j refer to

the reactive species in each region.

Inlet Fluid walls Outlet Catalyst layers

ρu⃗ u⃗ = 0 ∂u
∂nx

= 0 u⃗ =
P ±jMi

ρiniF

C ∂C
∂nx

= 0 ∂C
∂nx

= 0 ∂Ci

∂nx
=

jMi
niF

(1−Ci)−Ci
P

j ̸=i

jMj
njF

ρDeff
i

∂P
∂nx

= 0 ∂P
∂nx

= 0 P ∂P
∂nx

= 0
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2.1 Anode catalyst layer

In addition to the equations presented above, two electrochemical models have

been included in the catalyst layers to establish the relationship between the current

density and the overpotential: Butler-Volmer and agglomerate model. Convention-

ally, Butler-Volmer equation has been employed for this purpose. It relates the

surface current densities (Am−2) in the anode and cathode catalyst layers, which

represent the rate of electron transfer of the electrochemical reaction, to the over-

potentials, that is a measure of the deviation of the electrode potential from its

equilibrium value, see Equations (2.6) and (2.7) with parameters detailed in Ta-

ble 2.1.

ja = jrefa,0

 
PH2

P ref

!γa

exp

 
−Eac,a

R

�
1

T
− 1

T ref

�!

 
− exp

�−αaFηa
RT

�
+ exp

�
(1− αa)Fηa

RT

�! (2.6)

jc = jrefc,0

 
PO2

P ref

!γc

exp

 
−Eac,c

R

�
1

T
− 1

T ref

�!

 
− exp

�
αcFηc
RT

�
− exp

�
(−1− αc)Fηc

RT

�! (2.7)

The first line in both equations represents the exchange current density under

the specific conditions of reactant pressure (PH2 and PO2) and the operational tem-

perature T of the fuel cell. This value serves as an indicator of the electrolyte’s

readiness to initiate the electrochemical reaction. In other words, a higher current

density signifies an increased level of electrode activity. The second line illustrates

the influence of the potential on the reaction rate in relation to the equilibrium

potential. This influence is primarily determined by the electrode overpotentials η

and the charge transfer coefficient α, which serves as a measure of the symmetry of

the energy barrier.
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Quantifying the values of certain electrochemical properties, such as charge

transfer coefficients (αa and αc), poses a challenge, given their dependence on the

reaction type, conditions, and electrodes material. Likewise, two other parameters

that are difficult to determine are the exchange current densities at reference pres-

sure and temperature (jrefa,0 and jrefc,0 ). These four parameters have been selected as

fitting parameters in the model. Further details of the characterization procedure

will be provided in Chapter 5.

Butler-Volmer equation, while generally successful in explaining a wide range of

electrochemical data, is insufficient in describing the electron transfer process under

specific experimental conditions [58]. For instance, Chidsey’s pioneering work [59]

provided direct evidence of the limitations of Butler-Volmer equation. It underscores

that at elevated overpotentials, the electron transfer rate falls significantly below the

predictions made by Butler-Volmer equation. In PEM fuel cells, the overpotential at

the cathode is significantly higher, spanning several orders of magnitude, compared

to the overpotential at the anode. Consequently, Equation (2.7) lacks the necessary

precision, prompting the need for a more advanced model to accurately characterize

the catalyst layer within the cathode and the intricate processes taking place within

it.
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2.2 Cathode catalyst layer

Numerical simulations have been utilized in recent decades in order to gain a

deeper understanding of the transportation and processes occurring within fuel cells.

As previously indicated, the primary degradation phenomena manifest within the

catalyst layer of the cathode. Furthermore, it should be emphasized that the rate of

the oxygen reduction reaction is significantly lower, by several orders of magnitude,

in comparison to the rate of the hydrogen oxidation reaction [60]. Thus, the cathode

catalyst layer assumes a critical role as the limiting factor in hydrogen fuel cells due

to the considerable disparity in reaction rates. Proper modeling of this domain

holds paramount significance. Historically, three models have been employed to

characterize the catalyst layer of the cathode [61]: the agglomerate model [54, 62–

72], the interface model [73–75] and the discrete model [76–80].

All three models are based on the principles of Butler-Volmer kinetics, however

each model has a distinct focus. The agglomerated model incorporates transport

processes within the catalyst, including the dissolution and diffusion of oxygen. The

discrete model does not consider oxygen transport but does account for the resistance

of the catalyst layer to the transport of reactants and charged species. Finally, in the

interface model, the catalyst layer is approached as a source term layer for reactants,

energy, and electrons, but it omits the transport of proton, electron, and reactant,

heat transfer, and distributions of activation overpotential [61].

Figure 2.2 presents a comparative analysis of the approximate polarization

curves obtained by Harvey et al. [61] using the three models. The interface model,

being the simplest, solely predicts the highest potential of the curve, as it disregards

the considerations of ohmic losses and mass transfer. On the other hand, the homo-

geneous model takes these factors into account, but since it does not consider oxygen

dissolution, it can accurately predict only up to a current density of 200mA/cm2.
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Figure 2.2: Polarization curve for the three cathode catalyst models. Data extracted

from [61].

Thus, among the three models, the agglomerated model stands out as the most

comprehensive and detailed, offering a more in-depth consideration of physical pro-

cesses and providing a more accurate representation of the catalyst layer’s mor-

phology. The agglomerate model brings the advantage of incorporating the impact

of oxygen concentration loss under high current densities. In order to compute the

electrochemical kinetics of the cathode catalyst layer, a spherical agglomerate model

is utilized, which considers the structural characteristics of the catalyst layer. While

Butler-Volmer equation from the previous section remains applicable to the anode

side, the utilization of the agglomerate model [81] enables the consideration of the

microstructure within the cathodic catalyst layer. This model incorporates spherical

agglomerates comprising platinum and carbon particles interconnected by ionomer

[54] treating the catalyst layer as a three-dimensional volume. To accommodate the

assumption of an infinitely thin catalyst layer, certain adjustments have been made
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to the formulations to express them in terms of surface current density (Am−2). It

is reminded that this model has been exclusively applied to the cathode side thus

far, being the ORR the controlling reaction in the fuel cell.

2.2.1 Catalyst layer composition

Catalyst Layer
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Figure 2.3: Cathode MEA schematic representation.

To enhance the understanding of the model, Figure 2.3 provides a schematic

representation depicting the composition and structure of the catalyst layer. As

illustrated, the catalyst layer consists of a set of uniform agglomerates that are

evenly dispersed, with each agglomerate composed of platinum/carbon particles

coated with ionomer. Three key parameters are utilized to characterize the catalyst

layer: the volume fraction of the Pt/C particles LPt/C , the volume fraction of the
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ionomer phase LI and the volume fraction of the void space εCL. In Figure 2.3,

these different regions within the catalyst layer are represented by the black, blue,

and white areas, respectively. The overall sum of the three parameters is unity.

The parameters LPt/C and LI are obtained by deriving their equations from the

geometric properties of the catalyst layer, whereas the parameter εCL is determined

through:

εCL = 1− LPt/C − LI (2.8)

The agglomerate model adopted in this study is a modified version of the one

described by Li et al. in [81]. Certain simplifications have been made to this model,

which will be further discussed later. Furthermore, to enhance comprehension of

the catalyst layer’s structure, the formulation of LPt/C and LI has been deduced

and thoroughly explained.

Pt/C particles volume fraction, LPt/C

The equation to determinate the volume fraction of platinum/carbon LPt/C

arises from the calculation of the total volume occupied by the platinum/carbon

particles within the catalyst layer VPt/C . These two parameters are interrelated

through the volume of the catalyst layer VCL, which can be expressed by the follow-

ing relationship.

VPt/C = LPt/CVCL = LPt/C(ACLtCL) (2.9)

In this equation, ACL represents the area of the catalyst layer and tCL denotes its

thickness. Another approach to calculate the volume of the platinum/carbon par-

ticles VPt/C is through Equation (2.10), where the volumes of platinum and carbon

are independently calculated.

VPt/C = VPt + VC =
mPtACL

ρPt

+
mCACL

ρC
(2.10)

Here, mPt and mC represent the platinum and carbon loading, respectively

(mass of each species per unit area). Multiplying the loading values by the area of
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the catalyst layer, the total mass of platinum and carbon within the layer can be

obtained. Dividing these masses by their respective densities ρPt and ρC gives the

total volumes occupied by each species. By combining Equations (2.9) and (2.10),

the volume fraction of the platinum/carbon particles can be expressed as follows:

VPt/C = LPt/CACLtCL =
mPtACL

ρPt

+
mCACL

ρC
−→ LPt/C =

1

tCL

 
mPt

ρPt

+
mC

ρC

!
(2.11)

To establish a relationship between the loadings within the catalyst layer, the

parameter f is introduced. This parameter enables the carbon loading be expressed

in terms of the platinum loading as given by Equation (2.12).

f =
mPt

mPt +mC

−→ mC =

 
1− f

f

!
mPt (2.12)

By substituting this expression for the carbon loading into Equation (2.11), the

volume fraction of the platinum carbon particles can be determined as follows:

LPt/C =
mPt

tCL

 
1

ρPt

+
1− f

f

1

ρC

!
(2.13)

Ionomer phase volume fraction, LI

To provide a clearer comprehension of the composition and structure of an ag-

glomerate, Figure 2.4 is presented. This figure facilitates the visualization of the

physical significance of various parameters associated with the agglomerate. The

agglomerate model assumes that each agglomerate is composed exclusively by Pt/C

particles and an ionomer phase. Moreover, a thin film of ionomer uniformly covers

each spherical agglomerate. Consequently, the ionomer phase can be divided into

two distinct sections: the ionomer within the agglomerate and the ionomer consti-

tuting the outer ionomer film. In order to characterize the size of the agglomerate,

two parameters are required: the agglomerate radius ragg and the ionomer layer

thickness δI . Within the catalyst layer, the ionomer volume fraction LI,agg is de-

termined specifically within the agglomerate of radius ragg. To obtain the ionomer
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volume fraction LI as a function of these parameters, it is necessary to consider the

distinct approaches employed for calculating its absolute volume.

δI
ragg

Figure 2.4: Agglomerate schematic representation.

The relationship between the volume fraction and the volume of ionomer in the

catalyst layer is expressed by Equation (2.14). It is worth noting that this equation

is analogous to Equation (2.9) utilized in the previous section for calculating the

volume fraction of platinum/carbon particles.

VI = LIVCL (2.14)

According to Figure 2.4, the ionomer volume within a single agglomerate can

be calculated as the sum of the ionomer volume inside the agglomerate, denoted

as VI,agg, and the additional volume contributed by the ionomer layer, represented
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by VδI . Consequently, the total volume of ionomer within the catalyst layer can be

obtained by multiplying this quantity by the total number of agglomerates Nagg.

VI = Nagg(VI,agg + VδI ) (2.15)

On the one hand, the ionomer volume within the agglomerate is determined by

multiplying its volume fraction by the volume of the agglomerate, as indicated in

Equation (2.16). On the other hand, the volume of the ionomer layer is calculated

by subtracting the volumes of two spheres, with and without the ionomer layer, as

shown in Equation (2.17).

VI,agg = LI,aggVagg = LI,agg
4π

3
r3agg (2.16)

VδI =
4π

3
(ragg + δI)

3 − 4π

3
r3agg =

4π

3

h
(ragg + δI)

3 − r3agg

i
(2.17)

In order to obtain the total volume of ionomer, it is necessary to first determine

the total number of agglomerates in the catalyst layer Nagg. To accomplish this, it

is first required to express the volume occupied by the platinum/carbon particles in

a manner similar to Equation (2.15) in terms of Nagg as follows:

VPt/C = NaggLPt/C,aggVagg = Nagg(1− LI,agg)
4π

3
r3agg (2.18)

Unlike the catalyst layer, there is no void space within the agglomerates. There-

fore, the volumetric fraction of platinum within the agglomerate is given one minus

the volumetric fraction of ionomer. Using equating (2.9) and (2.18), the number of

agglomerates can be calculated as follows:

Nagg =
LPt/CVCL

(1− LI,agg)
4π
3
r3agg

(2.19)
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By substituting Equations (2.16), (2.17), and (2.19) into Equation (2.15) and

combining it into Equation (2.14), the following expression is obtained (2.20). Solv-

ing for LI allows the volumetric fraction of the ionomer to be expressed as shown

in Equation (2.21).

VI = LIVCL =
LPt/CVCL

(1− LI,agg)
4π
3
r3agg

 
LI,agg

4π

3
r3agg+

4π

3

h
(ragg+δI)

3−r3agg

i!
(2.20)

LI =
LPt/C

r3agg(1− LI,agg)

h
r3aggLI,agg +

�
(ragg + δI)

3 − r3agg

�i
(2.21)

Typically, LI , LPt/C , ragg, and LI,agg are known values, thus the only unknown

parameter is the thickness of ionomer film δI , which can be calculated as follows:

δI = ragg

 
3

s
LI(1− LI,agg)

LPt/C

− LI,agg + 1− 1

!
(2.22)

2.2.2 Agglomerate model

The spherical agglomerate model [63, 66, 81] is employed to compute the vol-

umetric current density. In order to adapt this formulation to the assumption of

an infinitely thin catalyst layer, the current density of the cathode catalyst layer is

defined by Equation (2.23). This equation incorporates the thickness of the cathode

catalyst layer tCL to convert the volumetric current density into surface current den-

sity. It is important to highlight that the terms enclosed in the brackets correspond

to the transport processes taking place within the agglomerate in the case of the

first term and across the ionomer in the second term. In the formulation proposed

by Li et al. [81], a third term similar to the second term is included, accounting for

the O2 transport process through the layer of water surrounding the agglomerates.

However, in our model, designed for a HTPEMFC where water exists in the vapor

phase, this term is neglected because the thickness of the liquid water layer is zero,

resulting in the current density being expressed as follows:

jc = tCLnFPO2HO2

�
1

Erκc(1− εCL)
+

(ragg + δI)δI
aaggD(I)O2

�−1

(Am−2) (2.23)
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This expression also includes the oxygen partial pressure PO2 and the Henry’s

constantHO2 [82] (2.24), which depends on the mass fraction CPA and molar fraction

χPA of phosphoric acid calculated respectively using (2.25) and (2.26) in terms of

temperature and water partial pressure PH2O.

HO2 = exp

 
(−1.27CPA + 1.23)104

T
+ 35.2CPA − 46.6

!
(2.24)

CPA =
0.0544χPA

(χPA(0.0544− 0.01) + 0.01)
(2.25)

χPA =
ln (PH2O) +

2765.1
T

− 22.002
−4121.9

T
+ 2.5929

(2.26)

It’s important to bear in mind that this model is an extension based on Butler-

Volmer formulation. Upon scrutinising Equation (2.27), which details the calcula-

tion of the reaction rate constant κc [82], it becomes evident that it incorporates the

same electrode potential effect as observed in Butler-Volmer model.

Examining the first term enclosed in brackets within Equation (2.23), it can

be seen how the correction of the reaction rate constant κc is implemented. This

correction takes into account the portion of the catalyst layer containing the agglom-

erates (1 − ϵCL) and its effectiveness factor Er. Thus, the next parameter required

to calculate the current density is the spherical agglomerate effectiveness factor Er

(2.28), which depends on the Thiele’s modulus for chemical reactions Φ (2.29). On

the other hand, Φ (2.29) is contingent upon the effective diffusivity of dissolved

oxygen within the ionomer. This diffusivity is defined using the Bruggemann-type

correction [61] as L1.5
I,aggD(I)O2 .

κc =
jrefc,0

nF (1− εCL)C
ref
O2

 
exp

�
αcFηc
RT

�
− exp

�−(1− αc)Fηc
RT

�!
(2.27)

Er =
1

Φ

 
1

tanh 3Φ
− 1

3Φ

!
(2.28)
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Φ =
ragg
3

r
κc

L1.5
I,aggD(I)O2

(2.29)

Lastly, it is necessary to know the oxygen diffusivity in the ionomer D(I)O2 [83]

and effective agglomerate surface area aagg, which are calculated respectively using

Equations (2.30) and (2.31).

Taking into consideration the units of aagg as indicated in Table 2.1 (m−1), it

becomes apparent that this value is expressed per unit of the total volume of the

catalyst layer, denoted as VCL. The derivation of Equation (2.31) begins with the

total surface area of the spherical agglomerates, which accounts for the thickness of

the ionomer layer (aagg,total = Nagg4π(ragg+δI)
2). However, only the effective portion

of this total surface area, which corresponds to the part in contact with the void

space, is relevant. As such, it is multiplied by ϵCL. Subsequently, by substituting

Nagg with the Equation (2.19) and dividing by VCL, we arrive at Equation (2.31).

D(I)O2 =
(42.4C3

PA − 110.1C2
PA + 95.3CPA − 27.4)103

exp

�
89449C2

PA−155346CPA+71429

T

� (2.30)

aagg =
3LPt/CεCL

r3agg(1− LI,agg)
(ragg + δI)

2 (2.31)

Some parameters of the agglomerate model, such as the platinum loading mPt

can be easily known as they mainly depend on the quantity of material incorporated

during manufacturing process. However, there are other parameters that are more

challenging to measure non-invasively. The agglomerate radius ragg and the volume

fraction of the ionomer both inside and outside the agglomerates (LI,agg and LI)

are in this situation. Additionally, the thickness of the MEA (Membrane Electrode

Assembly) of the fuel cell, corresponding to the target curve mentioned above, needs

to be determined, as no reference to this data was found in the cited source [84].

Hence, these four parameters have been chosen to be characterized alongside the

parameters already mentioned for Butler-Volmer model.
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Chapter 3

Degradation models I: Carbon

corrosion and membrane

degradation

39



Table 3.1: Carbon corrosion nomenclature.

