TESIS DE LA UNIVERSIDAD

DE ZARAGOZA

David Campillo Pérez

2024

419

Study of the Reactivity of Organometallic Platinum and Palladium Complexes with Basic Properties Towards Electrophilic Species ANEXO

Prensas de la Universidad Universidad Zaragoza

ISSN 2254-7606

Universidad de Zaragoza Servicio de Publicaciones

ISSN 2254-7606

Tesis Doctoral

STUDY OF THE REACTIVITY OF ORGANOMETALLIC PLATINUM AND PALLADIUM COMPLEXES WITH BASIC PROPERTIES TOWARDS ELECTROPHILIC SPECIES ANEXO

Autor

David Campillo Pérez

Director/es

Martín Tello, Antonio Jesús

UNIVERSIDAD DE ZARAGOZA Escuela de Doctorado

Programa de Doctorado en Química Inorgánica

2022

Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Supporting Information

Doctoral Thesis

Study of the Reactivity of Organometallic Platinum and Palladium Complexes with Basic Properties Towards Electrophilic Species

David Campillo Pérez

2022

Supporting Information

for

Chapter 1. Organometallic complexes with M-M' bonds as intermediates for bimetallic catalysis.

•	1. Crystal data and structural refinement	S2
•	2. IR, NMR and MS spectra of complexes	S 8
•	3. Computational details	S50
•	4. Comparison of relevant geometrical parameters obtained	S51
	from the X-Ray structure determinations and DFT calculations	
•	5. QTAIM analyses of the heteropolynuclear complexes	S57
•	6. References	S65

1. Crystal data and structural refinement

Crystal data and other details of the structure analyses are presented in Tables S1.1 and S1.2. Suitable crystals for X-Ray diffraction studies were obtained by slow diffusion of *n*-hexane into concentrated solutions of the complexes in 3 mL of CH₂Cl₂, CHCl₃ or acetone. Crystals were mounted at the end of a quartz fibre. The radiation used in all cases was graphite monochromated Mo-K_{α} (λ = 71.073 pm). X-Ray intensity data were collected on an Oxford Diffraction Xcalibur diffractometer. The diffraction frames were integrated and corrected from absorption by using the CrysAlis RED program.¹ The structures were solved by Patterson and Fourier methods and refined by full-matrix least squares on F^2 with SHELXL.² All atoms were assigned anisotropic displacement parameters and refined without positional constraints. The positions of the H atoms were constrained to idealized geometries and assigned isotropic displacement parameters equal to 1.2 or 1.5 times the U_{iso} values of their respective parent atoms. Full-matrix least-squares refinement of the models against F^2 converged to final residual indices given in Tables S1.1 and S1.2.

X-Ray structure determination of complex [Ag(PPh₃)₂](ClO₄) (AgP2). Figure S1.1 shows the structure of AgP2, and the caption lists the relevant structural parameters. Crystal data and other details of the structure analyses are presented in Table S1.1. Colourless suitable crystals for X-Ray diffraction studies were obtained by slow diffusion of *n*-hexane into concentrated solutions of 10* in 3 mL of CH₂Cl₂. A crystal was mounted at the end of a quartz fibre. The radiation used in was graphite monochromated Mo_K α ($\lambda = 0.71073$ Å). X-Ray intensity data were collected on an Oxford Diffraction Xcalibur diffractometer. The diffraction frames were integrated and corrected from absorption by using the CrysAlis RED program.¹ The structures was solved by Patterson and Fourier methods and refined by full-matrix least squares on F^2 with SHELXL-97.² All non-hydrogen atoms were assigned anisotropic displacement parameters and refined without positional constraints, except as noted below. All hydrogen atoms were constrained to idealized geometries and assigned isotropic displacement parameters equal to 1.2 times the U_{iso} values of their attached parent atoms. Full-matrix least-squares refinement of this models against F^2 converged to final residual indices given in Table S1.1.

Figure S1.1. Crystal structure of the complex $[Ag(PPh_3)_2](ClO_4)$ (AgP2). Relevant bond distances (Å), angles (°): Ag–P 2.4054(4), Ag–O(1) 2.5987(13). P'–Ag–P 137.783(19), P'–Ag–O(1') 122.14(3), P–Ag–O(1') 96.36(3), O(1)–Ag–O(1') 53.67(5). Symmetry transformations used to generate equivalent atoms: -x+1/2, y, -z+1.

TableS1.1.Crystaldataandstructurerefinementforcomplexes $[(CNC)(PPh_3)PtAu(PPh_3)](ClO_4)$ (4), $[{Pt(CNC)(PPh_3)}_2Au](ClO_4) \cdot 0.5Me_2CO \cdot 0.5n - C_6H_{14}$ (6 $\cdot 0.5Me_2CO \cdot 0.5n - C_6H_{14}$), $[{Pt(CNC)(PPh_3)}_2Ag](ClO_4) \cdot 3CHCl_3$ (8 $\cdot 3CHCl_3$),and $[Ag(PPh_3)_2](ClO_4)$ (AgP2).

	4	$6 \cdot 0.5 \mathrm{Me}_{2} \mathrm{CO} \cdot 0.5 n \cdot \mathrm{C}_{6} \mathrm{H}_{14}$	8·3CHCl ₃	AgP2
Formula	C ₅₃ H ₄₁ AuClNO ₄ P ₂ Pt	C70H52AuClN2O4P2Pt	C ₇₀ H ₅₂ AgClN ₂ O ₄ P ₂ Pt	$C_{36}H_{30}AgClO_4P_2$
		$\cdot 0.5 Me_2 CO \cdot 0.5 n - C_6 H_{14}$	·3CHCl ₃	
M_t	1245.31	1741.80	1938.68	731.86
Crystal system	orthorhombic	triclinic	monoclinic	monoclinic
Space group	$Pna2_1$	<i>P</i> -1	$P2_l/c$	<i>I</i> 2/ <i>a</i>
a/Å	16.6765(2)	14.1516(2)	23.6417(3)	14.9083(3)
b/Å	13.1713(1)	14.2469(2)	18.9314(2)	9.5290(2)
$c/\text{\AA}$	20.8357(2)	17.2010(2)	15.7338(2)	22.6955(5)
a/°	90	88.413(1)	90	90
$\beta^{ m o}$	90	83.236(1)	92.558(1)	100.688(2)
$\gamma^{\prime o}$	90	71.894(1)	90	90
$V/\text{\AA}^3$	4576.59(8)	3273.19(8)	7034.94(14)	3168.22(11)
Ζ	4	2	4	4
$D_c/\mathrm{g~cm^{-3}}$	1.807	1.767	1.830	1.534
<i>T</i> /K	100(1)	100(1)	80(1)	100(1)
μ/mm^{-1}	6.431	6.641	4.719	0.861

<i>F</i> (000)	2408	1682	3768	1488
2θ range/°	8.8-57.6	8.4-59.6	8.4-59.6	6.6-58.7
Collected reflections	26496	70706	87001	17872
Unique reflections	10324	17073	18492	3931
R _{int}	0.0249	0.0281	0.0312	0.0332
$R_1, wR_2^a (I > 2\sigma(I))$	0.0191, 0.0415	0.0242, 0.0541	0.0289, 0.0606	0.0240, 0.0559
R_1 , wR_2^a (all data)	0.0202, 0.0420	0.0297, 0.0565	0.0373, 0.0641	0.0278, 0.0574
GOF $(F^2)^b$	1.060	1.062	1.085	1.037
Abs. struct. par.	-0.006(3)	-	-	-

 $\overline{{}^{a} R_{1} = \sum (|F_{o}| - |F_{c}|) / \sum |F_{o}|} wR_{2} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2}\right]^{1/2} Goodness-of-fit = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / (n_{obs} - n_{param})\right]^{1/2}$

Table S1.2. Crystal data and structure refinement for complexes $[Pd(CNC)(PPh_3)]$ (2), $[Pd(CNC-H)Cl(PPh_3)]$ (3·1.5CH₂Cl₂), $[(CNC)(PPh_3)PdAu(PPh_3)](ClO_4)$ (5·3CH₂Cl₂), $[\{Pd(CNC)(PPh_3)\}_2Au](ClO_4)·1.9CH_2Cl_2$ (7·1.9CH₂Cl₂), $[\{Pd(CNC)(PPh_3)\}_2Ag](ClO_4)$ (9·CH₂Cl₂).

	2	3.1.5CH ₂ Cl ₂	5·3CH ₂ Cl ₂	7·1.9CH ₂ Cl ₂	9·CH ₂ Cl ₂
Formula	C ₃₅ H ₂₆ NPPd	C ₃₅ H ₂₇ ClNPPd	C56H47AuCl7NO4P2Pd	$C_{70}H_{52}AuClN_2O_4P_2Pd_2$	C70H52AgClN2O4P2Pd2
		$\cdot 1.5 CH_2 Cl_2$	$\cdot 3CH_2Cl_2$	$\cdot 1.9CH_2Cl_2$	$\cdot CH_2Cl_2$
M_t	597.94	761.78	1411.40	1653.65	1488.12
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_{1}/c$	12/a	$P2_{1}/n$	<i>I</i> 2/ <i>a</i>	P-1
a/Å	13.96167(2)	22.1187(3)	17.21447(2)	17.5256(3)	14.0983(3)
$b/{ m \AA}$	9.43318(1)	12.02149(1)	16.3255(2)	16.9649(2)	14.6782(3)
$c/{ m \AA}$	20.5922(2)	25.0247(3)	20.2005(2)	23.6574(4)	16.5030(3)
<i>a</i> /°	90	90	90	90	64.1658(2)
$eta/^{\mathrm{o}}$	95.6222(1)	104.3641(1)	100.7889(1)	99.3584(2)	89.3190(1)
$\gamma^{\prime o}$	90	90	90	90	74.0900(5)
$V/Å^3$	2699.01(6)	6446.02(1)	5576.68(1)	6940.23(2)	2933.14(1)
Ζ	4	8	4	4	2
$D_c/\mathrm{g~cm^{-3}}$	1.472	1.570	1.681	1.583	1.685
T/K	100(2)	100(2)	150(2)	100(2)	100(2)
μ/mm^{-1}	0.772	0.985	3.389	2.900	1.183
<i>F</i> (000)	1216	3080	2784	3263	1492

2θ range/°	6.7-60.5	6.7-64.9	6.5-58.8	4.7-56.7	6.5-58.9
Collected reflections	34864	53190	61933	68049	64746
Unique reflections	7401	10987	13616	15159	14514
R _{int}	0.0313	0.0203	0.0346	0.0458	0.0304
$R_1, wR_2^a (I > 2\sigma(I))$	0.0244, 0.0613	0.0372, 0.1074	0.0308, 0.0691	0.0425, 0.1061	0.0303, 0.0707
R_1 , wR_2^a (all data)	0.0281, 0.0638	0.0396, 0.1093	0.0385, 0.0728	0.0600, 0.1156	0.0367, 0.0743
GOF $(F^2)^b$	1.029	1.012	1.019	1.055	1.034

 ${}^{a} R_{1} = \sum (|F_{o}| - |F_{c}|) / \sum |F_{o}|. wR_{2} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2}\right]^{1/2}. {}^{b} \text{ Goodness-of-fit} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / (n_{obs} - n_{param})\right]^{1/2}.$

2. IR, NMR and MS spectra of complexes 2.1. Spectra of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.2. IR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.3. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.4. ${}^{1}H{}^{-1}H$ COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.5. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.6. ${}^{1}H{}^{-13}C$ HSQC NMR (CD₂Cl₂, RT) spectrum of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.7. ${}^{1}H{}^{-13}C$ HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.8. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC)(PPh₃)] (2).

Figure S1.9. MS (MALDI+ DCTB) molecular peak of complex [Pd(CNC)(PPh₃)] (2).

2.2. Spectra of complex [Pd(CNC-H)Cl(PPh₃)] (3).

Figure S1.10. IR spectrum of complex [Pd(CNC-H)Cl(PPh₃)] (3).

Figure S1.11. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)Cl(PPh₃)] (**3**).

Figure S1.12. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)Cl(PPh₃)] (**3**).

Figure S1.13. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)Cl(PPh₃)] (3).

Figure S1.14. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)Cl(PPh₃)] (**3**).

Figure S1.15. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)Cl(PPh₃)] (**3**).

Figure S1.16. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)Cl(PPh₃)] (3).

Figure S1.17. MS (MALDI+ DCTB) molecular peak of complex [Pd(CNC-H)Cl(PPh₃)] (3).

2.3. Spectra of complex [(CNC)(PPh₃)PtAu(PPh₃)](ClO₄) (4).

Figure S1.18. IR spectrum of complex [(CNC)(PPh₃)PtAu(PPh₃)](ClO₄) (4).

Figure S1.21. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, 293K) of complex [(CNC)(PPh₃)PtAu(PPh₃)](ClO₄) (4).

Figure S1.22. ¹⁹⁵Pt{¹H} NMR spectra (CD_2Cl_2 , 193K top and 293K bottom) of complex [(CNC)(PPh_3)PtAu(PPh_3)](ClO_4) (4).

[(CNC)(PPh₃)PtAu(PPh₃)](ClO₄) (4).

2.4. Spectra of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

Figure S1.24. IR spectrum of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

Figure S1.25. ¹H NMR spectrum (CD_2Cl_2, RT) of complex $[(CNC)(PPh_3)PdAu(PPh_3)](ClO_4)$ (5).

Figure S1.26. ${}^{1}H{}^{-1}H$ COSY NMR spectrum (CD₂Cl₂, RT) of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

Figure S1.27. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

Figure S1.28. ${}^{1}H{}^{-13}C$ HSQC NMR spectrum (CD₂Cl₂, RT) of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

Figure S1.29. ${}^{1}H{}^{-13}C$ HMBC NMR spectrum (CD₂Cl₂, RT) of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

Figure S1.30. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

^{[(}CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (**5**).

Figure S1.32. MS (MALDI+ DCTB) molecular peak of complex [(CNC)(PPh₃)PdAu(PPh₃)](ClO₄) (5).

2.5. Spectra of complex [{Pt(CNC)(PPh₃)}₂Au](ClO₄) (6).

Figure S1.33. IR spectrum of complex [{Pt(CNC)(PPh₃)}₂Au](ClO₄) (6).

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3

Figure S1.36. ${}^{31}P{}^{1}H{}$ NMR spectrum (CD₂Cl₂, 203K) of complex [{Pt(CNC)(PPh₃)}₂Au](ClO₄) (6).

Figure S1.37. $^{195}Pt\{^{1}H\}$ NMR spectra (CD₂Cl₂, 193K top, 298K bottom, CD₂Cl₂) of complex [{Pt(CNC)(PPh₃)}₂Au](ClO₄) (6).

Figure S1.38. MS (MALDI+ DCTB) molecular peak of complex [{Pt(CNC)(PPh₃)}₂Au](ClO₄) (6).

Chapter 1 S30

2.6. Spectra of complex [{Pd(CNC)(PPh₃)}₂Au](ClO₄) (7).

Figure S1.40. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex $[{Pd(CNC)(PPh_3)}_2Au](ClO_4)$ (7).

Figure S1.41. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [$Pd(CNC)(PPh_3)$ ₂Au](ClO₄) (7).

Figure S1.42. MS (MALDI+ DCTB) molecular peak of complex $[{Pd(CNC)(PPh_3)}_2Au](ClO_4)$ (7).

2.7. Spectra of complex [{Pt(CNC)(PPh₃)}₂Ag](ClO₄) (8).

Figure S1.43. IR spectrum of complex $[{Pt(CNC)(PPh_3)}_2Ag](ClO_4)$ (8).

Figure S1.46. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 293K) of complex [{Pt(CNC)(PPh₃)}₂Ag](ClO₄) (8).

Figure S1.47. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 193K) of complex $[{Pt(CNC)(PPh_3)}_2Ag](ClO_4)$ (8).

Figure S1.49. 195 Pt{ 1 H} NMR spectrum (CD₂Cl₂, 293K) of complex [{Pt(CNC)(PPh₃)}₂Ag](ClO₄) (8).

Figure S1.50. ${}^{195}Pt{}^{1}H$ NMR spectrum (CD₂Cl₂, 193K) of complex [{Pt(CNC)(PPh₃)}₂Ag](ClO₄) (8).