Symbol Description Symbol Description

AC∗ Defective carbon surface area (m2mol−1) p0 Reference pressure (Pa)

Aeff Effective surface area (m2) R Universal gas constant (J mol−1K−1)

Aeff,0 Initial effective surface area (m2) Rm Membrane proton resistance (Ω)

APt∗ Defective Pt surface area (m2mol−1) rmean Pt particles mean radius (m)

aPtO PtO activity t Time (h)

aPtOH PtOH activity T Temperature (K)

aH+ Proton activity tm Membrane thickness (m)

aH2O Relatively humidity UFC Fuel cell voltage (V )

aσm Proton conductivity loss constant vi Reaction rate (mol m−2s−1)

bσm Proton conductivity loss constant vORR Oxygen reduction reaction rate (mol m−2s−1)

Ec Cathode potential (V ) wi Weighted reaction rate

Ei Equilibrium potential (V ) wORR Weighted oxygen reduction reaction rate

Ei,0 Flat equilibrium potential (V ) xH2O Water molar fraction

Erc Reversible cathode potential (V ) αi Charge transfer coefficient

F Faraday constant (C mol−1) ∆G Gibbs free energy (J)

i Current density (Am−2) or (Am−3) ∆H Enthalpy (J)

i subindex Number associated with each reaction ∆S Entropy (J K−1)

kb,i Backward reaction rate constant (mol m−2s−1) ηa Anode overpotential (V )

Keq,i Equilibrium reaction rate constant ηi Reaction overpotential (V )

kf,i = ki Forward reaction rate constant (mol m−2s−1) θspecie Species molar fraction

krev,i Reversible reaction rate constant ρspecie Density (kg m−3)

mC Carbon loading (kg m−2) σm Proton conductivity (S m−1)

Mspecie Molar mass (kg mol−1) σm,0 Initial proton conductivity (S m−1)

ne,i Number of electrons σspecie Surface tension (J m−2)

pAir Air pressure (Pa) ωi Surface interaction parameter (J mol−1)
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Three phenomena have been included in this work to account for the degrada-

tion of a HTPEMFC. The first phenomenon involves a combined model of carbon

support corrosion and platinum oxidation, which is applied to the catalyst layer of

the cathode. The second phenomenon relates to phosphoric acid loss and its impact

on the electrolyte. Lastly, the third phenomenon is caused by platinum dissolution

and particle agglomeration reducing the surface area of the particles and therefore

their catalytic activity. These phenomena play a pivotal role in the deterioration

process of the fuel cell under normal operational conditions. The following sections

provide detailed explanations of the different formulations employed for each model.

The degradation of the catalyst layer poses a significant barrier to the widespread

deployment of fuel cells. In order to enhance their useful lifespan, it is of utmost

importance to gain insights into the respective contributions of the different catalyst

degradation mechanisms. These mechanisms, which are interconnected, include car-

bon support corrosion, Ostwald ripening, and platinum particle agglomeration. In

this context, the corrosion of carbon, driven by oxidation, results in the detachment

and agglomeration of Pt particles. Moreover, the unoxidized platinum particles tend

to dissolve in the ionomer [85]. By employing a relatively straightforward set of reac-

tions, it becomes possible to establish a physically grounded simulation method that

characterizes the surface oxidation of carbon and platinum. This approach also fa-

cilitates the identification of factors contributing to the different growth mechanisms

observed in platinum nanoparticles.

Experimental studies have provided evidence supporting carbon corrosion tends

to escalate at higher temperatures [86], while Pt dissolution is intensified under

elevated electric potential [87], particularly in smaller radius particles [30]. Both

mechanisms are commonly investigated through experiments that monitor the CO2

released by the fuel cell [88, 89] or analyse the concentration of dissolved Pt present

in the catalyst layer [87]. Nevertheless, in real world applications, identifying and

characterizing the diverse degradation mechanisms become significantly more chal-

lenging. In such practical scenarios, the degradation of the catalyst is usually as-

sessed by measuring the distribution of particle sizes within the aged catalyst layer

[90].
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3.1 Carbon corrosion and Pt oxidation

Carbon-based materials are frequently employed in various components of PEM-

FCs, serving dual roles, as a support for platinum particles and as the primary

material within gas diffusion layers (GDL). The degradation of the catalyst layer

begins with oxidation processes taking place on the surfaces of both the carbon sup-

port and Pt particles. These processes are triggered by the simultaneous exposure

to high electrical potential and elevated temperature within a humid environment.

Therefore, this phenomenon predominantly occurs within the catalyst layer on the

cathode side, owing to the presence of oxygen. Furthermore, platinum particles

serve not only as catalysts for hydrogen oxidation and oxygen reduction reactions

but also, regrettably, exert a catalytic influence on carbon corrosion.

The oxidation of the carbon black support at the cathode gives rise to harmful

effects. Firstly, it diminishes the active surface area of the catalyst, promoting the

agglomeration of platinum particles, as will be discussed in the following chapter.

Secondly, it disrupts the electrical connectivity within the catalyst support structure

in the electrode [22], and it induces changes in the structure of the pores and their

surface properties [91]. Collectively, these factors culminate in a decrease in fuel

cell performance owing to the decreased kinetics of the oxygen reduction reaction

(ORR) and the oxygen mass transport losses.

In the corrosion process of carbon utilized as a catalyst support, water plays a

pivotal role as the primary oxidizing agent, ultimately resulting in the production

of CO2 [92]. This reaction shows accelerated kinetics in the presence of water catal-

ysed by the platinum particles. Consequently, carbon corrosion becomes a notable

concern for the durability and performance of proton exchange membrane fuel cells.

The overall carbon corrosion reaction is:

C + 2H2O −−→ CO2 + 4H+ + 4e−

Nevertheless, this reaction is merely a simplified representation of the actual

processes taking place within the catalyst layer. In reality, carbon support corrosion

involves multiple steps including the initial formation of carbon and platinum surface

oxides before culminating in the production of carbon dioxide (CO2).
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3.1.1 Carbon corrosion model

Upon an extensive review of the existing literature, it has been noted that carbon

corrosion has historically been modeled using various approaches. These approaches

range from simple electrochemical models [93] to models incorporating interactions

between surface groups of carbon and platinum [88, 94], and even more intricate

microscopic models [95]. Likewise, numerous approaches have been proposed to

model the platinum surface oxidation. These strategies varies from describing it as

a single-step process [85, 96], multi-step processes [94, 97], or coupling it with other

electrochemical reactions [97, 98].

In the current study, an intermediate approach has been adopted, incorporating

a multi-step process that accounts for interactions between the carbon and platinum

surface groups. Previous research in this field has been conducted by Macauley et

al. [88], who formulated a carbon corrosion model and validated it by comparing the

model’s predictions with the measured CO2 emissions in a LTPEMFC. This model

enables the estimation of carbon and platinum oxidation rates within the cathode

catalyst layer. Additionally, Kregar et al. [99] developed a model to assess both

carbon corrosion and the growth of the mean radius of platinum particles due to

the dissolution and agglomeration of platinum particles in a PEMFC operating at a

temperature of 160 ◦C. This model builds upon the oxidation mechanisms described

by Pandy et al. [94]. Although initially developed for LTPEMFCs, it can be applied

to HTPEMFCs since they employ similar carbon support and catalyst materials

[11]. However, it is important to note that the equilibrium potentials and reaction

constants of the electrochemical reactions will vary because of the different operating

temperatures between LTPEMFCs and HTPEMFCs.
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The model presented below reduces the number of reactions required to a mini-

mum for improved long-term simulation performance. The reactions characterising

carbon corrosion have been incorporated into a two-dimensional (2D) model, assum-

ing the catalyst layer to be infinitely thin. In other words, the elements discussed

in this section, which enable us to grasp the temporal evolution of the catalyst

layer’s composition, have been treated as local variables. Thus, these variables have

distinct values along the catalyst layer, depending on the local conditions. This

model shares similarities with the one proposed by Kregar et al. [45, 99], but it has

been reformulated based on the approach outlined by Macauley et al. [88], who also

consider the interactions between species in the calculation of the reaction ratios.

The 2D modeling approach represents a departure from the methodology em-

ployed by Kregar et al., who modeled the individual degradation mechanisms within

the catalyst layer as 0D reactors. On the other hand, due to the critical role of plat-

inum particle size, Kregar et al. adopted a corrosion model distributed according

to particle size. This means that each platinum particle had its distinct set of re-

action rates as a function of its size. In this study, we have opted not to account

for localized distribution of values based on particle size. Nevertheless, in an effort

to partially accommodate this effect, we have included the average particle radius,

denoted as rmean, in our formulation.

The process of carbon electrochemical corrosion involves the successive forma-

tion of two types of surface carbon oxides: unstable COH and stable CO. These

oxides are more likely to appear in humid environments when the voltage exceeds a

certain threshold [94]. Furthermore, these surface carbon oxides undergo irreversible

oxidation, leading to the generation of CO2 through their interaction with unstable

PtOH and stable PtO surface platinum oxide species, which are formed through

oxygen adsorption [25, 100–102]. In order to describe the carbon and platinum

oxidation processes occurring within the catalyst layer, a streamlined mechanism

comprising six electrochemical reactions has been adopted.
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Carbon surface reactions

After conducting a comprehensive literature review, it is evident that the ap-

pearance of CO2 involves an initial occurrence of unstable oxides on the carbon

surface [94, 103, 104]. The models proposed by Macauley et al. [88] and Kregar et

al. [99] take into consideration a two-phase carbon support surface oxidation process

(3.1 and 3.2). The carbon support structure exhibits some disorder domains and

structural surface defect sites referred to as C∗, which possess a higher propensity

for oxidation. Also, the nearby presence of Pt favors this process. In humid environ-

ments and under high enough electric potentials, unstable hydroxide groups C∗OH

are formed on these defect surfaces C∗ (3.1). Subsequently, these groups undergo

further oxidation, leading to the formation of passive (stable) oxide groups C∗O

at even higher potentials (3.2). These mechanisms are described by the following

reversible electrochemical reactions.

Reaction 1: C∗ +H2O
v1−−⇀↽−− C∗OH +H+ + e−

E1 = E1,0 = 0.29 V RHE (3.1)

Reaction 2: C∗OH
v2−−⇀↽−− C∗O +H+ + e−

E2 = E2,0 = 0.8 V RHE (3.2)

The temperature-dependent nature of equilibrium potentials E0 is mathemati-

cally expressed by the equation −neFE0 = ∆G = ∆H−T∆S, where ne denotes the

number of electrons involved. This equation illustrates the relationship between the

equilibrium potential and the difference in Gibbs free energy between the reactants

and products [105]. The equilibrium potentials Ei,0 provided herein are specifically

determined at a temperature of 160 ◦C with respect to the Reversible Hydrogen

Electrode (RHE).

Platinum oxide formation

Concerning platinum surface oxides, several studies [106–108] have reported the

presence of different adsorbed species depending on the electrochemical potential.

At lower potentials, the dominant surface species is H2Oad, transitioning to OHad at

intermediate potentials, and eventually transforming into Oad at higher potentials.
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However, owing to the relatively weak bonding of H2Oad, this process is often sim-

plified into two distinct reactions. Similarly to the surface oxidation of the carbon

support, the oxidation of the platinum particle surface occurs in two stages (3.3 and

3.4). Initially, hydroxide groups Pt∗OH are formed on the platinum defects surface

Pt∗ (3.3). Subsequently, these groups are further oxidized, leading to the formation

of stable oxide groups Pt∗O (3.4). The electrochemical reactions that characterize

these mechanisms are presented below.

Reaction 3: Pt∗ +H2O
v3−−⇀↽−− Pt∗(OH)ad +H+ + e−

E3,0 = 0.79 V RHE (3.3)

Reaction 4: Pt∗(OH)ad
v4−−⇀↽−− Pt∗Oad +H+ + e−

E4,0 = 0.8 V RHE (3.4)

Carbon corrosion

The aforementioned platinum and carbon surface oxides play a pivotal role in

carbon corrosion, resulting in the formation of CO2 through two distinct irreversible

reactions. Firstly, in the presence of water, the carbon hydroxide groups C∗OH un-

dergo a reaction that yields CO2 (3.5). Moreover, these C∗OH groups also interact

with Pt∗OH (3.6), further contributing to the production of CO2. These unstable

carbon and platinum groups remain attached to the carbon support (C∗−), and as

they are consumed, new internal defect sites in the form of carbon C∗ (3.5) and

(3.6) and exposed platinum Pt∗ (3.6) are revealed on the surface.

Reaction 5: C∗ − C∗OH +H2O
v5−−→ C∗ + CO2 + 3H+ + 3e−

E5 = E5,0 = 0.96 V RHE (3.5)

Reaction 6: C∗ − C∗OH + Pt∗(OH)ad
v6−−→ C∗ + CO2 + Pt∗ + 2H+ + 2e−

E6,0 = 0.62 V RHE (3.6)
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The precise rate at which new defect site carbons are formed may initially seem

unknown. However, upon closer analysis of reactions (3.5) and (3.6), it can be

inferred that for every mole of CO2 generated, an equivalent mole of carbon is

incorporated into the C∗ group.

Platinum particle size effect

In order to obtain accurate and reliable results, it is essential to consider the

impact of platinum particle size on the equilibrium electric potential of the reactions

modelling carbon corrosion. For reactions taking place on the surfaces of Pt parti-

cles, the equilibrium potential is subject to the Kelvin term, causing the potential

to decrease as the particle radius increases [85, 109]. Incorporating the Kelvin term

represents a significant advancement over the oxidation mechanism described in [94].

The magnitude of this deviation is determined by the surface tensions σspecie, molar

masses Mspecie, and densities ρspecie of the Pt surface species that participate in the

reaction, such as Pt∗, Pt∗OH, and Pt∗O. Therefore, the equilibrium potentials

Ei for the reactions (3.3), (3.4) and (3.6) involving Pt species can be calculated as

follows:

E3 = E3,0 +
1

2Frmean

 
σPtOHMPtOH

ρPtOH

− σPtMPt

ρPt

!
(3.7)

E4 = E4,0 +
1

2Frmean

 
σPtOMPtO

ρPtO

− σPtOHMPtOH

ρPtOH

!
(3.8)

E6 = E6,0 +
1

2Frmean

 
σPtMPt

ρPt

− σPtOHMPtOH

ρPtOH

!
(3.9)

Here, F denotes the Faraday constant, while rmean corresponds to the average

radius of the platinum particles. The characterization of the distribution function

for the platinum particle radii across the catalyst layer, as well as the calculation of

their equivalent mean radius, will be thoroughly explained in the upcoming chapter.
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3.1.2 Reaction rates

The kinetics of the reactions described by Equations (3.1) to (3.6) are defined

by their respective reaction rates. The following comprehensive Equation (3.10) al-

lows these reaction velocities to be determined, taking into account slight variations

depending on the specific reactions.

vi = kf,i

"
aH2O

#

i=1,3,5

θreac exp

�−ωi

RT
θprod

�
exp

�
ne,iαiF

RT
ηi

�

−
"
aH+kb,iθprod exp

�
ωi

RT
θprod

�
exp

�−(1− ne,iαi)F

RT
ηi

�#

i=1−4

(3.10)

As can be observed, this global equation comprises two distinct parts: the first

term represents the forward reaction, while the second term accounts for the back-

ward reaction. This structure applies to reactions (3.1) to (3.4) since they are re-

versible reactions. However, for the irreversible reactions (3.5) and (3.6), the second

term is omitted.

From the general Equation (3.10), the forward and backward reaction rate con-

stants are denoted by kf,i and kb,i, respectively, and their values are highly depen-

dent on temperature [45]. These rate constants are commonly employed as fitting

parameters in various models.

In the context of each reaction i, θreac represents the molar fractions of the re-

acting species, while θprod denotes the molar fractions of resulting product species.

Derived from Equations (3.1) to (3.6), we can discern six fractions arranged in two

groups, with the combined sum of these fractions equal one. On the one hand, the

variables θC , θCOH , and θCO represent the molar fractions of defect carbon sites,

unstable carbon surface hydroxides, and passive carbon surface oxides, respectively.

On the other hand, θPt, θPtOH , and θPtO denote the molar fractions of free platinum

sites, hydroxyl species on platinum, and oxide species on platinum, respectively. It

is important to note that platinum detachment and subsequent agglomeration are

solely attributed to carbon corrosion occurring in the immediate vicinity of the Pt

particles. Furthermore, as the majority of carbon corrosion predominantly takes

place in the region surrounding the attached Pt particles (due to their catalyst ef-
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fect), it is reasonable to assume, within this model, that the carbon surface coverage

exclusively refers to this particular region, as it represents the most vulnerable area

in terms of catalyst layer degradation. So, we identify these carbons as C∗. There-

fore, the molar fractions θC , θCOH , and θCO represent only a portion of the carbon

content within the catalyst layer, specifically the portion surrounding the platinum

particles.

Referring back to Equation (3.10), the symbols aH2O and aH+ represent the

relative humidity and the proton activity, respectively. The relative humidity is

calculated using Equation (3.11) (p0 is taken as the atmospheric pressure), whereas

the proton activity is assumed to have a value of one due to the high concentration

of protons in the ionomer.

aH2O = xH2O
pAir

p0
(3.11)

The symbol ωi, represents the surface interaction parameter specific to the ad-

sorbed species. This factor is multiplied by the fraction of produced species (ab-

sorbed species). As in previous formulations, the universal gas constant is repre-

sented by R, while T denotes the temperature. Lastly, ne, αi, and ηi represent

the number of electrons, the charge transfer coefficient, and the overpotential for

the corresponding reaction, respectively. The overpotential for each reaction can be

estimated as follows:

ηi = (UFC + ηa +Rmi)− Ei (3.12)

Here, the variable i denotes the current density, while Rm refers to the proton

resistance across the membrane. The calculation of Rm involves the membrane

thickness tm and the proton conductivity σm, as given by Equation (3.13).

Rm =
1

σmtm
(3.13)
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Site Balances

The rates of the reactions (Eq. 3.10 ) dictate the dynamics of the oxides over

time. The conservation equations for carbon and platinum species on the sites are

presented below.

Carbon sites

dθCOH

dt
= AC∗(v1 − v2 − v5 − v6) (3.14)

dθCO

dt
= AC∗v2 (3.15)

θC = 1− θCOH − θCO (3.16)

Platinum sites

dθPtOH

dt
= APt∗(v3 − v4 − v6) (3.17)

dθPtO

dt
= APt∗v4 (3.18)

θPt = 1− θPtOH − θPtO (3.19)

The variables AC∗ and APt∗ represent, respectively, the surface area per mole

of defective carbon and platinum sites, that are prone to the formation of oxide

groups. The estimation method for these areas will be explained in more detail in

Chapter 6.
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Reaction rates simplification

Assuming that all other parameters are already known, a total of ten parameters

need to be determined within the carbon corrosion model: six kf,i and four kb,i.

Fortunately, these last ones (backward) can be expressed as funcion of known (or

known to be) parameters due to the relationship between the two sets of reaction

rate constants described in Equation (3.10).

In the context of a reversible reaction i, it is observed that there are two distinct

reaction rates denoted as vi: the forward rate and the backward rate. These rates

are governed by their corresponding reaction constants, kf and kb.