Figure \$1.51. MS (MALDI+ DCTB) molecular peak of complex [{Pt(CNC)(PPh₃)}₂Ag](ClO₄) (8).

2.8. Spectra of complex [{Pd(CNC)(PPh₃)}₂Ag](ClO₄) (9).

Figure S1.52. IR spectrum of complex [{Pd(CNC)(PPh₃)}₂Ag](ClO₄) (9).

Figure S1.53. ¹H NMR spectrum (CD_2Cl_2, RT) of complex $[{Pd(CNC)(PPh_3)}_2Ag](ClO_4)$ (9).

Figure S1.54. ${}^{1}H^{-1}H$ COSY NMR spectrum (CD₂Cl₂, RT) of complex [$\{Pd(CNC)(PPh_3)\}_2Ag$](ClO₄) (9).

Figure S1.56. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 193K) of complex [${Pd(CNC)(PPh_3)}_{2}Ag$](ClO₄) (9).

Figure S1.57. $^{1}H^{-13}C$ HSQC NMR spectrum (RT, CD₂Cl₂) of complex [$\{Pd(CNC)(PPh_3)\}_2Ag$](ClO₄) (9).

Figure S1.58. ${}^{1}H{}^{-13}C$ HMBC NMR spectrum (CD₂Cl₂, RT) of complex [$\{Pd(CNC)(PPh_3)\}_2Ag$](ClO₄) (9).

Figure S1.59. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [{Pd(CNC)(PPh₃)}₂Ag](ClO₄) (9).

Figure S1.60. ¹H VT NMR (CD₂Cl₂) of complex $[{Pd(CNC)(PPh_3)}_2Ag](ClO_4)$ (9).

Figure S1.61. ${}^{1}H^{-1}H$ COSY NMR (CD₂Cl₂, 173K) of complex [$\{Pd(CNC)(PPh_3)\}_2Ag$](ClO₄) (9).

Figure S1.62. MS (MALDI+ DCTB) molecular peak of complex $[{Pd(CNC)(PPh_3)}_2Ag](ClO_4)$ (9).

2.9. Spectra of mixture 10*.

Figure S1.63. IR spectrum of mixture 10*.

Figure S1.64. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 293K) of mixture 10*.

Figure S1.66. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂,183K) of mixture 10*.

Chapter 1 S45

-3980 -4000 -4020 -4040 -4060 -4080 -4100 -4120 -4140 -4160 -4200 -4220 -4180 [ppm] Figure S1.67. ¹⁹⁵Pt $\{^{1}H\}$ NMR spectrum (CD₂Cl₂, 293K) of mixture 10*.

-3970 -3990 -4010 -4030 -4050 -4070 -4090 -4110 -4130 -4150 -4170 -4190 -4210 -4230 -4250 -4270 -4290 [ppm]

Figure S1.68. ¹⁹⁵Pt $\{^{1}H\}$ NMR spectrum (CD₂Cl₂,193K) of mixture 10*.

•

2.10. Spectra of mixture 11*.

Figure S1.69. IR spectrum of mixture 11*.

Figure S1.70. ¹H VT NMR spectra (CD₂Cl₂) of mixture 11*.

Figure S1.71. ${}^{31}P{}^{1}H$ VT NMR spectra (CD₂Cl₂) of mixture 11*.

Figure S1.72. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, 173K) of mixture 11*.

Figure S1.73. ¹H NMR spectra (CD₂Cl₂, 173K) comparison of $[{Pd(CNC)(PPh_3)}_2Ag](ClO_4)$ (9) (above) and mixture 11* (below).

Figure S1.74. MS (MALDI+ DCTB) molecular peak of complex [(CNC)(PPh₃)PdAg(PPh₃)](ClO₄) (11).

3. Computational details

Density Functional Theory (DFT) calculations were carried out with the Gaussian 16 suite of programs,³ using the BP-86 density functional⁴ together with Grimme's D3 dispersion correction.⁵ The ECP-60-mwb pseudopotential⁶ was used for platinum and gold, the ECP-28mwb pseudopotential was used for palladium and silver.⁶ and the $6-31G(d)^7$ basis set was used for all other atoms. Geometry optimizations were performed without any symmetry constraint, either in CH_2Cl_2 by using the solvation model based on density (SMD)⁸ or in the gas phase. Stationary points were characterized by calculating the Hessian matrix analytically to confirm that all species are minima (no imaginary frequencies) or transition states (one single imaginary frequency) on the potential energy surface. The BP86-D3 optimized structures obtained were subsequently used for the following analyses: Wiberg Bond Indexes (WBI) were calculated by using the NBO analysis option as incorporated in Gaussian 16. Quantum Theory of the Atoms In Molecules (QTAIM) topological analyses of the electron densities were performed with the AIMAll package.⁹ Energy Decomposition Analysis (EDA) studies were carried out with the Turbomole 7.1 program package,¹⁰ using the same version of the functional BP86-D3 as implemented in Gaussian 16 and the def2-TZVP basis set.¹¹ Specifically, the generalized Kohn-Sham (GKS) scheme, i.e., GKS-EDA, was used, as implemented in the Turbomole package.¹² Atomic coordinates (x, y, z) for the optimized structures in the gas phase are included in a separate file (*DFT-chapter1.xyz*).

4. Comparison of relevant geometrical parameters obtained from the X-Ray structure determinations and DFT calculations.

 Table S1.3. Comparison of some distances (Å) and angles (°) of for complexes 4, 6, 8 and 10 obtained from the X-Ray structure determinations (white columns) and DFT calculations (blue columns).

	[(CNC)(PPh (ClC	3)PtAu(PPh3)] D4) (4)	[{Pt(CNC)(PP	h3)}2Au](ClO4) 6)	[{Pt(CNC)(PP	h3)}2Ag](ClO4) 8)	[(CNC)(PPh ₃ (ClO4	a)PtAg(PPh ₃)]
М–М'	2.72221(2)	2.780	2.72965(2) 2.74259(2)	2.777 2.777	2.8549(3) 2.9078(3)	2.849 2.849	-	2.798
М–Са	2.158(3)	2.255	2.212(3) 2.244(3)	2.244 2.243	2.128(3) 2.125(3)	2.165 2.165	-	2.177
M'–C _A	2.225(3)	2.208	2.174(3) 2.157(3)	2.177 2.177	2.277(3) 2.258(3)	2.236 2.237	-	2.246
М-Св	2.063(3)	2.058	2.051(3) 2.045(3)	2.058 2.058	2.055(3) 2.056(3)	2.074 2.074	-	2.075
M–N	2.036(3)	2.067	2.035(3) 2.034(3)	2.066 2.066	2.020(3) 2.023(3)	2.059 2.059	-	2.064
М-Рм	2.2433(9)	2.275	2.2477(8) 2.2364(8)	2.275 2.275	2.2327(8) 2.2357(8)	2.274 2.274	-	2.275
M'-P _{M'}	2.2422(9)	2.294	-	-	-	-	-	2.351
Са-М'-Са	-	-	176.75(1)	176.53	173.96(1)	167.22	-	-
N–M–C _A	78.95(1)	78.05	78.64(1) 78.40(1)	77.84 77.85	79.28(1) 79.68(1)	78.63 78.63	-	78.66
N–M–C _B	80.04(1)	80.01	79.95(1)	79.80	80.38(1)	79.75	-	79.93

Chapter	1	<i>S52</i>
---------	---	------------

			80.27(1)	79.81	80.07(1)	79.75		
Са-М-Св	156.30(1)	157.44	155.99(1)	155.23	158.13(1)	155.25		157.70
			157.71(1)	155.22	158.62(1)	155.25	-	
174 (CN M D	173.92(8)	175.68	176.31(8)	175.31	175.31(8)	174.91		174.66
174.00IN-IVI-FM			175.82(8)	175.31	175.70(8)	174.91		1/4.00
$M-M'-(P_{M'} \text{ or } M)$	152.38(2)	128.17	131.425(6)	123.74	126.834(9)	116.26	-	125.41
C _A -M'-(P _{M'} or M)	153.25(8)	172.34	121.70(9)	125.80	129.80(8)	122.94		171.22
			130.45(8)	125.81	129.17(8)	122.97	-	1/1.52

 Table S1.4. Comparison of some distances (Å) and angles (°) of for complexes 5, 7, 9, 11 obtained from the X-Ray structure determinations (white columns) and DFT calculations (blue columns).

	[(CNC)(PPh (ClC	3)PdAu(PPh3)] D4) (5)	[{Pd(CNC)(PPh ₃)} ₂ Au](ClO ₄) (7)		[{Pd(CNC)(PPh ₃)} ₂ Ag](ClO ₄) (9)		[(CNC)(PPh ₃)PdAg(PPh ₃)](ClO ₄) (11)	
М–М'	2.7422(3)	2.755	2.7366(4) 2.7491(4)	2.746 2.746	2.8597(2) 2.9419(2)	2.772 2.811	-	2.753
М–Са	2.393(3)	2.438	2.498(5) 2.419(5)	2.509 2.509	2.143(2) 2.164(2)	2.176 2.213	-	2.206
М'-СА	2.119(3)	2.130	2.098(5) 2.108(5)	2.118 2.118	2.239(2) 2.212(2)	2.250 2.204	-	2.216
М-Св	2.031(3)	2.036	2.020(5) 2.029(5)	2.028 2.028	2.072(2) 2.071(2)	2.072 2.065	-	2.067
M–N	2.033(2)	2.056	2.033(4) 2.041(4)	2.054 2.054	2.021(2) 2.026(2)	2.044 2.044	-	2.048
M–P _M	2.2646(8)	2.290	2.2686(14) 2.2717(13)	2.287 2.287	2.2578(6) 2.2473(6)	2.292 2.292	-	2.291
М'-Рм'	2.2736(8)	2.315	-	-	-	-	-	2.355
С _А -М'-С _А	-	-	175.2(2)	176.58	168.32(9)	171.61	-	-
N–M–C _A	77.18(11)	76.83	76.53(17) 77.44(18)	76.56 76.56	79.79(8) 79.45(8)	79.14 78.88	-	78.87
N-M-C _B	80.66(12)	80.59	80.79(19) 80.5(2)	80.69 80.70	80.29(8) 80.70(9)	80.46 79.90	-	80.36
С _А -М-С _В	157.68(12)	157.24	157.3(2)	157.25	159.25(9)	158.87	-	158.57

			157.9(2)	157.25	158.74(9)	155.96		
N–M–P _M	176.01(8)	177.00	173.47(12)	175.49	176.15(6)	177.55	173	173 58
			174.62(12)	175.50	174.00(6)	175.21	_	175.50
$M-M'-(P_{M'} \text{ or } M)$	127.87(2)	124.20	128.66(1)	123.92	132.77(1)	120.01	-	126.33
C_A –M'–(P_M ' or M)	173.82(8)	176.90	125.83(14)	121.37	124.21(6)	122.42	_	172 94
			120.26(13)	121.37	129.30(6)	126.90	-	172.74

	[(CNC)(PPh3)M	M'(PPh3)](ClO4	4)		[{M(CNC)(PP	h3)}2M'](ClO4)	
	M = Pd, M' = Ag (11- DFT) (a)	M = Pt, M' = Ag (10- DFT) (a)	M = Pd, M' = Au (5) (b)	M = Pt, M' = Au(4) (b)	M = Pd, M' = Ag (9) (b)	M = Pt, M' = Ag (8) (b)	M = Pd, M' = Au (7) (b)	M = Pt, M' = Au (6) (b)
M–M'	2.753	2.798	2.7422(3)	2.7222(2)	2.8597(2) 2.9419(2)	2.8549(3) 2.9078(3)	2.7366(4) 2.7491(4)	2.7297(2) 2.7426(2)
M–C _A	2.206	2.177	2.393(3)	2.158(3)	2.143(2) 2.164(2)	2.128(3) 2.125(3)	2.498(5) 2.419(5)	2.212(3) 2.244(3)
М'-СА	2.216	2.246	2.119(3)	2.225(3)	2.239(2) 2.212(2)	2.277(3) 2.258(3)	2.098(5) 2.108(5)	2.174(3) 2.157(3)
M–C _B	2.067	2.075	2.031(3)	2.063(3)	2.072(2) 2.071(2)	2.055(3) 2.056(3)	2.020(5) 2.029(5)	2.051(3) 2.045(3)
Са-М'-Са	-	-	-	-	168.32(9)	173.96(12)	175.2(2)	176.75(12)
C _C –C _A -M	157.7	163.0	140.7	160.45	160.9 162.4	164.2 165.6	135.5 131.0	153.7 152.0
C _C –C _A -M'	123.2	115.7	143.1	120.1	111.7 111.2	110.7 106.3	149.3 156.0	127.5 128.9
M–M'– (P or M)	126.3	125.4	127.87(2)	152.38(2)	132.77(1)	126.83(1)	128.66(1)	131.43(1)
M plane– N ring plane	13.2	11.5	12.7(1)	13.2(1)	7.8(1) 8.0(1)	11.5(1) 9.8(1)	8.8(1) 6.1(1)	11.4(1) 12.8(1)
M plane– C _A ring plane	25.1	20.2	38.9 (1)	27.7(1)	18.7(1) 24.1(1)	18.9(1) 15.4(1)	48.1(1) 43.0(1)	28.9(1) 31.9(1)

Table S1.5. Some geometrical parameters used as descriptors for the structures of the complexes described in this chapter. Distances are given in Å and angles and dihedral angles in degrees. The nomenclature used for the atoms is represented in the scheme below.

M plane– C _B ring plane	13.3	11.0	12.9(1)	11.4(1)	11.1(1) 4.1(1)	13.3(1) 11.5(1)	6.4(1) 4.0(1)	12.5(1) 10.4(1)
M plane– M plane	-		-	-	4.3(1)	0.6(1)	8.8(1)	4.0(1)

(a) DFT structure, DFT/BP86-D3 level, gas phase. (b) X-Ray structure. M plane = MC_BNP .

5. QTAIM analyses (DFT/BP86-D3 level, gas phase) of the heteropolynuclear complexes.

Figure S1.75. Contour line diagrams $\nabla^2 \rho(\mathbf{r})$ for the cation of complex **6-DFT** in the Au–C–Pt plane (solid lines connecting nuclei: Bond Paths; green dots: Bond Critical Points) (a). Detail of the complex core (b).

a)

Figure S1.76. Contour line diagrams $\nabla^2 \rho(\mathbf{r})$ for the cation of complex **8-DFT** in the Ag–C–Pt plane (solid lines connecting nuclei: Bond Paths; green dots: Bond Critical Points) (a). Detail of the complex core (b).

		4-DFT	- Pt-Au						
вср (А-в)	Pt-Au	Pt-CA	Pt-C _B	Ca-Au					
$\rho(\mathbf{r})$ (au)	0.049	0.087	0.133	0.090					
$\nabla^2 \rho(\mathbf{r})$	0.123	0.136	0.139	0.142					
Ellipt	0.545	0.130	0.062	0.104					
BL (Å)	2.78	2.26	2.06	2.21					
BPL (Å)	2.78	2.26	2.06	2.21					
<i>G</i> (r) (au)	0.040	0.063	0.097	0.067					
<i>V</i> (r) (au)	-0.048	-0.092	-0.159	-0.098					
<i>H</i> (r) (au)	-0.008	-0.029	-0.062	-0.031					
$G(\mathbf{r})/\rho(\mathbf{r})$	0.81	0.72	0.73	0.74					
	10-DFT - Pt-Ag								
DCP (A-D)	Pt-Ag	Pt-C _A	Pt-C _B	C _A -Ag					
$ ho(\mathbf{r})$ (au)	-	0.104	0.130	0.071					
$ abla^2 ho(\mathbf{r})$	-	0.154	0.149	0.156					
Ellipt	-	0.099	0.056	0.158					
BL (Å)	2.80	2.18	2.08	2.25					
BPL (Å)	-	2.18	2.07	2.26					
<i>G</i> (r) (au)	-	0.078	0.096	0.057					
<i>V</i> (r) (au)	-	-0.118	-0.154	-0.076					
<i>H</i> (r) (au)	-	-0.040	-0.058	-0.019					
$G(\mathbf{r})/\rho(\mathbf{r})$	-	0.75	0.74	0.80					

 Table S1.6. Topological characteristics of selected critical points in complexes 4-DFT

 and 10-DFT.