A
kf−−⇀↽−−
kb

B

Since the equilibrium reaction rate constant for a reaction is defined asKeq =
kf
kb
,

the equations for the aforementioned reaction rates can be expressed as follows:

vi = (kf,iXA−kb,iXB) = (kf,iXA−
kf,i
Keq,i

XB) = kf,i(XA−
1

Keq,i

XB) = ki(XA−krev,iXB)

Therefore, the reverse reaction rate constant can be described as krev,i =
1

Keq,i
,

where Keq,i is the equilibrium constant for reaction i. Additionally, the terms XA

and XB represent the composition-dependent factors on the respective sides of the

reaction.

Considering that the Gibbs free energy can be expressed by Equations (3.20) and

(3.21), the equilibrium constant for each reaction can be determined using Equation

(3.22), where ne represents the number of electrons participating in the reaction.

∆G = −RT lnKeq,i (3.20)

∆G = −neFEi (3.21)

Keq,i = e

�
neFEi
RT

�
(3.22)
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Applying this concept to the general Equation (3.10), we can derive the reaction

ratios for each reaction as presented in Equations (3.23) to (3.28). These equations

involve only six unknown reaction rate constants (forward), denoted from now on

as ki. The remaining parameters employed in the model are outlined in Table 3.2.

v1 = k1

 
aH2OθC exp

�−ω1

RT
θCOH

�
exp

�
α1F

RT
η1

�

− aH+krev1θCOH exp

�
ω1

RT
θCOH

�
exp

�−(1− α1)F

RT
η1

�! (3.23)

v2 = k2

 
θCOH exp

�−ω2

RT
θCO

�
exp

�
α2F

RT
η2

�

− aH+krev2θCO exp

�
ω2

RT
θCO

�
exp

�−(1− α2)F

RT
η2

�! (3.24)

v3 = k3

 
aH2OθPt exp

�−ω3

RT
θPtOH

�
exp

�
α3F

RT
η3

�

− aH+krev,3θPtOH exp

�
ω3

RT
θPtOH

�
exp

�−(1− α3)F

RT
η3

�! (3.25)

v4 = k4

 
θPtOH exp

�−ω4

RT
θPtO

�
exp

�
α4F

RT
η4

�

− aH+krev,4θPtO exp

�
ω4

RT
θPtO

�
exp

�−(1− α4)F

RT
η4

�! (3.26)

v5 = k5aH2OθCOH exp

�−ω5

RT
θCOH

�
exp

�
3α5F

RT
η5

�
(3.27)

v6 = k6θCOHθPtOH exp

�−ω6

RT
θPtOH

�
exp

�
2α6F

RT
η6

�
(3.28)
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Table 3.2: Degradation model parameters.

Parameter Symbol Value

Equilibrium potential (V )

E01 0.29

E02 0.80

E03 0.79

E04 0.80

E05 0.96

E06 0.62

Electron number

ni=1−4 1

n5 3

n6 2

Tafel coefficient αi 0.5

Interaction parameter (kJmol−1)

ω1 −0.68

ω2 −2.93

ω3 −36.5

ω4 14.6

ω5 −4.7

ω6 −1.46
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3.1.3 Carbon corrosion effects

The aforementioned reactions have a significant influence on the fuel cell’s per-

formance. In order to incorporate this effect into the modeling, certain assumptions

have been made, establishing relationships between the degradation phenomena and

the base model of the fuel cell.

Carbon dioxide emissions

In contrast to the surface oxides formed in (3.1) and (3.2), which remain attached

to the carbon support, the generated CO2 in (3.5) and (3.6) is expelled from the

fuel cell, leading to a decrease in the amount of carbon present in the catalyst

layer. Consequently, as CO2 is released according to Equations (3.27) and (3.28),

the carbon loading mc progressively diminishes by (3.29), where MC denotes the

molar mass of carbon.

dmC

dt
= −(v5 + v6)MC (3.29)

The observed variation in the mc value will consequently induce changes in the

composition of the catalyst layer. These modifications can be adequately character-

ized using the agglomerate model formulation, as detailed in the previous chapter.

Platinum surface oxides coverage

The catalytic activity of platinum oxide groups is considerably diminished in

comparison to that of free platinum nanoparticles. This decline in activity has been

quantitatively modeled in the following way:

Aeff = Aeff,0(θPt + aPtOHθPtOH + aPtOθPtO) (3.30)

In this context, the parameters aPtOH and aPtO take values ranging from zero to

one, denoting the relative activity of the covered species compared to free platinum.

The modified term Aeff is relevant for the calculation of the cathode overpotential.

In line with the reaction constants ki, these two parameters aPtOH and aPtO also

require proper characterization.
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Cathode potential loss

The reaction rate of oxygen reduction and water generation taking place at the

cathode can be approximated in a simplified manner as:

O2 Reduction: O2 + 4H+ + 4e−
vORR−−−→ 2H2O

In order to calculate the cathode potential Ec, all the potentials of the electro-

chemical reactions taken place in the cathode should be considered, proportionally

weighted to their corresponding reaction rates. This is shown in Equations (3.31)

and (3.32).

Ec = wORRErc +
6X

i=1

wiEi (3.31)

wi =
vi

vORR +
6X

i=1

vi

(3.32)

This updated cathode potential value Ec has an impact on the calculation of

the voltage through Equation (2.4).

55



3.2 Phosphoric acid loss

Fuel cells are composed of two electrically conductive electrodes where electro-

chemical reactions occur. The electrolyte, positioned between these two electrodes,

is impermeable to gases while serving as an ion exchanger. High-temperature proton

exchange membrane fuel cells commonly employ a basic polymer as polybenzimida-

zole (PBI) that is impregnated with a non-volatile inorganic acid [110, 111]. PBI

demonstrates a notably poor ionic conductivity, thus phosphoric acid becomes an

interesting dopant for this specific class of fuel cell owing to its amphoteric properties

and outstanding thermal stability. Amphoteric compounds possess the dual capacity

to act as either acids (donating protons) or bases (accepting protons). Thus, phos-

phoric acid establishes itself as an effective proton conductor by creating hydrogen

bonds [112, 113].

As indicated previously in Chapter 1, PBI membranes are subject to an ex-

cessive doping process with phosphoric acid. This situation poses a challenge in

terms of retention and facilitates the migration of the acid to the outside of the

membrane. During standard operating conditions, the rate of phosphoric acid loss

is minimal, yet it remains noteworthy over the entirety of the lifespan. The rate at

which this loss takes place during extended operating periods has been detailed in

numerous publications [35, 37, 41, 42], exhibiting an average ratio ranging between

0.1 and 0.4 µg cm−2 h−1 [18], contingent upon the specific operational conditions.

However, this decline does not exhibit uniformity over time; instead, it intensifies

under high temperatures and elevated current densities [37]. Additionally, certain

scenarios can promote these loss mechanisms, such as the migration of acid caused

by load cycles, including both start-ups and shutdowns, as well as the removal of

excessive acid during the initial stages of the operational life. Therefore, there is

an initial abrupt decrease in phosphoric acid content that gradually levels out over

time [40]. This degradation mechanism holds a considerable influence over the fuel

cell’s performance, as the rate of acid loss agrees with the voltage drop [41] due to

its direct relationship with protonic conductivity.
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This match is observable in the plotted curves of Figure 3.1, which illustrate the

temporal evolution of voltage for three fuel cells with distinct levels of phosphoric

acid doping. These cells were operated at 300mA cm−2 and 160 ◦C.
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Figure 3.1: Voltage loss with different MEAs. Data extracted from [84].

Upon reexamining (2.4), it becomes clear that a decrease in conductivity results

in an increase in proton resistance when passing through the membrane, conse-

quently causing a decline in the fuel cell’s voltage under identical current density

conditions. Due to this direct connection, the approach taken is to model the reduc-

tion in proton conductivity directly, instead of focusing on the decline in phosphoric

acid content. Formulating a theoretical model to address this phenomenon requires

the careful incorporation of multiple factors, including materials, temperature, ini-

tial doping, and operating conditions. However, given the intricate nature of these

interactions, an alternative approach is chosen. As a result, the following empirical
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equation has been incorporated into the model to account for the decline in efficiency

caused by this phenomenon.

σm = σm,0
(e−aσm t + e−bσm t)

2
(3.33)

The aim of this equation is to model the decrease in proton conductivity through

the summation of two negative exponentials. This formulation effectively captures

both the rapid initial decline and the subsequent stabilization. σm,0 is the initial

proton conductivity while the parameters aσm and bσm require rigorous character-

ization, alongside the carbon corrosion reaction constants ki (i = 1, ..., 6) and the

activity of the platinum covered species aPtOH and aPtO. This characterization pro-

cess is essential to ensure that the voltage loss predicted by the model aligns with the

actual observed loss. The comprehensive procedure for parameter characterization

will be presented in subsequent chapters.
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Chapter 4

Degradation models II: Ostwald

Ripening and Pt Agglomeration
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Table 4.1: Ostwald ripening and Pt agglomeration nomenclature.

Symbol Description Symbol Description

Aeff Effective surface area (m2) Ṅdet,i Population time evolution by detachment (s−1)

Aeff,0 Initial effective surface area (m2) Ṅdiss,i Population time evolution by dissolution (s−1)

AFC MEA area (m2) Ṅi Population time evolution (s−1)

Asp Specific surface area (m2kg−1) Ṅmer,i Population time evolution by merging (s−1)

cPt2+ Pt2+ ions molar concentration (mol m−3) R Universal gas constant (J mol−1K−1)

cPt2+ref
Pt2+ reference ions molar concentration (mol m−3) ri Average class radius (m)

Ediss,i Dissolution equilibrium potential (V ) Rm Membrane proton resistance (Ω)

Ediss,0 Flat dissolution equilibrium potential (V ) rmean Mean radius (m)

F Faraday constant (C mol−1) rmean,0 Initial mean radius (m)

H() Heaviside theta function ṙi Radius time evolution (m s−1)

i Current density (Am−2) or (Am−3) T Temperature (K)

i subindex Number associated with each class tCL CL thickness (m)

kdet Detachment constant (mol m−2s−1) UFC Fuel cell voltage (V )

kdiss Dissolution reaction rate constant (mol m−2s−1) vdiss,i Dissolution reaction rate/velocity (mol m−2s−1)

Keqdiss,i Dissolution equilibrium reaction rate constant VI Ionomer volume in catalyst layer (m3)

kred,i Redeposition reaction rate constant VPt Overall Pt volume (m3)

LI Ionomer volume fraction Vspheres Spheres volume (m3)

M Classes number v5 and v6 Carbon corrosion rates (mol m−2s−1)

MC Carbon molar mass (kg mol−1) V̇Pt,loss Loss Pt volume time evolution (m3s−1)

mPt Pt loading (kg m−2) XS Integration area

MPt Pt molar mass (kg mol−1) αdiss Charge transfer coefficient

ne Electron number ∆r Class width (m)

ni Number of merging combinations ηa Anode overpotential (V )

Ni Class population ηdiss,i Dissolution overpotential (V )

Ntotal Total Pt particles number θPt Pt molar Fraction

N0 Particles initial number ρC Carbon density (kg m−3)

Ṅagg,i Population time evolution by agglomeration (s−1) ρPt Pt density (kg m−3)

Ṅatt,i Population time evolution by attachment (s−1) σPt Pt surface tension (J m−2)

Ṅdet Population total time evolution by detachment (s−1)
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4.1 Particle size distribution model

Platinum particles play a key role in proton exchange membrane stacks, mainly

due to their catalytic role in hydrogen oxidation and oxygen reduction reactions.

But, as explained in the preceding chapter, platinum also acts as a catalyst in the

corrosion process affecting the carbon support. Its impact on the reduction of fuel

cell performance extends beyond this role, as the platinum particles themselves un-

dergo various degradation processes, ultimately culminating in their agglomeration.

This agglomeration results in an enlargement of particle size, leading to a reduction

in their overall surface area. It is important to recall that not all the platinum

within the catalyst layer remains readily accessible. The catalytic activity depends

on the electrochemically active surface area (ECSA), which is directly linked to the

surface area offered by the platinum particles. Consequently, any enlargement of

particle size resulting from degradation processes would lead to a decrease in ECSA

and consequently contribute to the loss of fuel cell efficiency.

Hence, it is crucial to undertake an in-depth examination of the temporal evolu-

tion of these particle sizes. To accomplish this, the initial step involves establishing

a distribution model to define the different radii of the platinum particles and the

respective quantity of particles of each size at every time point. In this context,

the approach described by Kregar et al. [45] resembles the methodology employed

by Rinaldo et al. [36, 114, 115], where a continuous particle size distribution was

utilized. The distinctive feature of Kregar et al.’s model is the use of a discrete

distribution with a relatively small number of classes. This characteristic offers

the advantage of quicker computational simulations, especially when dealing with

extended simulation run times.

In light of this robustness, the approach described by Kregar et al. has been

adopted in the current study. This entails categorising particles into a total of

M classes based on their respective sizes. Each class is identified by an assigned

subindex i and contains a different number of particles denoted as Ni. The particles

within each class have a radius ranging between ri − 1
2
∆r and ri +

1
2
∆r, where ri

represents the average radius of particles in that specific class and ∆r is the class
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width. The focus of the degradation models, driven by Ostwald ripening and particle

agglomeration, is to determine the rate of variation in the population of each class

Ni(t). This enables the modification of certain characteristics of the fuel cell over

time, allowing the integration of these degradation models with the fuel cell model.

For instance, this integration can be achieved by either reducing the surface area

of the catalyst or by adjusting the equilibrium potential of the platinum oxidation

reactions according to the mean radius growth rmean through the Kelvin term.

Because the initial particle size is usually given as a fraction (see Figure 4.1),

the estimation of the initial number of particles N0 (4.3) becomes essential for the

calculation of the particle count in each i-th class, represented as Ni. This is achieved

by integrating the formulation for determining the total volume of platinum (4.1)

in the catalyst layer with the volume occupied by N0 spheres (4.2).

VPt =
mPtAFC

ρPt

(4.1)

Vspheres = N0

4π
MX

i=1

h
r3iNi

i

3
(4.2)

N0 =
3mPtAFC

4π
MX

i=1

h
r3iNi

i
ρPt

(4.3)
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Figure 4.1: Particle size initial distribution. Data extracted from [45].

At the outset, the platinum nanoparticles are uniformly dispersed on the car-

bon support, displaying a small mean diameter. This results in a higher Gibbs

free energy, particularly noticeable in the smaller particles, making them prone to

agglomeration, which leads to the formation of larger particles. As this growth pro-

gresses, it attenuates the tendency towards agglomeration, which explains the lower

growth rate observed in the later stages of the fuel cell’s life.

As will be more fully explained later in this chapter, the electrochemical pro-

cesses taking place within the catalyst layer, have two distinct effects on the popula-

tion of particlesNi in each ri radius class. On the one hand, free unoxidised platinum

tends to dissolve into Pt2+ ions, followed by redeposition onto other particles. This

phenomenon results in certain particles either growing or shrinking, depending on

their dissolution rate, consequently leading to an increase or decrease in the pop-

ulation of the respective classes. On the other hand, as described in the previous

chapter and represented by reactions (3.5, 3.6), carbon corrosion contributes to at-
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tachment loss of adjacent platinum particles to the carbon support. The loss of

adhesion leads to the Pt particles detachment and their subsequent agglomeration,

culminating in the formation of larger particles.

Figure 4.2: TEM micrographs of Pt/C in cathode catalyst before and after 500 h

aging test. Figure extracted from [43].

Figure 4.3: TEM photographs of Pt/C in cathodes before and after 100, 300 and

520 h intermittent test. Figure extracted from [90].
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4.2 Ostwald ripening: Platinum dissolution and

redeposition model

Pt2+

Carbon support

Carbon support

Carbon support

A

B

C

Figure 4.4: Schematic representation of Ostwald ripening mechanism.

As previously mentioned, platinum nanoparticles not covered by oxides, whose

molar fraction is θPt, have a tendency to dissolve into Pt2+ ions through the following

reversible electrochemical reaction [85]:

Dissolution reaction: Pt
vdiss−−⇀↽−− Pt2+ + 2e−

Ediss,0 = 1.155 V RHE (4.4)
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Similar to the platinum surface oxidation and carbon corrosion discussed in the

previous chapter, the equilibrium potential of dissolution is influenced by particle

size through the incorporation of the Kelvin term (4.5). However, a distinct approach

is adopted here, wherein the mean size of each class ri is taken into account rather

than the global average radius rmean. As a result, the ensuing equations presented

below will consist of M equations, with each equation corresponding to a specific i

class.

Ediss,i = Ediss,0 −
1

2Fri

σPtMPt

ρPt

(4.5)

The kinetics of platinum dissolution for each class i is governed by the reaction

rate (4.6), which considers both forward (dissolution) and backward (redeposition)

terms.

vdiss,i =kdissθPt

 
exp

�
2αdissF

RT
ηdiss,i

�

− kred,i
cPt2+

cPt2+,ref

exp

�−2(1− αdiss)F

RT
ηdiss,i

�! (4.6)

kred,i =
1

Keqdiss,i

=
1

exp

�
neFEdiss,i

RT

� (4.7)

ηdiss,i = (UFC + ηa +Rmi)− Ediss,i (4.8)

Where kdiss denotes the temperature-dependent reaction rate constant, while

kred,i (4.7) represents the redeposition rate constant for the i-th class. Additionally,

αdiss stands for the transfer coefficient, and ηdiss, as determined by (4.8), corresponds

to the dissolution overpotential. It is important to highlight that the backward term

in (4.6) is also directly proportional to the concentration of Pt ions dissolved in the

ionomer, represented by cPt2+ .
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This model proposed by Kregar et al. [45, 99] is a 0D degradation model in

which particles of various sizes are uniformly dispersed throughout the catalyst

layer. Therefore, they assume the existence of a single Pt2+ ion reservoir, with

which all particles interact independently of their size. This assumption is essential

for modeling Ostwald ripening [85]. In accordance with this approach, the tem-

poral dynamics of the Pt2+ ion concentration cPt2+ is estimated by summing the

contributions from all size classes ri, as follows:

dcPt2+

dt
=

1

VI

MX

i=1

4πr2iNivdiss,i (4.9)

VI = AFCtCLLI (4.10)

The rate of change of Pt2+ ion concentration ċPt2+ , is dependent on the surface

area of the platinum particles as well as the volume of ionomer in the catalyst

layer, denoted as VI (4.10). Here, AFC refers to the surface of the fuel cell, tCL

represents the thickness of the catalyst layer, and LI corresponds to the ionomer

volume fraction.