			6	-DFT - Pt-	Au-Pt					
DCF (A-D)	Pt-Au	Pt-Au	Pt-CA	Pt-CA	Pt-C _B	Pt-C _B	CA-Au	CA-Au		
$\rho(\mathbf{r})$ (au)	0.050	0.050	0.090	0.090	0.134	0.134	0.095	0.095		
$ abla^2 ho(\mathbf{r})$	0.123	0.123	0.133	0.133	0.142	0.142	0.145	0.145		
Ellipt	0.731	0.734	0.118	0.118	0.051	0.051	0.094	0.094		
BL (Å)	2.78	2.78	2.24	2.24	2.06	2.06	2.18	2.18		
BPL (Å)	2.78	2.78	2.25	2.25	2.06	2.06	2.18	2.18		
<i>G</i> (r) (au)	0.040	0.040	0.064	0.064	0.097	0.097	0.071	0.071		
<i>V</i> (r) (au)	-0.049	-0.049	-0.095	-0.095	-0.160	-0.160	-0.107	-0.107		
<i>H</i> (r) (au)	-0.009	-0.009	-0.031	-0.031	-0.063	-0.063	-0.036	-0.036		
$G(\mathbf{r})/\rho(\mathbf{r})$	0.80	0.80	0.71	0.71	0.72	0.72	0.75	0.75		
	8-DFT - Pt-Ag-Pt									
BCP (A-B)	Pt-Ag	Pt-Ag	Pt-C _A	Pt-C _A	Pt-C _B	Pt-C _B	C _A -Ag	C _A -Ag		
$\rho(\mathbf{r})$ (au)	-	-	0.107	0.107	0.130	0.130	0.072	0.072		
$ abla^2 ho(\mathbf{r})$	-	-	0.153	0.153	0.151	0.151	0.158	0.158		
Ellipt	-	-	0.089	0.089	0.047	0.047	0.140	0.140		
BL (Å)	2.85	2.85	2.17	2.17	2.07	2.07	2.24	2.24		
BPL (Å)	-	-	2.17	2.17	2.07	2.07	2.25	2.25		
<i>G</i> (r) (au)	-	-	0.080	0.080	0.096	0.096	0.059	0.059		
V(r) (au)	-	-	-0.121	-0.121	-0.155	-0.155	-0.078	-0.078		
H(r) (au)	-	-	-0.041	-0.041	-0.059	-0.059	-0.019	-0.019		
$G(\mathbf{r})/\rho(\mathbf{r})$	-	-	0.75	0.75	0.74	0.74	0.82	0.82		

 Table S1.7. Topological characteristics of selected critical points in complexes 6-DFT

 and 8-DFT.

Chapter 1 S61

Figure S1.77. Contour line diagrams $\nabla^2 \rho(\mathbf{r})$ for the cation of complex **7-DFT** in the Au–C–Pd plane (solid lines connecting nuclei: Bond Paths; green dots: Bond Critical Points) (a). Detail of the complex core (b).

a)

Figure S1.78. Contour line diagrams $\nabla^2 \rho(\mathbf{r})$ for the cation of complex **9-DFT** in the Ag–C–Pd plane (solid lines connecting nuclei: Bond Paths; green dots: Bond Critical Points) (a). Detail of the complex core (b).

		5-DFT	- Pd-Au					
ВСР (А-В)	Pd-Au	Pd-CA	Pd-C _B	Ca-Au				
$\rho(\mathbf{r})$ (au)	0.045	0.052	0.124	0.110				
$\nabla^2 \rho(\mathbf{r})$	0.113	0.116	0.163	0.154				
Ellipt	0.275	0.313	0.063	0.062				
BL (Å)	2.76	2.44	2.04	2.13				
BPL (Å)	2.76	2.45	2.04	2.13				
<i>G</i> (r) (au)	0.036	0.038	0.091	0.082				
<i>V</i> (r) (au)	-0.044	-0.047	-0.142	-0.126				
H(r) (au)	-0.008	-0.009	-0.050	-0.044				
$G(\mathbf{r})/\rho(\mathbf{r})$	0.80	0.73	0.74	0.75				
	11-DFT - Pd-Ag							
DCP (A-D)	Pd-Ag	Pd-C _A	Pd-C _B	C _A -Ag				
$\rho(\mathbf{r})$ (au)	-	0.086	0.117	0.077				
$\nabla^2 \rho(\mathbf{r})$	-	0.172	0.178	0.164				
Ellipt	-	0.097	0.050	0.125				
BL (Å)	2.75	2.21	2.07	2.21				
BPL (Å)	-	2.21	2.07	2.23				
<i>G</i> (r) (au)	-	0.068	0.090	0.062				
<i>V</i> (r) (au)	-	-0.093	-0.135	-0.083				
<i>H</i> (r) (au)	-	-0.025	-0.045	-0.021				
$C(\mathcal{M})$		0.70	0.76	0.81				

 Table S1.8. Topological characteristics of selected critical points in complexes 5-DFT

 and 11-DFT.

			7-	DFT - Pd-	Au-Pd					
DCF (A-D)	Pd-Au	Pd-Au	Pd-C _A	Pd-CA	Pd-C _B	Pd-C _B	CA-Au	CA-Au		
$\rho(\mathbf{r})$ (au)	0.046	0.046	0.046	0.046	0.126	0.126	0.113	0.113		
$ abla^2 ho(\mathbf{r})$	0.114	0.114	0.104	0.104	0.161	0.161	0.166	0.166		
Ellipt	0.161	0.161	0.554	0.554	0.067	0.067	0.055	0.055		
BL (Å)	2.75	2.75	2.51	2.51	2.00	2.00	2.12	2.12		
BPL (Å)	2.75	2.75	2.53	2.53	2.03	2.03	2.12	2.12		
<i>G</i> (r) (au)	0.037	0.037	0.033	0.033	0.092	0.092	0.088	0.088		
<i>V</i> (r) (au)	-0.045	-0.045	-0.039	-0.039	-0.144	-0.144	-0.134	-0.134		
<i>H</i> (r) (au)	-0.008	-0.008	-0.006	-0.006	-0.052	-0.052	-0.046	-0.046		
$G(\mathbf{r})/\rho(\mathbf{r})$	0.80	0.80	0.71	0.71	0.73	0.73	0.78	0.78		
	9-DFT - Pd-Ag-Pd									
BCP (A-B)	Pd-Ag	Pd-Ag	Pd-C _A	Pd-C _A	Pd-C _B	Pd-C _B	C _A -Ag	C _A -Ag		
$\rho(\mathbf{r})$ (au)	-	-	0.085	0.092	0.118	0.116	0.079	0.071		
$ abla^2 ho(\mathbf{r})$		-	0.085	0.180	0.177	0.182	0.169	0.157		
Ellipt	-	-	0.089	0.081	0.044	0.051	0.107	0.134		
BL (Å)	2.77	2.81	2.18	2.21	2.07	2.06	2.25	2.20		
BPL (Å)	-	-	2.22	2.18	2.07	2.07	2.21	2.26		
<i>G</i> (r) (au)	-	-	0.066	0.073	0.090	0.090	0.064	0.057		
V(r) (au)	-	-	-0.090	-0.101	-0.135	-0.134	-0.086	-0.075		
<i>H</i> (r) (au)	-	-	-0.024	-0.028	-0.045	-0.044	-0.022	-0.018		
$G(\mathbf{r})/\rho(\mathbf{r})$	-	-	0.78	0.80	0.76	0.77	0.82	0.81		

 Table S1.9. Topological characteristics of selected critical points in complexes 7-DFT

 and 9-DFT.

6. References

- (1) CrysAlis Pro 1.171.39.44a, Rigaku Oxford Diffraction 2018.
- (2) Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.
- (3) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*, Wallingford, CT, **2016**.
- (4) a) Becke, D. Phys. Rev. A 1988, 38, 3098-3100. b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
- (5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- (6) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. *Theor. Chim. Acta* 1990, 77, 123–141.
- a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. b)
 Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
- (8) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.
- (9) Keith, T. A. 13.05.06 ed., AIMAII 2010. TK Gristmill Software, Overland Park KS, USA, 2010.
- (10) TURBOMOLE, Ver. 7.1 TURBOMOLE GmbH: Karlsruhe, Germany, 2016.
- (11) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

(12) a) Tang, Z.; Jiang, Z.; Chen, H.; Su, P.; Wu, W. J. Chem. Phys. 2019, 151(24), 244106. b) Su, P; Jiang, Z.; Chen, Z.; Wu, W. J. Phys. Chem. A 2014, 118(13), 2531-2542.

Supporting Information

for

Chapter 2. Reactivity of platinum(II) and palladium(II) cyclometallated substrates toward sources of H⁺.

•	1. Crystal data and structural refinement	S2
•	2. IR, NMR and MS spectra of complexes	S12
•	3. Computational details	S67
•	4. References	S68
1. Crystal data and structural refinement

Crystal data and other details of the structure analyses are presented in Tables S2.1, S2.2, S2.3 and S2.4. Suitable crystals for X-Ray diffraction studies were obtained by slow diffusion of *n*-hexane into concentrated solutions of the complexes in 3 mL of CH₂Cl₂. Crystals were mounted at the end of a quartz fibre. The radiation used in all cases was graphite monochromated Mo-K_{α} (λ = 71.073 pm). X-Ray intensity data were collected on an Oxford Diffraction Xcalibur diffractometer. The diffraction frames were integrated and corrected from absorption by using the CrysAlis RED program.¹ The structures were solved by Patterson and Fourier methods and refined by full-matrix least squares on F^2 with SHELXL.² All atoms were assigned anisotropic displacement parameters and refined without positional constraints. The positions of the H atoms were constrained to idealised geometries and assigned isotropic displacement parameters equal to 1.2 or 1.5 times the U_{iso} values of their respective parent atoms. Full-matrix least-squares refinement of the models against F^2 converged to final residual indices given in Tables S2.1, S2.2, S2.3 and S2.4.

	13	14	15	16
Formula	C ₃₅ H ₂₇ ClNPPt	C ₁₉ H ₁₈ ClNOPtS	C37H30ClN2O4PPt	C ₃₇ H ₃₀ ClN ₂ O ₄ PPd
M_t	723.08	538.94	828.14	739.45
Crystal system	monoclinic	monoclinic	triclinic	triclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	P-1	P-1
a/Å	9.31510(1)	15.1106(2)	9.6378(3)	9.6825(8)
b/Å	32.4661(4)	7.33207(1)	10.3379(2)	10.3491(9)
c/Å	10.0041(2)	32.5266(4)	15.9509(3)	15.9544(1)
a/°	90	90	95.5802(2)	95.7980(1)
β/°	109.621(2)	95.6212(1)	98.606(2)	98.6970(1)
γ/ ⁰	90	90	93.6794(2)	93.5820(1)
V/Å ³	2849.81(8)	3586.35(9)	1558.92(6)	1567.3(2)

Table S2.1. Crystal data and structure refinement for complexes [Pt(CNC-H)Cl(PPh_3)] (13), [Pt(CNC-H)Cl(dmso)] (14), [Pt(CNC-H)(MeCN)(PPh_3)](ClO_4) (15) and [Pd(CNC-H)(MeCN)(PPh_3)](ClO_4) (16).

Ζ	4	8	2	2
$D_c/\mathrm{g~cm^{-3}}$	1.685	1.996	1.764	1.567
T/K	100(2)	293(2)	100(2)	296(2)
μ/mm^{-1}	5.099	8.096	4.683	0.773
<i>F</i> (000)	1416	2064	816	752
2θ range/°	5.8-61.2	5.7-56.7	5.6-58.9	2.6-60.2
Collected reflections	70790	65955	27380	18125
Unique reflections	8312	8319	7591	8379
R _{int}	0.0348	0.0383	0.0591	0.0113
$R_1, wR_2^a (I > 2\sigma(I))$	0.0245, 0.0582	0.0241, 0.0485	0.0343, 0.0765	0.0198, 0.0512
R_1 , wR_2^a (all data)	0.0282, 0.0594	0.0280, 0.0496	0.0420, 0.0820	0.0210, 0.0520
GOF $(F^2)^b$	1.098	1.118	1.036	1.005

 ${}^{a}R_{1} = \sum(|F_{o}| - |F_{c}|) / \sum |F_{o}|. wR_{2} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2}\right]^{1/2}. {}^{b} \text{ Goodness-of-fit} = \left[\sum w (F_{o}^{2} - F_{c}^{2})^{2} / (n_{obs} - n_{param})\right]^{1/2}.$

Table S2.2. Crystal data and structure refinement for complexes [Pt(CNC-H)(H ₂ O)(PPh ₃)](ClO ₄) (17), [Pd(CNC-H)(H ₂ O)(PPh ₃)](ClO ₄)
(18), $[Pt(CNC-H)(tht)(PPh_3)](ClO_4) \cdot CH_2Cl_2$ (19 $\cdot CH_2Cl_2$) and $[Pt(CNC-H)(\mu-S-2Py)]_2 \cdot 2CH_2Cl_2$ (21 $\cdot 2CH_2Cl_2$).

	17	18	$19 \cdot CH_2Cl_2$	$21 \cdot \mathbf{2CH}_2\mathbf{Cl}_2$
Formula	C35H29ClNO5PPt	C35H29ClNO5PPd	C ₃₉ H ₃₅ ClNO ₄ PPtS·	$C_{44}H_{32}N_4Pt_2S_2$
			CH ₂ Cl ₂	$\cdot 2CH_2Cl_2$
M_t	805.10	716.41	960.17	1240.89
Crystal system	triclinic	triclinic	monoclinic	orthorhombic
Space group	P-1	P-1	<i>P2</i> ₁ / <i>c</i>	P212121
a/Å	9.47247(2)	9.4934(7)	9.27131(1)	10.35727(14)
b/Å	10.2602(2)	10.2710(8)	19.6874(2)	18.1281(3)
c/Å	15.8821(3)	15.8699(1)	20.5535(2)	22.4772(5)
<i>a</i> /°	94.1019(2)	94.1000(1)	90	90
β/°	98.3549(2)	98.4230(1)	94.4415(1)	90
γ/ ⁰	95.8330(2)	95.2610(1)	90	90

$V/\text{\AA}^3$	1513.42(6)	1518.6(2)	3740.32(7)	4220.27(1)
Ζ	2	2	4	4
$D_c/\mathrm{g~cm^{-3}}$	1.767	1.567	1.705	1.953
T/K	100(2)	100(2)	100(2)	100(2)
μ/mm^{-1}	4.822	0.797	4.108	7.014
<i>F</i> (000)	792	728	1904	2384
2θ range/°	5.6-58.8	2.6-60.2	5.4-61.2	5.8-61.2
Collected reflections	33455	17579	48344	32134
Unique reflections	7508	8128	10501	11436
$R_{ m int}$	0.0378	0.0103	0.0508	0.0338
$R_1, w R_2^a (I > 2\sigma(I))$	0.0208, 0.0433	0.0208, 0.0526	0.0304, 0.0683	0.0260, 0.0456
R_1 , wR_2^a (all data)	0.0234, 0.0442	0.0218, 0.0532	0.0389, 0.0732	0.0306, 0.0469
GOF $(F^2)^b$	1.051	1.046	1.045	1.012

 ${}^{a}R_{1} = \sum(|F_{o}| - |F_{c}|) / \sum |F_{o}|. wR_{2} = \left[\sum w \left(F_{o}^{2} - F_{c}^{2}\right)^{2} / \sum w(F_{o}^{2})^{2}\right]^{1/2}. {}^{b} \text{ Goodness-of-fit} = \left[\sum w \left(F_{o}^{2} - F_{c}^{2}\right)^{2} / (n_{obs} - n_{param})\right]^{1/2}.$

Table S2.3. Crystal data and structure refinement for complexes [Pt(CNC-H)(8-hq)] $\cdot 0.5n$ -C₆H₁₄ (**22** $\cdot 0.5n$ -C₆H₁₄), [Pt(CNC-H){PPh₂(C₆H₄-*o*-O)}] ·CH₂Cl₂ (**23** \cdot CH₂Cl₂), [Pd(CNC-H){PPh₂(C₆H₄-*o*-O)}] (**24** \cdot CH₂Cl₂), *trans*-(N,O)[Pt(CNC-H)(NC₅H₄-*o*-COO)] (**25A** $\cdot 0.25$ CH₂Cl₂) and *trans*-(N,N)[Pt(CNC-H)(NC₅H₄-*o*-COO)] ·1.5CH₂Cl₂ (**25B** $\cdot 1.5$ CH₂Cl₂).