Upon further examination of (4.6), it is evident that there exists a specific plat-

inum ions concentration cPt2+ at which the dissolution rate vdiss,i becomes zero. This

equilibrium concentration is particle size dependent, with smaller particles leading

to higher equilibrium concentrations. As a consequence, reaching an overall equi-

librium concentration is only possible when the smaller particles dissolve and later

redeposit to form larger ones. This characteristic makes the parameter of great

importance for the degradation of the catalyst layer, as it drives the growth of the

average particle size.

The variation in the mean radius for each class is computed using (4.11), which

directly depends on the platinum dissolution or redeposition rate vdiss,i.

ṙi =
dri
dt

= −MPt

ρPt

vdiss,i (4.11)
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In the current model, the average size of each class is kept constant. Thus any

change in the particle size of a class i is depicted as a decrease in its population.

When particles grow in size, this leads to an increase in the population of the next

larger size class i+ 1. Conversely, a reduction in particle size results in an increase

in the population of the previous class i − 1. These variations in class population

due to particle transfer between classes are also dependent on both the width of the

class ∆ri and the number of particles Ni present in each class before the exchange.

Assuming a uniform class width ∆r (equidistant radii distribution), the variation in

the particle number is estimated as follows:

dNdiss,1

dt
=

1

∆r

h
−N1|ṙ1|+N2|ṙ2|H(−ṙ2)

i
i = 1 (4.12)

dNdiss,i

dt
=

1

∆r

h
Ni−1|ṙi−1|H(ṙi−1)−Ni|ṙi|

+Ni+1|ṙi+1|H(−ṙi+1)
i

1 < i < M

(4.13)

dNdiss,M

dt
=

1

∆r

h
NM−1ṙM−1H(ṙM−1) +NM ṙMH(−ṙM)

i
i = M (4.14)

In order to adequately account for the contributions of neighboring classes, the

Heaviside step function is employed. The Heaviside function, denoted as H(.), is a

discontinuous function that takes a value of zero for any negative argument and one

for any positive argument (including zero).

Upon analyzing (4.13), it is observed that the first term corresponds to the

contribution of particles of immediately smaller size. If these particles increase,

ṙi−1 will be positive, resulting in H(ṙi−1) taking a value of one. Conversely, if they

decrease (negative ṙi−1), H(ṙi−1) will be zero, indicating that they do not contribute

to the calculation of class i but will instead add to the population of class i−2. The

second term involves the loss of population particles, which will contribute to the

variation of the next class
dNdiss,i+1

dt
if ṙi is positive, or to the previous class

dNdiss,i−1

dt

if ṙi is negative. The third term represents the contribution of particles of the next

larger size and is analogous to the first term. If the particle size decreases (ṙi+1 < 0),
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the Heaviside function H(−ṙi+1) will be one, whereas in the opposite case, when the

particles increase in size, it will be zero.

It is important to highlight that the total number of particles is not conserved,

due to the specific formulations applied to the smallest (4.12) and largest (4.14)

size classes. Since, in the event that particles in the i = 1 (4.12) class shrink, they

disappear from the distribution (as there is no smaller class to which they can be

added). On the other hand, when particles in the i = M (4.14) class experience

growth (ṙM > 0), they are considered to remain within the same class. This can be

observed in the second term of (4.14), as the Heaviside function H(−ṙM) would be

zero, thereby not reducing its population.

As final conclusions of this section, the dynamics of platinum particle dissolution

and redeposition results in a reduction in the size of smaller particles and an increase

in the size of larger particles. In our model, this phenomenon is depicted as a

decrease and increase in the population of the respective classes. The growth in

mean radius subsequently leads to a decrease in the catalyst surface area.
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4.3 Particle detachment and agglomeration model

CO2

  Detachment

   Attachment

Carbon support

Carbon support

Carbon support

A

B

C

Figure 4.5: Schematic representation of particle agglomeration mechanism.

As explained in the preceding chapter, surface oxidation of carbon and platinum

drives carbon support corrosion. This phenomenon occurs when the materials are

exposed to water under elevated temperatures and sufficiently high voltages. No-

tably, the corrosion primarily takes place in the vicinity of platinum particles due

to their catalytic effect. Consequently, the contact between the particle surface and

the carbon support diminishes, weakening the bond and facilitating the subsequent
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detachment of particles. Kregar et al.’s particle agglomeration model [45] adopts

the carbon corrosion model as its starting point. However, since the detailed mech-

anisms governing this phenomenon remain not fully understood, the model relies on

the following suppositions.

� The number of detached particles is significantly smaller than the number

of particles that remain attached. Hence, it is assumed that the detached

particles will not coalesce with each other but will instead consistently fuse

with other particles that are still attached to the support.

� In order to simplify the model, it is additionally assumed that every detached

particle instantaneously merges with another particle, obviating the necessity

to separately account for the number of detached particles.

� Finally, particles are considered to fuse regardless of their size independently.

In other words, a particle belonging to size class i = 1 (minimum size) has an

equal probability of merging with a particle from the next higher class (i = 2)

as it does with a particle from the maximum size class (i = M).

To determine the net population change due to agglomeration in a specific size

class i, three variables must be computed. Firstly, the rate of detachment Ṅdet,i

represents the number of particles with radius ri detached per second. Secondly,

the rate at which the detached particles (of random radius) attach to particles of

radius ri that are still attached, Ṅatt,i. As can be deduced from their meaning, both

of these components have negative values as they contribute to a reduction in the

class population. The third variable, Ṅmer,i, corresponds to the rate of emergence

of new particles of radius ri resulting from the merging of previous particles. This

component has a positive value since its effect adds to the population. By summing

the contributions of these three phenomena (4.15), the rate of population change

due to agglomeration in each class, denoted as Ṅagg,i, can be determined.

dNagg,i

dt
= Ṅdet,i + Ṅatt,i + Ṅmer,i (4.15)
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Detachment

The detachment of Pt particles is primarily attributed to the weakening of the

bond with the support, which is a consequence of carbon corrosion. Thus, a particle

detaches when a certain amount of carbon has corroded. Accordingly, the rate of

detachment is closely associated with the carbon corrosion velocities v5 and v6, as

explained in the previous chapter in (3.27) and (3.28) respectively.

The detachment of particles relies on the extent of carbon oxidation, which is

influenced by both the particle size and the bond strength with the support. While

the bond strength is assumed to be uniform across particle sizes, particles of the

same size may exhibit different adhesion strengths. Consequently, even with rela-

tively small amounts of oxidized carbon, some particles may experience detachment.

Under the assumptions that the quantity of detached particles is linked to carbon

corrosion velocity and that smaller particles are more susceptible to detachment, the

population decrease in each class due to particle detachment is computed as (4.16):

Ṅdet,i =
dNdet,i

dt
= −kdet

MC

ρc
(v5 + v6)

Ni

2πri
(4.16)

Here, MC and ρC represent the carbon molecular mass and density, respectively.

To compensate for additional factors not explicitly considered in the model, a pa-

rameter denoted as kdet is introduced. This parameter encompasses various effects,

such as a potentially reduced attachment force of particles to the carbon support

due to presence of possible surface defects or the specific characteristics of the Pt

particle/carbon support interaction. As a consequence, kdet is an unknown param-

eter that requires to be characterized. In contrast to other particle detachment

models reported in the literature [36, 116, 117], Equation (4.16) accounts for the

influence of particle surface size on the detachment rate, as well as the impact of

carbon corrosion through its reaction velocities v5 and v6.

It is important to highlight that while Kregar et al.’s work treats both the

carbon corrosion model and the mean particle size growth model as dimensionless,

the present study models carbon corrosion according to the geometry of an infinitely

thin catalyst layer. To effectively couple the 2D corrosion model with the 0D particle
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detachment model, the average geometrical values of v5 and v6 are employed in the

detachment calculation (4.16).

Attachment

The detached particles do not undergo fusion with each other. As previously

mentioned, they instead merge with particles that remain attached to the carbon

support. Assuming that the probability of merging for detached-attached particles

is not influenced by particle size, the attachment rate Ṅatt,i to particles in each class

i will be directly proportional to the size of its population Ni and to the total particle

detachment rate of all classes Ṅdet.

Ṅatt,i =
dNatt,i

dt
=

Ṅdet

MX

i=1

Ni

Ni (4.17)

Ṅdet =
MX

i=1

Ṅdet,i (4.18)

Hence, the rate at which particles merge with attached particles of class i will be

higher when the population of that class is larger. In other words, as the number of

particles with radius ri increases, so does the likelihood of detached particles joining

and becoming attached to them.

Merging

A detached particle of radius rj joins with another attached particle of size rk,

they combine to form a new particle with a size of ri. The rate at which these new

particles arise Ṅmer,i, is determined from the platinum mass conservation during

merging. If the mass of platinum is conserved, and its density remains constant, the

volume of the new platinum particle with radius ri will be the sum of the volumes of

both parent particles (rj and rk). Therefore, the radius of the new resulting particle

is calculated according to (4.19).

ri =
3

q
r3j + r3k (4.19)
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The current formulation needs to be adapted to suit our discrete particle size

distribution. Thus, the emergence velocity of the merged particles in class i is

determined by summing all the contributions from the detachment rates Ṅdet,j and

the attachment rates Ṅatt,k, where rj and rk satisfy the condition given by (4.19).

It is important to take into account that each class with a mean radius ri includes

particles with radii ranging from ri − 1
2
∆r to ri +

1
2
∆r. Moreover, all possible j − k

combinations that would result in formed particles larger than rM +∆r are excluded

from consideration. As a result, the merged rate of new particles for each class due

to merging is calculated using (4.20), which is analogous to the formulation provided

in [36] for a continuous distribution of particle sizes.

Ṅmer,i =
dNmer,i

dt
=

riXS

ni∆r

X

3
√

r3j+r3k≈ri

Ṅdet,jṄatt,k

|Ṅdet|
(4.20)

This equation includes a modification in comparison to the one presented by

Kregar et al. In our formulation, the absolute value of the total particle detachment

rate Ṅdet has been considered. In the original equation [45], the real value is uti-

lized instead of the absolute value, but it is presumed to be a typographical error.

As previously stated, both Ṅdet,j and Ṅatt,k have negative values, resulting in Ṅdet

being negative as well. However, Ṅmer,i is expected to be positive. If we neglect

the absolute value of Ṅdet, Ṅmer,i would become negative, which is not physically

meaningful in this context.

The discrete nature of the particle size distribution requires certain adjustments

to Equation (4.20) to ensure its suitability for numerical simulations. Specifically,

we need to consider the different possible combinations of j and k that lead to the

formation of new particles in class i. This involves renormalizing the sum in (4.20)

by matching the number of combinations, denoted as ni, with the integration area

in the continuous case, approximately XS ≈ 1.766.

As particles merge, they always form a larger-sized particle than the two par-

ticles involved. Consequently, the variation in the particle distribution due to the

agglomeration phenomenon Ṅagg,i, will result in a reduction in the population of
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smaller classes because of the loss caused by Ṅdet,i and Ṅatt,i, while simultaneously

increasing the number of particles in larger classes through Ṅmer,i.

4.4 Particle size redistribution

The overall temporal evolution of the particle size distribution is the result of the

interplay between Ostwald ripening and particle agglomeration. These two processes

collectively influence the changes in particle sizes over time.

Ṅi =
dNi

dt
=

dNdiss,i

dt
+

dNagg,i

dt
(4.21)
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Figure 4.6: Particle size distribution evolution. Data extracted from [45].

After updating the particle size distribution, the mean radius rmean (4.22) is

calculated by summing the populations of each class multiplied by its respective

radius, and then dividing this sum by the total number of particles.
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rmean =

MX

i=1

Niri

MX

i=1

Ni

(4.22)

In order to compute the variation in the catalyst layer surface area, a system of

M differential equations is available, with each equation corresponding to a specific

class of the particle size distribution. Hence, the selection of the number of classes

must be made judiciously to achieve a compromise between capturing sufficient

detail in the radius distribution and ensuring computational efficiency within the

model.
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Figure 4.7: Normalized polarization curve losses. Data extracted from [45].
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4.4.1 Particle agglomeration effects

Just like the corrosion model, certain assumptions are necessary to establish the

connection between the platinum particle enlargement phenomena and the fuel cell

model. These assumptions play a critical role in bridging the two aspects and allow

for an integrated model to be developed.

ECSA reduction

The growth in mean particle size rmean entails a decrease in the effective area

Aeff , which varies inversely with the increase in particle radius
� Aeff

Aeff,0
= rmean,0

rmean

�
.

Initially, it might be expected a quadratic dependence of rmean on Aeff , given that

it concerns a surface. However, as indicated by Zhai et al. [90], the electrochemically

active surface area is roughly 24% of the specific surface area Asp (4.23) which is

inversely proportional to the mean diameter of the platinum particle, as outlined in

[118].

Asp =
3000

ρPtrmean

(4.23)

This inverse relationship illustrates how the enlargement of particles leads to a

corresponding reduction in the available surface area Aeff (4.24) within the catalyst

layer. With Aeff,0 and rmean,0 the initial available surface area and mean radius.

Aeff = Aeff,0
rmean,0

rmean

(4.24)

Carbon corrosion influence

Furthermore, the rise in the mean radius also has implications for the corrosion

model through two ways: On the one hand, the potentials of reactions 3, 4, and 6

from carbon corrosion model will diminish as the mean radius increases, owing to

the presence of the Kelvin term in Equations (3.7), (3.8), and (3.9). On the other

hand, the surface areas per mole of platinum and carbon defective sites (APt∗ and

AC∗) will also decrease as the mean radius increases. A comprehensive explanation

of the calculation of these surface areas will be provided in Chapter 6.
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Platinum loading loss

Finally, we have accounted for the scenario where smaller particles have a ten-

dency to dissolve and redeposit, forming even smaller particles. Although this effect

is relatively uncommon, since the natural tendency is to increase in size, it can occur

in the early stages. This behavior is modeled in Equation (4.12) effectively treating

these particles as if they disappear from the catalyst layer. To accommodate this

adjustment, an update to the platinum loading mpt, (4.25) has been introduced in

the code, but this occurs only when Ṅdiss,1 < 0.

ṁPt =
dmPt

dt
=

ρPtV̇Pt,loss

AFC

=
ρPt4πr

3
1Ṅdiss,1

3AFC

(4.25)

The reduction in platinum loading relies on the volume of platinum that has

been lost, which can be calculated as the product of the volume occupied by the

smallest-sized particles r1 and the number of lost particles per unit time Ṅdiss,1.
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Chapter 5

Parameter characterization of

HTPEMFC
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As we explained in the introduction, one way to obtain information about the

values of parameters that are difficult to measure is to use numerical simulations that

use those parameters in the modeling. Finding the values of these parameters that

best fit the numerical simulations with the experimental data is an inverse problem.

The inverse mathematical challenge of identifying parameters associated with the

degradation of High Temperature Proton Exchange Membrane Fuel Cells can be

effectively addressed through optimization techniques such as Genetic Algorithms

(GAs). This problem can be understood as a search through a potential solutions

space. As we aim to find the most optimal solution to the problem, this search

can be regarded as an optimization process. While classical optimization methods

are suitable for small search spaces, they often fall short for larger spaces. Genetic

Algorithms is an excellent alternative in this case. The creation of these potent and

efficient methodologies, also referred to as evolutionary strategies, emerged from

the attempt to emulate the principles of biological evolution in the formulation of

optimization strategies. The evolution of these methods is based on the premise

that GAs should be highly effective and efficient optimization strategies, drawing

inspiration from the fact that biological evolution not only optimizes its outcomes

but also refines its optimization methods.

Genetic Algorithms (GAs) employ terminology inspired by natural genetics, de-

scribing individuals within a population as strings of chromosomes. The evolution-

ary process applied to a population of chromosomes resembles a search through a

potential solutions space to the corresponding optimisation problem. GAs conduct

a multi-directional search by beginning with a randomly initialized population of

candidate solutions. They execute a probabilistic, parallel search within the so-

lution space, employing domain-independent genetic operators to generate a new

population of candidate solutions. The population follows a simulated evolution-

ary process: in each generation, the relatively good solutions reproduce, while the

relatively less favorable solutions die and are eliminated. An objective (evaluation)

function serves as the environment to distinguish between different solutions. Con-

sequently, individuals undergo a selection process where only the chromosomes of

the fittest individuals in each generation survive, producing children for the subse-
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quent generation. In the process of constructing the next generation of individuals

from the gene pool containing the parents chromosomes, genetic information is ex-

changed through crossover processes to create children, and random mutations take

place. These crossover and mutation contribute to exploring new areas of the solu-

tion space. GAs can deviate from local extrema due to the parameters variability

within the gene pool and the random element occurring in the technique. The use

of probability does not imply that the method is a mere random search, since GAs

utilize randomized operators as a tool to guide the search toward promising regions,

enhancing their ability to effectively explore the solution space.

In summary, Genetic Algorithms (GAs) offer a systematic approach to explore

the solution space of complex problems and identify near-optimal solutions by evolv-

ing a population of potential solutions over multiple generations. To offer a clearer

comprehension of the process and the role of genetic algorithms, a diagram is pre-

sented in Figure 5.1.

Initialize old
population

Evaluate old
population

Generate children
Evaluate children

fitness 
Create new
generation

Stop?

Figure 5.1: Evolutionary population loop in the genetic algorithm [46].

5.1 Characterization process

The purpose of the characterization process is to identify the set of electrochem-

ical parameters within a priori specified ranges that generate best approximations

to the experimental data. For this purpose the strategy developed by Losantos et

al. [46] is used and the aim is to use only non-invasive information, such as the I-V

polarization curve, inflow rates and measured temperature. The parameters that

are subjected to the characterization are the ones that were highlighted in Chap-
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ter 2, namely the reference exchange current densities (jrefa,0 , j
ref
c,0 ), charge transfer

coefficients (αa, αc) at both the anode and cathode as well as the agglomerate radius

(ragg) and the ionomer volume fraction, both inside (LI,agg) and outside (LI) the

agglomerates. An individual of the population would therefore be an encoding of

this set of seven parameters and a population of individuals is subjected to evolution

through the GA. The evaluation of the fitness of an individual involves to numer-

ically solve the fuel cell model with the parameter values of the individual and to

compare results with the experimental data. During the execution, a substantial

volume of these repetitive computations is undertaken. This occurs as multiple in-

dividuals are assessed in each generation, and frequently, thousands of generations

are necessary to achieve satisfactory results to within a given tolerance with respect

to the experimental data. The computational burden associated with implementing

this process in 3D models becomes time-prohibitive. However, recognizing that the

aforementioned electrochemical parameters do not directly affect the flow dynamics,

one can effectively decouple the electrochemistry from the 3D fluid simulation. This

avoids the unaffordable computational cost of performing a full numerical simula-

tion for evaluating each set of parameters (individual) albeit one has to devise an

iterative procedure, see [46].