	22 ·0.5 <i>n</i> -C ₆ H ₁₄	$23 \cdot CH_2Cl_2$	$24{\cdot}\mathrm{CH}_{2}\mathrm{Cl}_{2}$	25A ·0.25CH ₂ Cl ₂	25B ·1.5CH ₂ Cl ₂
Formula	$C_{26}H_{18}N_2OPt$	C ₃₅ H ₂₆ NOPPt	C ₃₅ H ₂₆ NOPPd	$C_{23}H_{16}N_2O_2Pt$	$C_{23}H_{16}N_2O_2Pt$
	0.5 <i>n</i> -C ₆ H ₁₄	·CH ₂ Cl ₂	·CH ₂ Cl ₂	·0.25CH ₂ Cl ₂	·1.5CH ₂ Cl ₂
M_t	612.60	787.55	698.86	568.70	1131.98(17)
Crystal system	monoclinic	monoclinic	monoclinic	triclinic	triclinic
Space group	<i>C2/c</i>	$P2_{1}/c$	$P2_{1}/c$	P-1	P-1
a/Å	33.0602(8)	8.4494(2)	8.44669(2)	10.97298(2)	9.8352(9)
b/Å	11.7636(2)	22.3359(5)	22.4058(4)	14.3885(2)	10.7295(9)
c/Å	12.5106(3)	16.3739(4)	16.3735(3)	24.9907(5)	12.7362(1)
a/°	90	90	90	74.1536(17)	68.6480(1)
β/°	105.879(2)	104.788(3)	104.4639(2)	85.2977(16)	71.3790(10)

γ/°	90	90	90	82.1657(14)	67.6590(10)
$V/Å^3$	4679.80(2)	2987.80(1)	3000.55(9)	3756.13(1)	1131.98(2)
Ζ	8	4	4	8	2
$D_c/\mathrm{g~cm^{-3}}$	1.739	1.751	1.547	2.011	1.980
T/K.	100(2)	100(2)	293(2)	293(2)	100(2)
μ/mm^{-1}	6.021	4.960	0.881	7.565	6.578
<i>F</i> (000)	2392	1544	1416	2180	650
2θ range/°	8.4-57.6	6.0-61.2	6.0-56.8	5.4-56.6	3.4-60.2
Collected reflections	30123	22421	29156	71308	13049
Unique reflections	5656	8040	6565	16400	6042
$R_{\rm int}$	0.0335	0.0264	0.0234	0.0462	0.0150
$R_1, w R_2^a (I > 2\sigma(I))$	0.0275, 0.0688	0.0236, 0.0522	0.0231, 0.0539	0.0352, 0.0811	0.0135, 0.0325
R_1 , wR_2^a (all data)	0.0347, 0.0726	0.0286, 0.0542	0.0269, 0.0557	0.0481, 0.0874	0.0143, 0.0328
GOF $(F^2)^b$	1.040	1.029	1.033	1.056	1.046

Chapter 2 S9

 ${}^{a}R_{1} = \sum (|F_{0}| - |F_{c}|) / \sum |F_{0}|. wR_{2} = [\sum w (F_{0}^{2} - F_{c}^{2})^{2} / \sum w (F_{0}^{2})^{2}]^{1/2}. {}^{b} \text{ Goodness-of-fit} = [\sum w (F_{0}^{2} - F_{c}^{2})^{2} / (n_{0}\text{bs} - n_{p}\text{aram})]^{1/2}.$

 $26 \cdot CH_2Cl_2$ $27 \cdot CH_2Cl_2$ Formula C₃₆H₂₆NO₂PPt C₃₆H₂₆NO₂PPd $\cdot CH_2Cl_2$ $\cdot CH_2Cl_2$ M_t 815.56 726.87 monoclinic monoclinic Crystal system $P2_1/n$ $P2_1/n$ Space group a/Å 9.32842(2) 9.36969(2) b/Å 16.0093(3) 15.9432(3) c/Å 20.9697(4) 20.9922(4) 90 90 a/° β/° 90.3715(2) 90.5995(2)

γ/°

90

90

Table S2.4. Crystal data and structure refinement for complexes $[Pt(CNC-H){PPh_2(C_6H_4-o-COO)}] \cdot CH_2Cl_2 (26 \cdot CH_2Cl_2)$ and $[Pd(CNC-H){PPh_2(C_6H_4-o-COO)}] \cdot CH_2Cl_2 (27 \cdot CH_2Cl_2).$

V/Å ³	3131.58(9)	3135.70(9)
Ζ	4	4
$D_c/\mathrm{g~cm^{-3}}$	1.730	1.540
T/K	100(2)	293(2)
μ/mm^{-1}	4.738	0.849
<i>F</i> (000)	1600	1472
2θ range/°	5.4-56.8	5.4-56.6
Collected reflections	30952	30607
Unique reflections	6772	6929
$R_{\rm int}$	0.0405	0.0302
$R_1, w R_2^a (I > 2\sigma(I))$	0.0268, 0.0535	0.0271, 0.0600
$R_1, w R_2^a$ (all data)	0.0356, 0.0574	0.0330, 0.0629
GOF $(F^2)^b$	1.028	1.057

 ${}^{a}R_{1} = \sum(|F_{o}| - |F_{c}|) / \sum |F_{o}|. wR_{2} = \left[\sum w \left(F_{o}^{2} - F_{c}^{2}\right)^{2} / \sum w(F_{o}^{2})^{2}\right]^{1/2}. {}^{b} \text{ Goodness-of-fit} = \left[\sum w \left(F_{o}^{2} - F_{c}^{2}\right)^{2} / (n_{obs} - n_{param})\right]^{1/2}.$

2. IR, NMR and MS spectra of complexes

2.1. Spectra of complex [Pt(CNC-H)Cl(PPh₃)] (13).

Figure S2.1. IR spectrum of complex [Pt(CNC-H)Cl(PPh₃)] (13).

Figure S2.2. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(PPh₃)] (13).

Figure S2.3. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(PPh₃)] (**13**).

Figure S2.4. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(PPh₃)] (13).

Figure S2.5. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(PPh₃)] (13).

Figure S2.6. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(PPh₃)] (**13**).

Figure S2.7. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(Cl)(PPh₃)] (13).

Figure S2.8. MS (MALDI+ DCTB) selected peaks of complex [Pt(CNC-H)Cl(PPh₃)] (13).

2.2. Spectra of complex [Pt(CNC-H)Cl(dmso)] (14).

Figure S2.9. IR spectrum of complex [Pt(CNC-H)Cl(dmso)] (14).

Figure S2.10. ¹H NMR (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(dmso)] (14).

Figure S2.11. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(dmso)] (14).

Figure S2.12. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(dmso)] (14).

Figure S2.13. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(dmso)] (14).

Figure S2.14. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)Cl(dmso)] (14).

Figure S2.15. MS (MALDI+ DCTB) selected peak of complex [Pt(CNC-H)(Cl)(dmso)] (14).

2.3. Spectra of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (15).

Figure S2.16. IR spectrum of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (15).

Figure S2.17. ¹H NMR spectrum (CD_2Cl_2 , RT) of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (15).

Figure S2.18. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (**15**).

Figure S2.19. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (15).

Figure S2.20. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (15).

Figure S2.21. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (**15**).

Figure S2.22. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (15).

Figure S2.23. MS (ESI+) selected peak of complex [Pt(CNC-H)(MeCN)(PPh₃)](ClO₄) (15).

2.4. Spectra of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

Figure S2.25. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

Figure S2.26. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

48 46 44 42 40 38 36 34 32 [ppm] 16 14

Figure S2.27. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

Figure S2.28. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

Figure S2.29. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

Figure S2.30. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

Figure S2.31. MS (MALDI+ DCTB) selected peak of complex [Pd(CNC-H)(MeCN)(PPh₃)](ClO₄) (16).

2.5. Spectra of complex [Pt(CNC-H)(H₂O)(PPh₃)](ClO₄) (17).

Figure S2.32. IR spectrum of complex [Pt(CNC-H)(H₂O)(PPh₃)](ClO₄) (17).