5.1.1 Experimental data relevance

To conduct the characterization process, it is indispensable to possess particular

experimental data concerning the fuel cell’s operation. First of all, it is necessary

to know some data points of the polarization curve during steady-state operating

conditions. Equally essential is the collection of information regarding the flow and

temperature conditions under which these voltage and current values were obtained,

along with the concentrations of the species supplied. Moreover, it is crucial to in-

corporate the characteristics of the specific fuel cell under investigation into the

simulation models. This entails the integration of geometrical data, the proton con-

ductivity of the membrane, and the catalyst layer electrochemical properties. How-

ever, it is noteworthy that some of these data points may not be readily available, or

their experimental measurement could be intricate or unreliable. A notable example
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is the determination of parameters like the thicknesses of the catalytic layer and the

membrane. In such cases, the inclusion of supplementary parameters within the

characterization process becomes indispensable to achieve a more accurate model.

This underscores the critical role of data reliability in ensuring the accuracy of pa-

rameter characterization. Consequently, data collection must be conducted using

appropriate measuring equipment and under optimal conditions.

5.1.2 General GA iteration description

The methodology for a general iteration step is briefly outlined below, with

detailed explanations provided in the Appendix. In each iteration, the genetic al-

gorithm employs the optimal individual from the previous iteration as the initial

condition, expediting the convergence process. Throughout the iteration, the fluid

dynamics parameters remain unchanged and the voltage is calculated for each point

along the polarization curve. The genetic algorithm evaluates individuals and iden-

tifies the optimal one based on minimizing the voltage difference in comparison to

a target (experimental) voltage. The voltage at each analyzed point on the polar-

ization curve is non-uniform due to the existing distribution of current density.

Figure 5.2: Current density distribution in the catalyst layer and the eight selected

locations (s = 8) for the genetic algorithm voltage calculation.
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Therefore, for each point z on the curve, s geometrical points within the catalytic

layer (see Figure 5.2), chosen based on the partial pressure of oxygen PO2, are

examined. The goal of the GA is to obtain an optimal individual according to

the fitness function defined by Equation (5.1), which by solving the electrochemical

equations minimizes the disparity between the obtained voltage distribution V [i, j]

and the experimental values Vexp[i] along the target polarization curve.

min
zX

i=1

sX

j=1

(Vexp[i]− V [i, j])2 (5.1)

5.1.3 Complete characterization process

The implementation of this algorithm necessitates the utilization of two distinct

computational tools that encompass the electrochemical models presented in Chap-

ter 2. The first one entails a simulation module of a 3D HTPEM fuel cell developed

in OpenFOAM and, a second tool that performs the optimization process through

GA (formulated in C++). The GA approach employed in this study was origi-

nally devised by Mustata et al. [119]. Therefore, these are two distinct simulation

codes that work in tandem. Despite the enhancements demonstrated in this sec-

tion, the most substantial CPU load still remains associated with the 3D HTPEM

fuel cell module simulations. The comprehensive procedure of the algorithm, en-

compassing the interactions between both codes and the exchange of data between

them, is concisely outlined in the flow diagram of Figure 5.3. In this diagram, the

temperature is denoted as the vector T [i]. However, the two cases studied in this

thesis involve isothermal single cells, leading to identical values for all elements of

the vector. Although a single scalar could have been employed for simplification,

the code has been designed to accommodate potential future applications involving

non-isothermal models.
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Figure 5.3: Flow diagram illustrating the characterization process through a combi-

nation of GA and CFD. Here, ”i” denotes the points on the polarization curve, and

”j” represents the number of selected locations at each point.

85



5.2 Research cases

This approach has been applied to two separate cases involving distinct HTPEM

fuel cells requiring characterization. Subsequently, the aforementioned degradation

phenomena have been incorporated as will be explained in Chapter 6. In the first

fuel cell, the effects of carbon corrosion on the cathode’s catalytic layer and the

depletion of phosphoric acid from the membrane, as presented in Chapter 3, have

been taken into account. In the second fuel cell, the agglomeration phenomena of

platinum particles detailed in Chapter 4 have also been integrated.

5.2.1 Case 1

0 200 400 600 800 1000 1200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0  120ºC 
 140ºC 
 160ºC
 180ºC

V
o

lt
ag

e 
(V

)

Current density (mA/cm2)

Figure 5.4: Polarization curves at different temperatures for a Co − 20%SO2PBI

membrane. Data extracted from [84].

To determine the parameters of the degradation phenomena, it is first neces-

sary to characterize the parameters of the fuel cell from the initial experimental
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polarization curve. That is, we are going to characterize the initial values of the

electrochemical parameters of the fuel cell before any degradation occurs. For this

purpose, four polarization curves are presented in Figure 5.4. The results show

increased fuel cell performance at higher temperatures, presumably as a result of

improved electrode kinetics and membrane conductivity. In these curves, the initial

acid doping percentage of the Co− 20%SO2PBI membrane is 328wt%, which cor-

responds to an Acid Doping Level (ADL) of approximately 11.5 mols of H3PO4 per

molar (average) repeat unit of the polymers. Among them, the 160◦C curve has been

selected as the target curve, since data about its voltage drop are available in [84].

Also, therein, some additional parameters necessary for conducting the simulations,

are provided. These parameters include an active electrode area of 9 cm2, an initial

proton conductivity of 3.3 S/m at the given temperature of 160◦C, and platinum

and carbon loadings of approximately 0.7 and 1.05mg/cm2, respectively. The flow

rates of hydrogen and air are set at 100 and 200 mL/min, respectively, without

pre-humidification. It should be noted that these flow rates significantly exceed the

stoichiometric flow rates, as the primary aim of the test was fuel cell assessment

rather than optimization. Additional parameters utilized and their corresponding

values are provided in Table 5.1.
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Table 5.1: Physical properties and operating conditions.

Parameter Symbol Value

Anode energy activation (Jmol−1) Ea 25000

Cathode energy activation (Jmol−1) Ec 66000

Faraday constant (Cmol−1) F 96487

Catalyst layer thickness (m) tCL 17.5x10−6

Reference pressure (atm) P ref 1

Universal gas constant (Jmol−1K−1) R 8.31472

Temperature (K) T 433

Reference temperature (K) T ref 298.15

Anode pressure dependency coefficient γa 0.5

Cathode pressure dependency coefficient γc 1

Porosity ε 0.5

Protonic conductivity (Sm−1) σm 3.3119

As previously presented in earlier chapters, certain parameters are commonly

unknown in the context of fuel cell characterization. This includes parameters like

the exchange current densities and transfer coefficients in the Butler-Volmer model

(jrefa,0 , j
ref
c,0 , αa, αc). Additionally, the agglomerate model introduces uncertainties

regarding parameters such as the ionomer volume fractions in both the cathode

catalyst layer and the agglomerates, as well as the agglomerate radius (LI , LI,agg,

ragg). In virtually any process where the agglomerate model is included, these pa-

rameters typically require to be estimated. Nonetheless, depending on the available

experimental data, it may be necessary to incorporate additional parameters. In

the context of this initial case study, it is also necessary to include the membrane

thickness (tm). Consequently, each individual subjected to evaluation by the genetic

algorithm encompasses a combination of values for these eight parameters.

Within the genetic algorithm model, it is necessary to define a range of search

values for each parameter constituting the individuals. The selection of these bound-

ary values is of utmost importance to yield realistic outcomes. The range of values
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utilized, along with the values of the optimal individual generated, are presented in

Table 5.2.

Table 5.2: Parameters results.

Parameter Range Value

jrefa,0 (A/m2) [2000− 300000] 12258.46

jrefc,0 (A/m3) [1000− 250000] 1526.54

αa [0.3− 0.98] 0.897

αc [0.3− 0.98] 0.846

LI [0.15− 0.45] 0.397

LI,agg [0.1− 0.6] 0.525

ragg (nm) [50− 1000] 51.4

tm (µm) [20− 80] 23.8

For the optimization process, a set of six points from the target polarization

curve (curve at 160◦C in Figure 5.4) has been carefully chosen. These particular

points were strategically selected to provide a more accurate representation of dif-

ferent voltage losses in relation to the theoretical potential. The initial three points,

located at lower current densities, account for kinetic or activation losses. The fourth

point, found within the medium current density range, allows for the inclusion of

ohmic losses of current transport. Given that the voltage loss attributed to this fac-

tor exhibits linearity, the inclusion of additional points within this current density

range is deemed unnecessary. Finally, two points situated at higher current densi-

ties are included to capture the voltage loss attributed to oxygen concentration or

transport losses.
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Figure 5.5: Comparison of estimated points in the genetic algorithm for each target

point

As previously mentioned, it is important to recall that within the voltage cal-

culation process of the genetic algorithm, a voltage distribution is computed for

each target point (s = 8 as defined in Equation 5.1). Figure 5.5 depicts the values

obtained in these distributions when evaluating the optimal individual (represented

by crosses), in comparison to the six target experimental points (indicated as dots).

For improved result visualization, Table 5.3 has been incorporated. The first

two columns display numerical values for current density and voltage at the six

selected experimental points. Meanwhile, the third column exhibits the average

voltage distribution values for each target point. As it can be seen, the difference

between the voltage estimated by the optimal individual in the genetic algorithm

and the target voltage does not exceeds 1%.
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Table 5.3: Voltage comparison.

Current density Experimental voltage GA estimated voltage

(A/m2) (V ) (V )

514.7059 0.6914 0.6983

947.0589 0.6553 0.6545

1976.4706 0.5952 0.5949

4138.2353 0.5170 0.5175

6711.7647 0.4369 0.4362

7679.4118 0.4028 0.4015
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Figure 5.6: Comparison of the experimental points with the polarization curve using

the parameters obtained in the characterization process.
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Finally, Figure 5.6 presents the polarization curve generated through the com-

plete 3D simulation model of the fuel cell, incorporating the parameter values of the

optimal individual as input data. A thorough comparison with the target points

reveals a slight deviation, particularly at lower and higher current densities. Never-

theless, these deviations are remarkably small, measuring only 1% and 1.2%, respec-

tively. Consequently, the results attained are deemed sufficiently accurate. In the

intermediate region, the concordance between the values is highly favorable, with

an error margin below 0.1%. This intermediate zone holds a greater interest, as the

subsequent degradation process under study in Chapter 6 occurs at 3000A/m2.
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5.2.2 Case 2

For the second case study, the fuel cell examined by Zhai et al. [90] was chosen

due to its available data regarding platinum particle size and its evolution during the

degradation process. Figure 5.7 displays the polarization curves of this fuel cell at

various operation times, including the initial state (0 hours) and some time intervals

spanning up to 504 hours of operation at 7000 A/m2.
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Figure 5.7: Polarization curves at various operation times working at 7000 A/m2.

In the present thesis, the polarization curve at 96 hours was chosen as the ref-

erence point for the initial state. This decision is based on the fact that the initial

curve (0 hours) represents a polarization curve without prior activation, featuring

operating conditions significantly lower than those of the activated fuel cell. During

the initial stages of fuel cell operation, several processes take place, including the

reconditioning of catalyst surface and gas diffusion layer (GDL) and the removal

of impurities. These processes collectively lead to improved operating conditions
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compared to the time zero state. The degradation models specifically designed for

high-temperature PEM stacks cannot obviously be applied during this recondition-

ing process. Consequently, the red curve in Figure 5.7 has been chosen as the target

curve for this scenario, serving as the initial state (time zero) in the next chapter.

The new fuel cell in question comprises electrodes with a geometric area of

approximately 7 cm2. These electrodes were prepared using catalyst powder at a

concentration of 47.6 % (f = 0.476), with a platinum loading of 0.75 mg cm−2.

This leads to a carbon loading of 0.8256 mg cm−2, calculated in accordance with

Equation (2.12). The fuel cell at 150◦C was fed with hydrogen and oxygen without

pre-humidification, both at a flow rate of 100ml/min.

Other provided measurements indicate that the membrane thickness tm is 36µm,

and the catalyst layer thickness tCL is 30 µm. Nevertheless, it’s essential to ob-

serve caution when dealing with measurements at this microscale, as even slight

inaccuracies in the measurement can have a considerable impact on the results.

Furthermore, these surfaces display irregularities, making it necessary to conduct

multiple measurements and subsequently calculate the average in order to obtain

more trustworthy values.

In light of the uncertainty surrounding these measurements, it would be benefi-

cial that both were included into the characterization procedure. However, a mixed

approach was followed: the catalytic layer’s thickness tCL was considered directly

as a parameter for characterization whilst the membrane thickness tm was taken as

a datum due to the lack of information about its protonic conductivity σm. These

two parameters, membrane thickness and protonic conductivity, are co-dependent.

Attempting to characterize both simultaneously would lead to several potential so-

lutions. As a result, the membrane’s thickness was treated as a constant and the

focus of characterization was directed toward the membrane’s protonic conductivity.

These two parameters have been incorporated alongside the fixed parameters

previously detailed in Chapter 2 for the characterization process. Consequently,

each individual assessed by the genetic algorithm is now defined by a total of nine

parameters (jrefa,0 , j
ref
c,0 , αa, αc, LI , LI,agg, ragg, σm, tCL). The specific values obtained
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for these parameters, as well as the range of values for the search, are presented in

the Table 5.4.

Table 5.4: Parameters results.

Parameter Range Value

jrefa,0 (A/m2) [2100− 360000] 348001

jrefc,0 (A/m3) [900− 160000] 1014

αa [0.3− 0.98] 0.385

αc [0.3− 0.98] 0.979

LI [0.15− 0.45] 0.3501

LI,agg [0.1− 0.6] 0.593

ragg (nm) [50− 1000] 50.78

σm (S/m( [2.12− 5.77] 5.76

tCL (µm) [20− 35] 21.062

The results obtained with these parameters have been deemed satisfactory. How-

ever, it’s important to highlight that the proton conductivity parameter obtained in

the process stands towards the upper limit of the specified search range. This ob-

servation underlines the difficulties in the measurement of the membrane thickness

outlined above. The selected parameter ranges have consistently aimed at yielding

realistic values, but in a case without constraints, it’s possible to achieve better fit

to the data but with unrealistic protonic conductivity values, which can reach as

high as 40 S/m. In the context of this fuel cell model, the results obtained would

be the same whether the membrane thickness and protonic conductivity were set

at 36 µm and 40 S/m, respectively, or at 144 µm and 10 S/m. The latter option

aligns better with reality. But, considering that one of the degradation phenomena

discussed in Chapter 6 is the loss of protonic conductivity due to phosphoric acid

loss, it is preferable to maintain the realism of this value by accepting a slightly

reduced degree of accuracy.
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Table 5.5: Voltage comparison.

Current density (A/m2) Experimental voltage (V ) GA estimated voltage (V )

1932.7006 0.7228 0.7314

3951.6825 0.6663 0.6719

5970.6644 0.6337 0.6303

7937.8775 0.5996 0.5969

11924.0725 0.5453 0.5398

13960.3106 0.5186 0.5127

0 2000 4000 6000 8000 10000 12000 14000 16000
0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Target points 
 Characterized curve 

V
o

lt
ag

e 
(V

)

Current density (A/m2)

Figure 5.8: Comparison of the experimental points with the polarization curve using

the parameters obtained in the characterization process.
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Similar to the previous case, the optimization procedure involved the selection

of six target points from the specified polarization curve (the 96-hour red curve in

Figure 5.7). The chosen current densities, along with their corresponding exper-

imentally voltage values, as well as the average voltage estimated by the genetic

algorithm, are presented in Table 5.5.

With the optimized values of Table 5.4 the polarization curve obtained is com-

pared with the experimental points in Figure 5.8. The prediction exhibits a maxi-

mum error of just 1.1% which is deemed sufficient given the numerous parameters

requiring characterization and the questionable precision of certain data, such as tm.
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Chapter 6

Degradation parameter

characterization of HTPEMFC
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Upon the characterization of the fuel cell parameters not actively involved in

degradation has been completed based on its initial polarization curve, the next step

involves characterizing the unknown parameters governing degradation phenomena.

For this purpose, the methodology used in the previous chapter is customized to

the non-stationary situation which appears with degradation. Below, the newly

developed approach is explained as well as its differences to the original one.

6.1 Characterization process

Just as for the characterization of the fuel cell shown in the previous chapter, the

evaluation of the generated individuals involves comparing the obtained voltage to a

predefined target curve. It is important to note that, in the context of degradation

analysis, this reference curve differs from the typical experimentally obtained polar-

ization curve. Instead, it represents the voltage decline observed over time with the

fuel cell operating at a specified intensity. In other words, the investigation centers

on the temporal evolution of voltage at a given intensity point along the polarization

curve.

The initial strategy devised by Losantos et al. [46] effectively circumvented the

necessity of conducting fully-fledged 3D simulations for each genetic algorithm eval-

uation. This was accomplished through an iterative process that enabled the de-

coupling of fluid dynamics from electrochemical phenomena. Consequently, this

approach led to decreased computational load during the course of the GA opti-

mization process.

The novel procedure developed in this thesis for determining the optimal set

of degradation parameters introduces several complexities. The primary challenge

arises from the time-dependent nature of this new target curve. In Losantos et al.’s

methodology, the computation of each data point on the experimental curve oper-

ated independently of the other points. In other words, the information gathered

during the calculation of one data point did not influence the computation of sub-

sequent data points. However, in the context of evaluating fuel cell performance

degradation, the values derived at each moment in time are intrinsically linked to
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the fuel cell’s state in the preceding time interval. To avoid possible bias linked

to specific states, it becomes necessary to select a considerably greater quantity of

target points when contrasted with the approach employed for the non-degraded

fuel cell. Additionally, it is noteworthy that the selection of these points necessi-

tates meticulous consideration, choosing a more extensive set of points during the

initial stages of degradation. After the rate values for the degradation reactions

have stabilized, it becomes feasible to opt for larger time intervals.

Despite the utilization of a greater quantity of target points, it is also essential

to carry out interim calculations between these designated points. These intermedi-

ate computations involve advancing through the degradation reactions using smaller

time steps. To provide an example, suppose the first experimentally measured volt-

age data is after continuous operation for three hours. Beginning with the voltage

reading at time zero as the initial reference point, a time step of a few seconds is em-

ployed, followed by transitioning to one-minute intervals, and eventually extending

to time intervals of approximately four or five minutes in duration. This adaptive

step is of paramount importance in ensuring the reliability of results, especially dur-

ing the initial phases of the study (i.e., the first few hours of operation), where the

reaction rate values undergo sharp and sudden fluctuations. Inadequate manage-

ment of this initial phase could result in the accumulation of errors that affect the

accuracy of subsequent data points. Conversely, adopting an excessively tight ap-

proach with consistently small time increments throughout the whole of the process

would prove counterproductive due to the resulting high computational workload.

Therefore, the determination of both the quantity of target points and the judicious

selection of the adaptive time increments between them must be done carefully.

For a thorough comprehension of the procedure utilized to characterize the

degradation parameters, the following flow diagram is presented in Figure 6.1. It

is important to highlight that in the conducted case studies, an isothermal single

cell was considered, and a singular point on the polarization curve was employed to

characterize the parameters. This implies that all elements of the vector T [i] and

Iexp[i] have the same temperature and intensity value. Nevertheless, the code has

been developed to accommodate future utilization of temperature distributions and
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to enable characterization using the time evolution of voltage at several current den-

sity points. Notice also that the characterization parameters obtained in Chapter 5

are a known input in the procedure.
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Experimental

Fuel Cell test

Initial 3D

simulation

Genetic

Algorithm

Optimization

3D Simulation

Vsim[i] ≈ Vexp[i]

rsim[i] ≈ rexp[i]

Polarization curve points

conditions: Temperature

(T [i]), Inlet flow rates

(ṁ[i]), current (Iexp), time

(t) and Voltage (Vexp[i])

Average partial pressure

of reactive species:

(PO2 , PH2 , PH2O)[i]

Parameters:

k1, k2, k3, k4, k5, k6,

aPtOH , aPtO, aσm , bσm

Cell voltage: Vsim[i],

Current density

and partial pressure:

(ja, jc, PO2 , PH2 , PH2O)[i, j]

End

(Vexp, T )[i], (ja, jc)[i, j],

(PO2 , PH2 , PH2O)[i, j]

(Iexp, ṁ, T, t)[i]

(Iexp, Vexp, T, t, PO2 , PH2 , PH2O)[i]

k1, k2, k3, k4, k5, k6, aPtOH , aPtO, aσm , bσm

Yes
No

Figure 6.1: Flow diagram illustrating the degradation characterization process

through a combination of GA and CFD. Here, ”i” denotes the points over the time,

and ”j” represents the number of selected locations at each point.
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6.2 Case 1

As previously mentioned in Chapter 5, the decision to use the 160 ◦C-operating

fuel cell from [84] as a case study was not arbitrary. Instead, it was based on the

availability of data concerning the fuel cell’s performance degradation. Figure 6.2

provides a visual representation of the results obtained from a durability test, during

which the fuel cell was subjected to a constant current density of 3000 A/m2 for a

duration of 2400 hours.
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Figure 6.2: Experimental voltage loss. Data extracted from [84].

The data extracted from [84] displays a considerable amount of noise, likely

stemming from measurement inaccuracies or minor variations in the operating con-

ditions, such as flow rates or current density, which may have fluctuated during the

experiment. Employing these raw measurements directly for the purpose of charac-

terizing the unknown degradation parameters would not be an efficient approach.

This limitation arises because, in the context of a degradation process, the voltage
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should consistently exhibit a decline. However, due to these measurement errors,

the voltage readings display continuous fluctuations, including occasional increases

between consecutive data points, despite the overall trend indicating a decrease.

Hence, a more effective strategy was adopted, involving the use of a trend line gen-

erated from the experimental data rather than relying solely on the raw data points.

This approach provides a logical basis for establishing the target curve used for

analysis. At first glance, it may appear that using this trend line could introduce a

notable degree of error into the characterization process. Nevertheless, it is essential

to highlight that the voltage data depicted in Figure 6.2 operates within a rather

narrow range, spanning just 40mV .

When estimating parameters to characterize the polarization curve in the ab-

sence of degradation, only six target points were sufficient. The model employing

genetic algorithms was relatively straightforward in this scenario, as these points

were independent of each other. Conversely, in the context of the degradation pro-

cess, a significantly higher number of target points is required, with a greater density

of points in regions where voltage loss is more pronounced. Upon examining Fig-

ure 6.2, it becomes apparent that the fuel cell experiences an initial sharp decline in

voltage under normal operating conditions.

The selection of target times played a crucial role in determining the model’s

feasibility. As elucidated in the preceding chapter, the significance of striking a

balance between the accuracy of results obtained and the computational cost ex-

pended to attain them. In the context of degradation phenomena and the associated

time-dependency, a substantial computational load is inevitable due to the necessity

of numerous data points and the intermediate calculations required between them.

Following this principle, the inclusion of additional data points that only provide

redundant information about voltage loss is of no practical utility. Consequently,

when characterizing the degradation parameters, the data set spanning 2400 hours

was not considered, and the last part of the linear section was omitted from the

analysis. The characterization process utilising genetic algorithms included a total

of 32 data points. These data points ranged from the initial state at time zero, as
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previously obtained in the Chapter 5, up to a duration of 600 hours of operation,

and it was deemed sufficient in order to capture the linear trend achieved over time.

6.2.1 Carbon and platinum defect sites AC∗ and APt∗

As presented in Chapter 3 the processes of carbon oxidation do not occur uni-

formly across the catalytist layer. The same is true for platinum. Instead, the

structure exhibits specific disorder domains and structural surface defects that are

particularly susceptible to oxidation. These defects, referred to as C∗ and Pt∗, are

characterized by their surface areas per mole of defective carbon and platinum site,

denoted as AC∗ and APt∗ , respectively. In the majority of the reviewed studies,

the precise determination of these surface areas remains unclear due to the limited

availability of bibliographic information elucidating the methodologies for obtaining

these parameters.

Building upon the premise that platinum is a catalyst in these oxidation pro-

cesses, it was deemed reasonable to postulate that the surface area per mole of

defective platinum, designated as APt∗ , would be analogous to that of electrochem-

ical surface area (ECSA). Zhai et al. [90] observed a correspondence between the

gradual decrease in ECSA over time and the concurrent reduction in the specific

surface area of platinum particles. Notably, their investigation discerned that ap-

proximately 24% of the specific surface area exhibited electrochemical activity.

Henceforth, it is feasible to deduce the surface area susceptible to oxidation by

computing the surface area of the platinum particles, as shown below. To initiate this

calculation, it is necessary to ascertain the total volume occupied by the platinum

particles, denoted as VPt (6.1). This quantity can be determined based on the

loading mPt and the density ρPt of platinum and the electrode area AFC .

VPt =
mPtAFC

ρPt

(6.1)

The challenge encountered in this initial case study arises from the unavailability

of information regarding the dimensions of these particles, a contrast to the second

case where such data are accessible. Understanding the platinum particle size is
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crucial for determining the occupied area by the particles. Therefore, a pragmatic

approach was taken, involving the adoption of a typical mean radius value denoted

as rmean. Once this value is established, it is imperative to estimate the equivalent

number of platinum particles, designated asNmean (6.2), from the calculated volume.

In other words, this entails determining the number of particles that would exist if

they all shared the size of rmean.

Nmean =
3VPt

4πr3mean

(6.2)

Utilizing these estimated values, the surface area of the platinum spheres APt is

given by Equation (6.3). Given that the specific surface area employed in the site

balances presented in Chapter 3 is expressed per unit mol ( m2/mol), it is necessary

to divide APt by the mass of platinum (mPtAFC) and subsequently multiply it by

its molar weight, denoted as MPt (6.4). Assuming that the electrochemically active

surface area, and thus the area susceptible to oxidation, constitutes approximately

24% of the molar-specific surface area, we can calculate the defective platinum sites

surface area APt∗ as shown in Equation (6.5).

APt = 4πNmeanr
2
mean (6.3)

As,P t =
APt

mPtAFC

MPt (6.4)

APt∗ = 0.24As,P t (6.5)

In the determination of the surface area per mole of defective carbon, desig-

nated as AC∗ , we start with the assumption that the carbon subject to oxidation

encompasses the region surrounding the platinum particles. In simpler terms, the

surface area of carbon, represented as AC , coincides with that of platinum, APt, as

determined by Equation (6.3). In this context, computing the specific molar sur-

face area involves division and multiplication, respectively, by the mass and molar
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weight of carbon, as indicated in Equation (6.6). Furthermore, the carbon suscep-

tible to oxidation, referred to as AC∗ , is considered to be in direct contact with the

electrochemically active platinum, as detailed in Equation (6.7).

As,C =
APt

mCAFC

MC (6.6)

AC∗ = 0.24As,C (6.7)

6.2.2 Results

Upon establishing the values of the defective sites susceptible to corrosion, a

total of ten unknown parameters remain to be determined. These parameters are

essential to enable a precise analysis of the deterioration in fuel cell performance and

must be estimated. This task will be carried out by the newly developed method-

ology employing genetic algorithms. The chromosomes of the new individuals will

consist firstly of six constants, which represent the reaction rates within the corro-

sion model (k1-k6). Additionally, they will incorporate parameters representing the

electrochemical activity of the platinum surface oxides (aPtOH and aPtO) and the co-

efficients responsible for determining the slope of the empirical formula employed to

account for the loss of protonic conductivity (aσm and bσm). These ten parameters,

together with the specified search ranges are presented in Table 6.1. Also presented

there is the value obtained by the GA as the fittest individual.

As previously mentioned, during the characterization process of the fittest indi-

vidual, simulations were conducted for only 600 of the available 2400 hours of data.

However, to ensure the results’ accuracy and reliability, it became necessary to in-

troduce a considerable number of target points, particularly at the beginning of the

degradation process. This was essential to capture the fluctuations in the reactions

before reaching steady-state.
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Table 6.1: Degradation parameters results.

Parameter Range Value

k1 ∗ 1010 (mol m−2s−1) [0.1− 10] 2.50464179

k2 ∗ 105 (mol m−2s−1) [1− 12] 1.29256123

k3 ∗ 107 (mol m−2s−1) [0.5− 12] 1.18604944

k4 ∗ 108 (mol m−2s−1) [0.1− 13] 1.25510048

k5 ∗ 106 (mol m−2s−1) [1− 15] 5.67521172

k6 ∗ 105 (mol m−2s−1) [3− 15] 3.31824216

aPtOH [0− 1] 0.588769360

aPtO [0− 1] 0.0109102007

aσm ∗ 102 [0.1− 10] 3.43852140

bσm ∗ 105 [0.1− 10] 9.31129778
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Figure 6.3: Comparison of the experimental points with the voltage loss using the

parameters obtained in the characterization process.
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By incorporating these parameter values into the 3D fuel cell code, a voltage

drop has been calculated, closely matching the intended target, as depicted in Fig-

ure 6.3. The results exhibit consistent alignment with degradation, particularly in

the stabilized zone. This solution proves to be sufficiently accurate and shows the

capabilities of the modeling introduced in the present thesis.
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6.3 Case 2

Referring back to the preceding chapter, Figure 5.7 presented five polariza-

tion curves showcasing the variations in fuel cell performance while operating at

7000 A/m2 after 96, 192, 312, and 504 hours. However, owing to the inherent chal-

lenges in assessing the impact of the fuel cell activation process, the polarization

curve recorded at 96 hours was adopted as the baseline time point. Consequently,

the analysis considered degradation times to 96, 216, and 408 hours, as depicted in

Figure 6.4.

0 4000 8000 12000 16000 20000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
 Target points 
 0 h  96 h 
 216 h  408 h

V
o

lt
ag

e 
(V

)

Current density (A/m2)

Figure 6.4: Experimental polarization curves over time working at 7000 A/m2.

Among the values provided in these polarization curves for the characterization

process, our focus is solely on the data points corresponding to the fuel cell’s op-

eration at 7000 A/m2. These specific points have been visually isolated in Figure

6.5. Excluding the initial time point, a total of three target points are available
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for evaluating voltage loss. Unfortunately, this limited number of target points is

inadequate for achieving a precise characterization.
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Figure 6.5: Voltage experimental points.

It is worth highlighting that while four data points may be insufficient to estab-

lish a highly accurate voltage loss trend, they do suggest a linear pattern. Recalling

from the previous case, the initial sharp reduction in proton conductivity was at-

tributed to the phosphoric acid washout. Considering that the reference point in

this scenario is actually 96 hours, it is reasonable to assume that the observed linear

voltage trend signifies that the washout has already occurred, and we are presently

in a degradation phase characterized by a linear decline in voltage.

In addition to the voltage data, Zhai et al. have also provided information re-

garding the evolution of platinum particle sizes. In their study [90], they present a

histogram of Pt/C particle size distributions, revealing the mean particle radius at

time instants of 0, 100, 300, and 520 hours. It is important to note that time zero is

112



not considered, and there is a gap in the data as there is no information available for

the particle size distribution at 96 hours, which serves as the starting point. How-

ever, considering the marginal increase in radius every 4 hours and the necessity to

have not only the mean radius but also an initial particle size distribution, it has

been assumed that the particle size distribution at 100 hours corresponds to the

initial point at 96 hours. Thus, particle size information is known for 0, 200, and

420 hours, with their respective values illustrated in Figure 6.6.
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Figure 6.6: Mean radius experimental points.

Hence, in this case, two objective functions will be utilized: one concerning the

experimental voltage points and the other related to the mean radii. It is essential

to apply suitable weighting to these functions, as detailed in (6.8) and (6.9), in order

to ensure their equal influence within the genetic algorithm.

min
zX

i=1

sX

j=1

 
Vexp[i]− V [i, j]

Vexp[i]

!2

(6.8)
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min
zX

i=1

sX

j=1

 
rmean,exp[i]− rmean[i, j]

rmean,exp[i]

!2

(6.9)

Despite incorporating two objective functions, the availability of experimental

data points is notably limited, comprising only 3 voltage and 2 radius data points.

Moreover, assessing the mean radius of platinum particles within hydrogen fuel cells

presents several challenges, constituting a crucial aspect of catalyst characterization.

To begin with, platinum particles in hydrogen fuel cell catalysts are typically ex-

ceedingly small, residing within the nanometer scale. The accurate measurement of

particles at this scale necessitates the application of high-resolution techniques and

very specialized equipment. Additionally, platinum particles tend to agglomerate,

rendering the determination of individual particle size a more intricate task. Fur-

thermore, these particles can exhibit a wide-ranging size distribution, which further

complicates the measurement of mean radius. All this, coupled with the substantial

time dependence characterizing the degradation process, is anticipated to introduce

a significantly higher level of error compared to the other case.

6.3.1 Carbon and platinum defect sites AC∗ and APt∗

In contrast to the first case study, we have access to information regarding the

size of the platinum particles in this scenario. Consequently, when computing the

platinum surface area APt, there is no need for any assumptions: it can be accurately

determined using the expression (6.10). Moreover, as we are addressing degradation

phenomena related to the agglomeration of platinum particles here, this value will

be subject to updates over time in accordance with the evolution of the platinum

particle population Ni for each size class ri. The remainder of the calculations

employed in the previous case to obtain the defective surface areas APt∗ and AC∗

have been retained, with only the Equations (6.1), (6.2), and (6.3) being replaced

by (6.10).

APt = 4π
MX

i=1

Nir
2
i (6.10)
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6.3.2 Results

In this instance, to start with the characterization of the same set of ten degrada-

tion parameters as in Case 6.2 remains necessary. However, the complexity increases

as two additional variables must be introduced into the individuals in order to cap-

ture the mechanisms responsible for platinum particle enlargement. One is the rate

constant for the dissolution reaction, denoted as kdiss, which is associated with the

Ostwald ripening phenomenon. The other is the detachment constant, referred to as

kdet, which influences particle agglomeration due to the loss of carbon support. Con-

sequently, there is a necessity to characterize twelve parameters, while our dataset

consists of merely five experimental data points.

The utilization of genetic algorithms in optimization problems with limited data

introduces a set of challenges and potential errors that can affect the overall effec-

tiveness of the optimization process. The scarcity of data available for calibrating

the genetic algorithm leads to insufficient sampling. Consequently, the algorithm

may not capture the true variability within the problem and could converge towards

sub-optimal, incorrect, or unrealistic solutions. In such scenarios, over-fitting be-

comes a common pitfall. Over-fitting occurs when the genetic algorithm tries to

closely fit the model to the limited available data instead of identifying general pat-

terns. This can result in a solution that exhibits strong performance only with the

training data while failing to generalize effectively to other cases.

In this context of genetic algorithms applied to problems with limited data, there

are several strategies to mitigate potential errors. Firstly, if feasible, the generation

of synthetic data can be employed to expand the sample size, providing the genetic

algorithm with more data points to discern underlying patterns. Furthermore, lever-

aging prior knowledge of the problem becomes essential to guide the optimization

process effectively. This involves implementing techniques to mitigate over-fitting

by penalizing unrealistic solutions, such as identifying and excluding individuals ex-

hibiting excessive corrosion even though they fulfil the values for voltage and mean

platinum particle radius. Additionally, the initialization of populations in genetic

algorithms plays a pivotal role, particularly when dealing with sparse data. The

choice of initial solutions can significantly impact the final results, and a poor ini-
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tialization may lead to sub-optimal outcomes. In summary, the optimization process

using genetic algorithms in the presence of limited data is indeed challenging. How-

ever, the application of supplementary strategies and precautions can help mitigate

errors and enhance the prospects of identifying effective solutions.

Considering this limitation, it is acknowledged that the outcomes obtained in

this case study may exhibit certain inconsistencies owing to the limited availability

of experimental data. While these data are insufficient to conclusively ensure the

accuracy of the results, they are, nevertheless, adequate for validating the devel-

oped procedure, which constitutes the primary objective of this thesis. The values

obtained for the fittest individual, along with the employed parameter ranges, are

presented in Table 6.2.

Table 6.2: Degradation parameters results.

Parameter Range Value

k1 ∗ 1010 (mol m−2s−1) [0.1− 10] 6.18756085

k2 ∗ 107 (mol m−2s−1) [1− 12] 1.03672084

k3 ∗ 107 (mol m−2s−1) [0.5− 12] 4.58848707

k4 ∗ 108 (mol m−2s−1) [0.1− 13] 1.22453651

k5 ∗ 106 (mol m−2s−1) [1− 15] 3.86418860

k6 ∗ 106 (mol m−2s−1) [3− 15] 9.17084764

aPtOH [0− 1] 0.716162661

aPtO [0− 1] 0.122446784

aσm ∗ 103 [0.1− 10] 2.08870069

bσm ∗ 105 [0.1− 10] 3.81033799

kdiss ∗ 1012 (mol m−2s−1) [0.1− 10] 6.84573129

kdet ∗ 101 (mol m−2s−1) [1− 12] 2.79499657
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Feeding back these parameter values into the fuel cell code, the voltage loss

predicted is depicted in Figure 6.7, with the increase in the average radius of the

platinum particles shown in Figure 6.8. These results show good agreement consid-

ering the limited availability of experimental data points and the inherent margin

of error in the measurement of mean radius values, as previously explained.
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Figure 6.7: Comparison of the experimental points with the voltage loss using the

parameters obtained in the characterization process.
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Figure 6.8: Comparison of the experimental points with the growth of the mean ra-

dius of the platinum particles using the parameters obtained in the characterization

process.

118



Chapter 7

Results
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Upon the completion of the characterization of both stacks in Chapter 5, as well

as the determination of their degradation parameters in Chapter 6, in accordance

with the available experimental results, it is time to verify the correct functionality of

the developed code in OpenFOAM (free software). In order to fulfill this objective,

a substantial number of simulations are undertaken, involving alterations to the

operational conditions.

In both cases, the results are organized into two primary sections. The first

section comprises the values acquired for various parameters of the fuel cell after

operating at the designated operating points. The second section is dedicated to

a comprehensive study of degradation, considering different operating points. The

outcomes of these simulations are presented in this chapter.

7.1 Geometry

The articles providing experimental data for validating the models in case 1

[84] and case 2 [90] offer scant geometric information about the fuel cells (single

cells) used in the experiments. For case 1, it is mentioned that the MEA has an

area of 9 cm2. In case 2, it is specified that the MEA has an area of 7 cm2,

and the graphite plates have machined channels in the form of serpentine patterns.

Unfortunately, obtaining more detailed information about the geometry of these

single cells has proven challenging. Adequate literature providing both relevant

data and the geometry of the single cells used has not been found.

Ideally, an adequate knowledge of single cell geometries is crucial for the proper

application of the methods developed in the preceding chapters. However, while

geometric changes undoubtedly influence fuel cell behavior, they are not expected

to result in a dramatic shift. We acknowledge that the parameter values obtained will

inherently carry some degree of error due to this limitation. Furthermore, despite

the computational efficiency of the developed procedures, they remain resource-

intensive, requiring a substantial number of simulations for refinement. In this

context, it was highly desirable, if not necessary, to employ a relatively simple

geometry.
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The geometric configuration employed for both cases is illustrated in Figure

7.1. In this setup, hydrogen and air (or oxygen) are introduced through separate

channels. The anode region and its Gas Diffusion Layer (GDL) are depicted in red,

while the cathode region is represented in blue. The electrolyte separates the catalyst

layers where electrochemical reactions take place. The utilized mesh comprises a

total of 8288 hex cells. The dimensions of the single cells respects the size of the

MEAs in each case.

Figure 7.1: 3D fuel cell geometry

7.2 Case 1

Referencing Chapter 6, the degradation parameters for the first case were de-

termined based on a subset of 600 hours out of the available 2400 hours. Figure 7.2

illustrates the voltage loss observed operating at 3000A/m2 over the entire 2400-hour

duration. At first glance, the solution obtained for the period beyond the 600 hours

studied may appear to diverge significantly from the trend line employed during

the characterization process. However, a closer look demonstrates in fact a better

correspondence with the experimentally acquired data points. This is explained by

the particular shape of the trend function which has been chosen following math-
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ematical criteria that clearly did not sufficiently value the importance of the slope

of the curve in the stabilized section. And that slope, which is the quantity which

best represents the behavior of the fuel cell in this zone, is much better reproduced

by the numerical results, which include the physics of the device in the simulation.

And this physics appears to be well captured.
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Figure 7.2: Comparison of the experimental points with the voltage loss after 2400

hours using the parameters obtained in the characterization process at 3000 A/m2.

Following this assessment, the impact of this degradation on alternative oper-

ating points has been systematically examined. Figure 7.3 shows the polarization

curve obtained after subjecting the fuel cell to 2400 hours of operation at 3000A/m2.

This curve reveals a discernible performance loss, particularly at elevated current

densities, aligning with observations commonly encountered in experimental scenar-

ios.
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Figure 7.3: Polarization curve after operating the fuel cell for 2400 hours at

3000 A/m2.

The temporal evolution of certain parameters responsible for the decline in fuel

cell performance is illustrated below. Figure 7.4 portrays the reduction in protonic

conductivity, attributed to the diminishing concentration of phosphoric acid. This

curve exhibits a notably abrupt initial decline, which gradually stabilizes after the

initial 200 hours of operation. It is important to clarify that this curve does not

represent an actual loss of protonic conductivity due to the equation employed to

model this phenomenon, as presented in Chapter 3, lacks a scientifically grounded

foundation. To develop such a model, it would require comprehensive information

about the materials employed, porosity, temperature, and other pertinent variables.

Instead, an empirical, time-dependent equation was introduced.

Consequently, this equation is considered a fitting equation, as it indirectly

accounts for any underlying degradation phenomena not explicitly addressed in the

model. This clarifies the pronounced decrease in proton conductivity observed in
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this particular case, where the processes leading to platinum particle agglomeration

were not considered.
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Figure 7.4: Proton conductivity loss.

In addition to monitoring the time-dependent changes in proton conductivity,

the evolution of reaction rates governing various corrosion processes is also available.

These trends are presented in Figure 7.5. It is important to underscore that both the

rates of these reactions and the covering of carbon and platinum species, as depicted

below, should be regarded as potential values, rather than exclusive ones. This

is because all the reaction constants, denoted as ki, have been characterized, and

these reactions are interdependent. Therefore, what is illustrated represents only one

viable solution that aligns with the target voltages and yields results consistent with

actual fuel cell performance. In order to improve the reliability of the outcomes, it is

necessary to gather information concerning the composition of oxidized carbon and

platinum species within the catalyst layer post-degradation. In a broader context,

Figure 7.5 exhibits an initial increase in reaction rates, primarily due to the absence
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of oxidized species during the initial phase. As the degradation progresses, these

rates gradually decrease.
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Figure 7.5: Time evolution of corrosion reaction rates with the fuel cell operating

at 3000 A/m2.

To evaluate the impact of carbon corrosion and platinum oxidation on the com-

position of the catalyst layer, Figure 7.6 provides an in-depth view of how the molar

fractions of both carbon (as depicted in Figure 7.6a) and platinum species (as shown

in Figure 7.6b) evolve over time. Notably, the free species, denoted as θC and θPt,

exhibit a consistent decline. This initial decrease can be attributed to the forma-

tion of unstable oxides, namely, θCOH and θPtOH . However, it is worth noting that

these oxides swiftly reach their equilibrium concentration, while the stable oxides,

represented by θCO and θPtO, increase as the free species gradually diminish.
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Figure 7.6: Temporal evolution of molar fractions of carbon, platinum and their

oxides with the fuel cell operating at 3000 A/m2.
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The curves depicted above show the average values on the catalyt layer. How-

ever, it is important to remember that current density exhibits a distribution along

both the electrolyte and catalytic layers. This distribution is visualized in Figure

7.7.

Figure 7.7: Current density distribution across electrolyte after 2400 hours at

3000 A/m2.

The presence of this intensity gradient leads to non-uniform corrosion of the car-

bon support and oxidation of the platinum particles. An analysis of Figures 7.8 and

7.9 reveals that, at lower current densities, a predisposition exists for the formation

of surface oxides. While the platinum oxide formation θPtO exhibits a more uniform

distribution along the catalytic layer (Figure 7.9c), the platinum hydroxyls θPtOH

(Figure 7.9b), unstable carbon oxide θCOH (Figure 7.8b) and stable θCO carbon ox-

ide (Figure 7.8c) display a higher concentration in the region corresponding to the

exit of reactive gases, coinciding with the lower current density zone (Figure 7.7). In

comparison to free carbon θC and platinum θPt species, the molar concentrations of
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oxides are significantly lower, hence Figures 7.8a and 7.9a present a nearly uniform

distribution with a slightly increased concentration at the inlet.
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(a) Free carbon

(b) Unstable carbon oxide

(c) Stable carbon oxide

Figure 7.8: Distribution of carbon related molar fractions across cathode catalyst

layer after 2400 hours at 3000 A/m2.
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(a) Free platinum

(b) Unstable platinum oxide

(c) Stable platinum oxide

Figure 7.9: Distribution of platinum related molar fractions across cathode catalyst

layer after 2400 hours at 3000 A/m2.
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After conducting an examination of the degradation effects at the operating

point utilized for characterization, a subsequent degradation study has been un-

dertaken to qualitatively assess the proper functionality of the developed code. To

achieve this, the initial assumption posits the independence of all characterized pa-

rameters from the current density at which the fuel cell operates. This assumption

enables an analysis of the influence of current density on various parameters of the

fuel cell.

Figures 7.10 and 7.11 show, respectively, the temporal evolution of the different

corrosion reaction rates and the formation of distinct platinum and carbon species

within the catalyst layer of the cathode. Each line in these graphs represents the

values of these variables, under the assumption that the fuel cell operates at different

current densities. In principle, one would expect these parameters to exhibit a

consistent trend with variations in current density—that is, an increase or decrease

in the parameters corresponding to an increase in current density. However, this

is not universally observed. For instance, in Figure 7.10b, it is evident that as the

current density rises, the rate of reaction one increases at low densities, but beyond

3000A/m2, this rate starts to decrease.

The observed trend may be attributed to the lack of realism in the implemented

modeling in this case where the effect of platinum particle size has not been con-

sidered. However, upon analyzing the equations in Chapter 3, which describe the

corrosion reaction rates (3.23 to 3.28) and the conservation equations for carbon and

platinum (3.14 to 3.19), the intricate relationships among these parameters become

evident. On one hand, the reaction rates involve the difference between forward and

backward reactions, characterized by exponential terms and dependent on overpo-

tentials, temperatures, and concentrations of carbon and platinum species within

the catalyst layer. On the other hand, the concentrations of carbon and platinum

species are dependent on the values of these reactions. For instance, the covering

of unstable carbon oxide, θCOH , relies on the rate at which it forms according to

reaction 1 (3.1), as well as the rates at which it diminishes, either to form passive

carbon oxides θCO (3.2) or to turn into carbon dioxide (3.5 and 3.6).
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0 500 1000 1500 2000 2500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

v 4
 (

m
o

l m
-2

s-1
)

Time (h)

x10-11
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Figure 7.10: Time evolution of the different reaction rates with the fuel cell operating

at different current densities.
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Figure 7.11: Time evolution of carbon and platinum fraction with the fuel cell

operating at different current densities.
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Figure 7.12 presents additional noteworthy insights drawn from Figures 7.11d

and 7.11f. Specifically, it illustrates the platinum oxide covering as a function of

current density after 2400 hours. As discussed earlier in Chapter 3, at low and

medium potentials (high current densities), the predominant surface species are

the unstable platinum oxides (PtOH), while the stable oxide (PtO) is favored at

low current densities. This observation aligns with the behavior depicted in Figure

7.12, highlighting the model’s reliability and the plausibility of its characterized

parameters.
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Figure 7.12: Evolution of platinum oxide molar fractions with the fuel cell operating

at different current densities for 2400 hours.

The characterization process incorporated data with the voltage loss already sta-

bilized, a phenomenon observed after approximately 400 hours. Furthermore, the

test conducted at 2400 hours demonstrated a favorable alignment with the experi-

mental data, indicating that the code can be effectively utilized with the obtained

parameters to analyze the effects of degradation over an extended timeframe. The
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Figure 7.13 depicts the voltage loss over a period of 9000 hours at a current den-

sity of 3000 A/m2. The observed outcome aligns with the expected linear decline

indicated in previous graphs.
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Figure 7.13: Voltage loss after operating the fuel cell for 9000 h at current densities

of 3000 A/m2.

For a more thorough evaluation of the correct performance of the code, Figure

7.14 presents the polarization curves after 9000 hours of operation at current densi-

ties of 247 and 7679A/m2. The obtained results exhibit a qualitatively appropriate

code performance. The degradation effect manifests as a higher voltage loss at higher

current densities, and the degradation is more pronounced when the fuel cell oper-

ates at lower current densities. However, quantitatively, the difference between the

two degraded curves (14.34mV after 9000 hours) should be larger. This discrepancy

could be attributed, for instance, to empirical adjustments made to model the loss

of phosphoric acid or the potential dependence of some characterized parameters on

current density.
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Figure 7.14: Comparison of the polarization curve after operating the fuel cell for

9000 h at current densities of 247 and 7679 A/m2.

Figure 7.15 illustrates an alternative visualization of the degradation effects on

the polarization curve. These columns present the voltage drop values corresponding

to the operating points of 247, 3000 and 7679 A/m2 after 9000 hours of fuel cell

operation at different current densities. Once again, for low current densities (blue

colums), the voltage loss is minimal, approximately 32 mV, in contrast to 104 mV

at medium current densities (red) and a more considerable 224 mV at high current

densities (green).

Finally, for completeness, Figure 7.16 shows the distribution of gas flows and

pressure in the single cell, aswell as the current density on the electrolyte at the end

of the experimental period, after 2400 hours at 3000A/m2. All the magnitudes have

the expected distribution.

In summary of this case study, the obtained voltage loss demonstrates strong

agreement with experimental results at 3000 A/m2 (Figure 7.2). Furthermore, the
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Figure 7.15: Comparison of the corresponding voltage loss 247, 3000 and 7679A/m2

after operating the fuel cell for 9000 h at different current densities.

impact of this loss is more pronounced at higher current densities, regardless of the

operating point at which the fuel cell underwent degradation (Figure 7.3). Con-

cerning the oxidation processes in the catalyst layer, the coverings of carbon and

platinum exhibit reasonable values (Figure 7.6). Additionally, there is an evolution

of platinum oxides with current density consistent with existing literature [88], in-

dicating a greater formation of unstable platinum oxides (PtOH) at low potentials,

while stable platinum oxides (PtO) predominate at high potentials (Figure 7.12).

Despite the fuel cell experiencing higher degradation when operated at a higher

voltage (lower current density), the observed difference compared to operation at

higher current densities is less pronounced than expected (Figures 7.14 and 7.15).

In addition, an unspecific trend of corrosion reaction rates and platinum and carbon

covering with current density is detected (Figures 7.10 and 7.11). It is difficult to

know whether this phenomenon could occur in reality, due to the complicated rela-
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Figure 7.16: Overview of results on geometry: Velocity vectors (m/s) and current

lines within the cathode channel, magnitude of the current density distribution cross-

ing the electrolyte (A/m2) and anode pressure (Pa) after 2400 hours at 3000A/m2.

tionship between the corrosion parameters, or whether it stems from an incomplete

model lacking consideration of factors leading to an increase in platinum particle

size. This incompleteness is also manifested in the significant loss of protonic con-

ductivity depicted in Figure 7.4, attributed to the utilization of a fitting equation

rather than a physical model.

138



7.3 Case 2

In this second case, results beyond the 420 characterized hours will not be pre-

sented, consistent with the approach taken in the previous case. This decision stems

from the fact that the characterization has been conducted based on the available

experimental results, which are insufficient and are encompassed in the initial tran-

sient section of the fuel cell. Upon examining Figures 6.7 and 6.8, it becomes evident

that the voltage and the average radius exhibit a clear linear trend of decrease and

increase, respectively. Unlike the voltage loss observed in case 1 (Figure 7.2), this

linear trend does not stabilize. This suggests that the parameters obtained in the

characterization, while effective in capturing the initial degradation process, may

not sufficiently estimate the stabilized trend as time progresses.
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Figure 7.17: Proton conductivity loss.

Just like in the other case, the reduction in protonic conductivity is visualized in

Figure 7.17. However, this loss is notably smoother compared to the one observed
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in the previous case (Figure 7.4). The enhanced smoothness can be attributed to

the incorporation of platinum particle agglomeration phenomena, which mitigates

the impact of the fitting equation used to model the loss of phosphoric acid.
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Figure 7.18: Time evolution of corrosion reaction rates with the fuel cell operating

at 7000 A/m2.

Figures 7.18 and 7.19 illustrate, respectively, the evolution of corrosion rates and

the covering of carbon and platinum species. These curves exhibit patterns similar

to those observed in the previous case. The reaction rates reach their peak values

initially, followed by a subsequent decrease and eventual stabilization over time. On

the other hand, the concentrations of free carbon and platinum species diminish as

their corresponding oxidized species are formed. The unstable species, θCOH and

θPtOH , undergo an initial transient phase before reaching equilibrium concentration.
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Figure 7.19: Temporal evolution of molar fractions of carbon, platinum and their

oxides with the fuel cell operating at 7000 A/m2.
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However, the phenomenon observed in Figure 7.19b is noteworthy. Initially,

there is a sudden reduction in free platinum (θPt) due to a peak in the formation of

θPtOH , followed by subsequent recovery. This ”deoxidation” of platinum finds justifi-

cation in corrosion reaction 6 (3.6), as explained in Chapter 3. A high concentration

of PtOH promotes reactions where this species acts as a reactant, specifically re-

actions 4 (3.4) and 6. In this latter reaction, the complete oxidation of COH into

CO2 occurs, reacting with the absorbed species PtOH and liberating free platinum

once again.

Similar to the previous case, Figures 7.21 and 7.22 illustrate the distribution of

various carbon and platinum species along the catalytic layer of the cathode after 420

hours of operation at 7000A/m2. Once again, it is noticeable that the formation of

both unstable (Figures 7.21b and 7.22b) and stable oxides (Figures 7.21c and 7.22c)

is more prominent in the region corresponding to the gas outlet, where the current

density (Figure 7.20) is lower.

Figure 7.20: Current density distribution across electrolyte after 420 hours at

7000 A/m2.
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(a) Free carbon

(b) Unstable carbon oxide

(c) Stable carbon oxide

Figure 7.21: Distribution of carbon related molar fractions across cathode catalyst

layer after 420 hours at 7000 A/m2.
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(a) Free platinum

(b) Unstable platinum oxide

(c) Stable platinum oxide

Figure 7.22: Distribution of platinum related molar fractions across cathode catalyst

layer after 420 hours at 7000 A/m2.
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In Figure 6.8 of Chapter 6, the temporal evolution of the mean radius was

presented. However, it is also insightful to visualize the evolution of the various

existing classes of radius ri. Figure 7.23 details the radius distribution of platinum

particles at time points 0, 200, and 420 hours. As time advances, the relative

population of smaller radius size classes decreases, while concurrently, particles with

larger radii arise.
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Figure 7.23: Time evolution of the population of each ri radius class with the fuel

cell operating at 7000 A/m2.

The mergin process and in general the agglomeration of platinum particles tend

to diminish their surface and at the same time there total number. So, as fuel cell

performance experiences a decline, the count of platinum particles diminishes, as

visually represented in the Figure 7.24.

Following the presentation of degradation effects at the characterized operating

point, a degradation study has been conducted to evaluate the code’s performance

and identify differences compared to the previous case. These distinctions arise
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Figure 7.24: Time evolution of the platinum particles number with the fuel cell

operating at 7000 A/m2.

from the inclusion of the redeposition and agglomeration phenomena of platinum

particles.

Figures 7.25 and 7.26 once again illustrate the temporal evolution of corrosion

reaction rates and concentrations of various carbon and platinum species, respec-

tively. Unlike previously observed, in this case the curves obtained do follow a trend

according to the direction of variation of the current density.

Moreover, Figure 7.27 is introduced, showing the evolution of the average ra-

dius with increasing current density. The observed trend aligns qualitatively with

the one expected: as the voltage increases (corresponding to lower current density),

degradation phenomena intensify, leading to larger platinum particle sizes and, con-

sequently, a reduction in electrochemically active surface area.
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Figure 7.25: Time evolution of the different reaction rates with the fuel cell operating

at different current densities.
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Figure 7.26: Time evolution of carbon and platinum fraction with the fuel cell

operating at different current densities.
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Figure 7.27: Platinum particle growth at different current densities.

Two more graphs are next presented. On the one hand, the polarization curves

after 420 hours of operation at current densities of 1933 and 13960 A/m2 are pre-

sented in Figure 7.28. On the other hand, Figure 7.29 shows the voltage loss of

the points at 1933, 7000 and 13960 A/m2 after 420 hours of fuel cell operation at

different current densities. A similar pattern is observed as in the previous case,

where the polarization curve operating at lower current densities experiences a more

pronounced voltage loss. While regardless of the operating point this loss has a

greater influence at higher current densities.
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Figure 7.28: Comparison of the polarization curve after operating the fuel cell for

420 h at current densities of 1933 and 13960 A/m2.

Finally, as it was shown in case 1, the distribution of gas flows and pressure in

the single cell is presented in Figure 7.30 at the end of the experimental period, after

420 hours at 7000 A/m2. All the distributions are as expected. In the same figure,

the molar fraction distribution of PtOH on the cathode catalyst layer is depicted.

In summary, this case shares similar strengths with the previous one and, in

addition, shows some advantages related to the inclusion of the new models. This is

reflected in increased physical and electrochemical information of the fuel cell and

in a consistent evolution of corrosion rates and coatings of carbons and platinum

with the operating current density, as well as a in a smoothed proton conductivity

evolution.
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Figure 7.29: Comparison of the corresponding voltage loss 1933, 7000 and

13960 A/m2 after operating the fuel cell for 420 h at different current densities.
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Figure 7.30: Overview of results on geometry: Velocity vectors (m/s) and current

lines within the cathode channel, PtOH molar fraction distribution on the cathode

catalyst layer and anode pressure (Pa) after 420 hours at 7000 A/m2.
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Chapter 8

Conclusions and future work
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The objective of this thesis has been the modeling and creation of a numerical

simulation code to investigate the degradation processes in high-temperature pro-

ton exchange membrane fuel cells. This goal has been successfully accomplished.

For fulfilling this aim, it has been necessary the formulation of a novel method-

ology devised to characterize unknown electrochemical parameters, using genetic

algorithms.

The utility of this tool is undeniable, as the degradation of these devices stands

as a principal limiting factor hindering their widespread deployment. The developed

models enable the study of these degradation phenomena and the identification of

operating conditions that exacerbate them, consequently leading to a substantial

reduction in the number of experiments required.

Despite its potential benefits for fuel cell research, this tool exhibits certain

limitations. The most noteworthy constraint lies in the time-dependent nature of the

model, leading to a substantial increase in computational costs, especially during the

process of identifying degradation parameters. Another limitation stems from the

requirement for experimental data for this characterization, which can be challenging

to obtain, as demonstrated in the second case study. However, the obtained results

underscore the robustness of the developed model, wherein twelve parameters were

identified from only 5 experimental points (three voltage and two platinum particle

mean radius), proving its effectiveness.

As this doctoral thesis concludes, several opportunities have been explored to

advance both the existing model and potential areas for future research. Firstly, the

current research could be extended by conducting a more detailed investigation into

the effects of exposing the fuel cell to more challenging operating conditions, such as

start-up and shutdown. These situations are critical for these devices, as the voltage

spikes observed in the results of Chapter 7 contribute to further deterioration in

performance. Furthermore, the need for a more sophisticated model to accurately

represent damage to the anode catalyst layer is necessary under those stressing

conditions. This enhancement would enable a more comprehensive study of the

H2 starvation phenomenon that typically occurs during these transient operating

conditions.
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Another interesting direction for future work involves implementing the newly

developed methodology in the analysis of High-Temperature Proton Exchange Mem-

brane (HTPEM) fuel cell stacks. This extension promises a more exhaustive eval-

uation of their implications and practical application. The potential enhancements

and expansions of the current model could significantly amplify the impact of this

research, making valuable contributions to the ongoing advancement of knowledge

in the field of hydrogen fuel cells. Finally, the acquired expertise in degradation

phenomena opens up the possibility of extending this research to other electrochem-

ical devices, such as flow batteries, that exhibit shared phenomena such as carbon

corrosion.
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Conclusiones y trabajo futuro
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El propósito de esta tesis ha sido la creación y modelización de un código de

simulación numérica que permita estudiar los fenomenos de degradación en pilas

de combustible de membrana de intercambio protónico de alta temperatura. De

acuerdo con los resultados obtenidos este propósito ha sido satisfactoriamente al-

canzado. Para ello, ha sido necesario el desarrollo de una novedosa metodoloǵıa

ideada para caracterizar parámetros electroqúımicos desconocidos, utilizando algo-

ritmos genéticos.

Esta herramienta resulta de gran utilidad, ya que la degradación de estos dis-

positivos representa uno de los principales obstáculos que dificultan su implantación

generalizada. Los modelos desarrollados posibilitan el análisis exhaustivo de es-

tos procesos de degradación, facilitando la identificación de las condiciones de fun-

cionamiento que los intensifican. Esto, a su vez, conlleva a una notable disminución

del número de experimentos necesarios.

A pesar de los notables beneficios que aporta a la investigación sobre pilas de

combustible, esta herramienta presenta ciertas limitaciones. La más destacada rad-

ica en la naturaleza temporal del modelo, lo que resulta en un aumento considerable

del coste computacional, especialmente durante el proceso de identificación de los

parámetros de degradación. Otra limitación deriva de la necesidad de datos exper-

imentales para llevar a cabo este proceso de caracterización, los cuales pueden ser

dif́ıciles de obtener, como se muestra en el segundo caso de estudio. Sin embargo, los

resultados obtenidos resaltan la robustez del modelo desarrollado, en el que se identi-

ficaron doce parámetros a partir de sólo cinco puntos experimentales disponibles(tres

de voltaje y dos de radio medio de part́ıculas de platino), demostrando aśı su eficacia.

Según concluye esta tesis doctoral, se identifican diversas oportunidades para

avanzar en futuras investigaciones tanto dentro del marco del modelo existente como

en otras áreas relacionadas. En primer lugar, seŕıa beneficioso ampliar el trabajo

actual mediante una investigación más detallada sobre los efectos de someter la pila

de combustible a condiciones de funcionamiento más exigentes, como arranques y

paradas. Estas situaciones son cŕıticas para estos dispositivos, ya que los picos de

tensión observados en los resultados del caṕıtulo 7 contribuyen significativamente

al deterioro del rendimiento. Además, se requiere el desarrollo de un modelo más
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sofisticado que represente con precisión los daños sufridos por la capa cataĺıtica

del ánodo en esas condiciones de tensión. Esta mejora permitiŕıa un estudio más

exhaustivo del fenómeno de escasez (starvation) de H2 que suele ocurrir durante

estas condiciones transitorias de funcionamiento.

Otra dirección interesante para futuros trabajos consiste en la aplicación de esta

metodoloǵıa al análisis de un conjunto de monoceldas (stack) de pilas de combustible

de membrana de intercambio protónico de alta temperatura (HTPEM). Esta am-

pliación promete una evaluación más exhaustiva de sus implicaciones y aplicaciones

prácticas. Las posibles mejoras y ampliaciones del modelo actual podŕıan aumentar

significativamente el impacto de esta investigación, aportando valiosas contribu-

ciones al avance continuo del conocimiento en el campo de las pilas de hidrógeno.

Por último, los conocimientos adquiridos sobre los fenómenos de degradación abren

la posibilidad de ampliar esta investigación a otros dispositivos electroqúımicos,

como las bateŕıas de flujo, que presentan fenómenos compartidos, como la corrosión

del carbono.
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[56] Raúl Losantos, Manuel Montiel, Radu Mustata, Fernando Zorrilla, and Luis

Valiño. Parameter characterization of ht-pemfc stack with a non-isothermal

3d model. Electrochimica Acta, page 142930, 8 2023.

[57] L. Valiño, R. Mustata, and L. Dueñas. Consistent modeling of a single pem
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APPENDIX:

Details on the procedure of HT-
PEMFC characterization
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In Chapter 5, a generic overview of the process for solving the inverse problem

of determining the unknown electrochemical parameters of a fuel cell was presented.

This appendix describes some interesting details about the procedure.

It is reminded that our objective is to obtain the values of the set of electro-

chemical parameters of a HTPEMFC that best align with the available experimental

data. For this, the approach developed by Losantos et al. [46] is employed.

This methodology is numerically based, so there is no need of invasive measure-

ments. It efficiently identifies electrochemical parameters for 3D fuel cell models

by integrating computational simulation tools with genetic algorithms. To mitigate

the computational burden of each evaluation by the optimization method, fluid dy-

namics has been decoupled from electrochemistry through an iterative process. The

optimization goal is to determine a combination of the electrochemical parameters

described in Chapter 2 that aligns the simulated polarization curve points with the

experimentally obtained data.

To accomplish this, genetic algorithms are utilized. These are computational

evolutionary techniques employed for optimization problems, relying on the selection

of the most suitable individuals (fittest). Within the implemented system, each

individual of the population represents a potential solution, consisting of a set of

parameter values to be optimized. For instance, within the Butler-Volmer model, an

individual has specific values for αa,αc, j
ref
a,0 , and jrefc,0 . There is a range of physical

admissible values. The target is to select the best individual, which is the set of

four dimensions that provides the most accurate approximation of the experimental

voltages.

The challenge of implementing this evolutionary process with 3D models stems

from the computational burden associated with conducting a numerical simulation

for each evaluated individual, making it time-prohibitive. To address this limitation,

an iterative process has been introduced, separating the resolution of fluid dynamics

from electrochemistry during each individual’s evaluation by the genetic algorithm.

This approach is sensible since all the parameters to be characterized are electro-

chemical. During the evaluation of each individual, only the non-flow equations

need to be solved, as the flow field remains constant. Once the optimal individual is
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identified, the fluid dynamics is updated through a complete 3D simulation. With

the refreshed fluid fields, a new search is initiated using the genetic algorithm. This

iterative process continues until the simulated and experimental voltages converge.

Therefore, in order to carry out the characterization process, it is essential to

have experimental data from the fuel cell operation. This includes providing the

polarization curve, along with its steady-state operating conditions. Additionally,

information such as flow rate, reagents concentration, and temperature values must

also be supplied. Given the significance of experimental measurements, it is cru-

cial to conduct data collection with suitable equipment under optimal conditions.

Furthermore, the characteristics and properties of the fuel cell, including geometric

data and electrochemical properties of the catalyst layers and the membrane must

be gathered.

The methodology for the general iteration step is discussed below. A slight dif-

ference exists between the initial and subsequent iterations. In the first iteration,

given the intensity, a uniform distribution of current densities inside each catalyst

layer is assumed (See Figure A.1). The other information needed to start the pro-

cedure is the values for the unknown parameters, which are chosen as the ones in

the middle of their range. These values must adhere to the parameter type but lack

reliability. In the subsequent iterations, the optimal individual obtained during the

previous iteration of the genetic algorithm model is taken as a starting point. In

other words, the individual that achieved the most accurate voltage fit relative to the

target polarization curve. Utilizing the parameters of these individuals alongside the

data extracted from experimental measurements, the equations presented in Chap-

ter 2 can be successfully resolved. As previously stated, in the ongoing iteration,

the field of fluid dynamics remains frozen. The genetic algorithm then assesses the

individuals by computing their respective voltages for each point evaluated along

the polarization curve.
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Figure A.1 illustrates the interconnections among the physical magnitudes, rel-

evant parameters, and the equations presented in Chapter 2. These elements collec-

tively contribute to the voltage numerical calculation as explained below:

ja, jc ηa, ηc
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(2
.1

),
 (

2.
2)

, (
2.

3)
(2.6), (2.7), (2.23)

B
ou

nd
ar

y 
co

nd
iti

on
s

(2.4), (2.5)

(2.4)

Figure A.1: Diagram illustrating the interconnection between physical magnitudes

and relevant parameters [46].

On one hand, with the flow fixed, the partial pressures of the gases and the sur-

face current densities, denoted as ja and jc, within the catalyst layers also remain

fixed. The correlation between these two sets of quantities is directly established by

means of the fluid dynamics equations (2.1) to (2.3), as well as the associated bound-

ary conditions. Given these assumptions of constant values, the voltage V would

exclusively rely on the electrochemical parameters as outlined in the electrochemi-

cal equations (2.4) to (2.7), and (2.23). Consequently, the genetic algorithm’s task

is limited to solving the electrochemical equations to test the individuals, thereby

expediting the computational process.

For every analyzed point along the polarization curve, the voltage V is expected

to exhibit uniformity across the electrodes. However, within this characterization

model, this uniformity cannot be ensured owing to the fixed distribution of current

densities j, which is assumed for the initial step (this j distribution changes in the
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iteritive process to be finally compatible with a uniform V distribution in the catalyst

layer). As a result, for each voltage point, every individual exhibits a distinct voltage

distribution. Once the computations for the different individuals have concluded,

the one that reduces the disparity between the voltage distribution across all the

studied points along the polarization curve and their corresponding experimental

values is selected as the optimal choice according to (A.1).

min
zX

i=1

sX

j=1

(Vexp[i]− V [i, j])2 (A.1)

Where z represents the quantity of points defining the target polarization curve,

whereas s designates the number of selected geometrical points within the catalytic

layer for discretized evaluation at each point z of the curve. In this context, Vexp[i]

denotes the value of fuel cell voltage corresponding to each point along the experi-

mental polarization curve. On the other hand, for every individual, V [i, j] contains

the comprehensive set of calculated voltage values.

To facilitate the understanding of the voltage distribution at each point along the

polarization curve, Figure A.2 is presented. This figure shows the selection of eight

specific geometrical points (s = 8) within the catalyst layer. To identify locations

with representative values, the software organizes the cathode catalyst layer data

based on the oxygen partial pressure PO2 . With this aim in mind, the range of

partial pressure values within the catalyst layer is partitioned into the number s of

intervals, in this case eight. Subsequently, the location exhibiting the most optimal

local convergence is chosen from each interval. Given the smooth distribution of

values along the catalyst layer, this is a perfectly valid criterion, as confirmed by

the Losantos et al.’s results.
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Figure A.2: Current density distribution in the catalyst layer and the eight selected

locations (s = 8) for the genetic algorithm voltage calculation. Image extracted

from [46].

Figures A.3 and A.4 reflect the agreement between the voltages simulated by the

model and the corresponding experimental results for two different individuals ob-

tained in different generations of a standard case. The study conducted by Losantos

et al. encompassed nine data points along the polarization curve (z = 9) and eight

samples per point (s = 8). Both illustrations offer a comparison of an individual’s

quality based on the generation in which it was originated.

As it can be seen, the individual presented in Figure A.3, acquired during the

early generations of the genetic algorithm, exhibits relatively inferior performance.

Genetic algorithms produce new population of individuals by reproducing and mu-

tating the previous good solutions. This process tends to bring subsequent genera-

tions closer to better solutions.
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Figure A.3: Calculated voltage (V [i, j]) and experimental target values Vexp[i]. Early

stage in the process. Data extracted from [46].

This assertion is affirmed upon observing Figure A.4, which corresponds to the

optimal individual from the final generation. For every point analyzed along the

polarization curve, in both figures, the horizontal line illustrates the distribution

of current density values within the catalyst layer for a target voltage value. The

crosses represent the values obtained through the genetic algorithm, while the blue

markers show the values sharing the same experimental voltage.
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Figure A.4: Calculated voltage (V [i, j]) and experimental target values Vexp[i]. Upon

completion of the process. Data extracted from [46].

Clearly, the utilization of a larger number of location points results in an im-

proved quality estimation of individuals. Hence, the genetic algorithm incorporates

an estimation tool, that enables it to attain a solution that approaches experimental

values more precisely by increasing the number of location points s. Nevertheless,

it is essential to note that increasing the value of s translates to an increase in cal-

culation time. Consequently, the decision regarding the ideal number of locations

necessitates a delicate equilibrium between the desired precision level and compu-

tational time. This choice must also factor in the operational conditions of the fuel

cell, owing to the non-linear nature of the electrochemical equations, which ampli-

fies optimization errors. The magnitude of variations (gradients) across the catalyst

layers directly influences the number of required locations to mitigate the impact

of these errors. However, this is not a concern in PEMFCs, as the distribution of
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physical magnitudes within the catalyst layers exhibits a high degree of smoothness,

as mentioned above.

The reliability of the outcomes furnished by the genetic algorithm also relies

on the match between the simulated current densities and species partial pressures

with their experimental equivalents. Hence, the simulations are conducted under the

initial condition that the calculated intensity averaged coincides with the measured

intensity at every point along the experimental polarization curve. Moreover, the

selection of the number of simulated points along the polarization curve must also

be made cautiously. Experimental data are susceptible to errors and deviations

arising from the conditions in which the measurement process occurs. Given the

presence of such data inaccuracies, increasing the volume of data beyond a certain

point becomes counterproductive.
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