7.2 7.1 7.0 6.9 [ppm] 6.1 6.0 5.9 8.5 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 8.3 8.2 6.8 6.7 6.3 6.2 8.4 6.6 6.5 6.4

Figure S2.33. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(H₂O)(PPh₃)](ClO₄) (17).

Figure S2.34. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(H₂O)(PPh₃)](ClO₄) (17).

Figure S2.35. MS (MALDI+ DCTB) selected peak of complex [Pt(CNC-H)(H₂O)(PPh₃)](ClO₄) (17).

2.6. Spectra of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (18).

Figure S2.36. IR spectrum of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (18).

Figure S2.37. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (18).

Chapter 2 S31

Figure S2.38. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (**18**).

Figure S2.39. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (18).

Chapter 2 S32

Figure S2.40. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (**18**).

Figure S2.41. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (**18**).

Figure S2.42. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (18).

Figure S2.43. MS (MALDI+ DCTB) selected peak of complex [Pd(CNC-H)(H₂O)(PPh₃)](ClO₄) (18).

2.7. Spectra of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (19).

Figure S2.44. IR spectrum of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (19).

Figure S2.45. ¹H NMR spectrum (CD_2Cl_2 , RT) of complex [Pt(CNC-H)(tht)(PPh₃)](ClO_4) (19).

Figure S2.46. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (**19**).

Figure S2.47. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (19).

Chapter 2 S36

Figure S2.48. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (**19**).

Figure S2.49. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (**19**).

Figure S2.50. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (19).

Figure S2.51. MS (MALDI+ DCTB) selected peak of complex [Pt(CNC-H)(tht)(PPh₃)](ClO₄) (19).

2.8. Spectra of complex [Pd(CNC-H)(tht)(PPh₃)](TfO) (20).

Figure S2.52. IR spectrum of complex [Pd(CNC-H)(tht)(PPh₃)](TfO) (20).

Figure S2.53. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(tht)(PPh₃)](TfO) (20).

Figure S2.54. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(tht)(PPh₃)](TfO) (**20**).

Figure S2.55. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(tht)(PPh₃)](TfO) (20).

Figure S2.56. ${}^{19}F{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H)(tht)(PPh₃)](TfO) (20).

Figure S2.57. MS (MALDI+ DCTB) selected peak of complex [Pd(CNC-H)(tht)(PPh₃)](TfO) (20).

2.9. Spectra of complex [Pt(CNC-H)(µ-S-2Py)]2 (21).

Figure S2.59. ¹H NMR (CD₂Cl₂, RT) spectrum of complex [Pt(CNC-H)(μ -S-2Py)]₂ (21).

Figure S2.60. ¹H-¹H COSY NMR (CD₂Cl₂, RT) spectrum of complex [Pt(CNC-H)(µ-S-2Py)]₂ (**21**).

Figure S2.61. MS (MALDI+ DCTB) selected peaks of complex [Pt(CNC-H)(µ-S-2Py)]₂ (21).

2.10. Spectra of complex [Pt(CNC-H)(8-hq)] (22).

Figure S2.62. IR spectrum of complex [Pt(CNC-H)(8-hq)] (22).

Figure S2.63. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(8-hq)] (22).

Chapter 2 S44

Figure S2.64. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(8-hq)] (22).

Figure S2.65. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(8-hq)] (22).

Chapter 2 S45

Figure S2.66. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(8-hq)] (22).

Figure S2.67. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(8-hq)] (22).

Figure S2.68. MS (MALDI+ DCTB) selected peak of complex [Pt(CNC-H)(8-hq)] (22).

2.11. Spectra of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-O)}] (23).

Figure S2.69. IR spectrum of complex $[Pt(CNC-H){PPh_2(C_6H_4-o-O)}]$ (23).

Figure S2.70. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-o-O)}] (23).

Figure S2.71. $^{1}H-^{1}H$ COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-O)}] (23).

Figure S2.72. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-O)}] (23).

Figure S2.73. $^{1}H^{-13}C$ HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-O)}] (23).

Figure S2.74. $^{1}H^{-13}C$ HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-O)}] (23).

Figure S2.75. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-O)}] (23).

Figure S2.76. MS (ESI+) selected peak of complex $[Pt(CNC-H){PPh_2(C_6H_4-o-O)}]$ (23).

2.12. Spectra of complex [Pd(CNC-H) {PPh₂(C₆H₄-*o*-O)}] (24).

Figure S2.77. IR spectrum of complex $[Pd(CNC-H){PPh_2(C_6H_4-o-O)}]$ (24).

Figure S2.78. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-o-O)}] (24).

Figure S2.79. $^{1}H^{-1}H$ COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-O)}] (24).

Figure S2.80. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-O)}] (24).

Figure S2.81. 1 H- 13 C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-O)}] (24).

Figure S2.82. ^{1}H - ^{13}C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-O)}] (24).

Figure S2.83. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-O)}] (24).

Figure S2.84. MS (MALDI+ DCTB) molecular peak of complex [Pd(CNC-H) {PPh₂(C₆H₄-*o*-O)}] (24).

2.13. Spectra of complex [Pt(CNC-H)(NC5H4-o-COO)] (25).

Figure S2.85. IR spectrum of complex [Pt(CNC-H)(NC₅H₄-*o*-COO)] (25).

Figure S2.86. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(NC₅H₄*o*-COO)] (**25**).

Figure S2.87. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(NC₅H₄-*o*-COO)] (**25**).

Figure S2.88. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(NC₅H₄-*o*-COO)] (**25**).

Chapter 2 S57

Figure S2.89. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(NC₅H₄-*o*-COO)] (**25**).

Figure S2.90. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H)(NC₅H₄-*o*-COO)] (25).

Figure S2.91. MS (MALDI+ DCTB) selected peak of complex [Pt(CNC-H)(NC₅H₄-*o*-COO)] (25).

2.14. Spectra of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (26).

Figure S2.92. IR spectrum of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (26).

Figure S2.93. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-o-COO)}] (26).

Figure S2.94. ${}^{1}H-{}^{1}H$ COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (26).

Figure S2.95. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (26).

Figure S2.96. $^{1}H^{-13}C$ HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (26).

Figure S2.97. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-COO)] (**26**).

Figure S2.98. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (26).

Figure S2.99. MS (MALDI+ DCTB) selected peak of complex [Pt(CNC-H){PPh₂(C₆H₄-o-COO)}] (26).

2.15. Spectra of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (27).

Figure S2.100. IR spectrum of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (27).

8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 [ppm]

Figure S2.101. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-o-COO)}] (27).

Chapter 2 S64

Figure S2.102. $^{1}H-^{1}H$ COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (27).

Figure S2.103. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H) {PPh₂(C₆H₄-*o*-COO)}] (27).

Figure S2.104. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex $[Pd(CNC-H){PPh_2(C_6H_4-o-COO)}]$ (27).

Figure S2.105. ${}^{1}H{}^{-13}C$ HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-o-COO)}] (27).

Figure S2.106. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (27).

Figure S2.107. MS (MALDI+ DCTB) molecular peak of complex [Pd(CNC-H){PPh₂(C₆H₄-*o*-COO)}] (27).

3. Computational details

Density Functional Theory (DFT) calculations were carried out with the Gaussian 16 suite of programs,³ using the BP-86 density functional⁴ together with Grimme's D3 dispersion correction.⁵ The ECP-60-mwb pseudopotential⁶ was used for platinum, the ECP-28-mwb pseudopotential was used for palladium,⁶ and the 6-31G(d)⁷ basis set was used for all other atoms. Geometry optimizations were performed without any symmetry constraint, either in CH₂Cl₂, acetone or CH₃CN by using the solvation model based on density (SMD)⁸. Stationary points were characterized by calculating the Hessian matrix analytically to confirm that all species are minima (no imaginary frequencies, with exception of INT2 for the reaction with 2-pyridinecarboxilic acid, which showed one very low-intensity imaginary frequency) or transition states (one single imaginary frequency) on the potential energy surface. Atomic coordinates (x, y, z) for the optimized structures are included in a separate file (*DFT-chapter2.xyz*).

4. References

- (1) CrysAlis Pro 1.171.39.44a, Rigaku Oxford Diffraction 2018.
- (2) Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.
- (3) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*, Wallingford, CT, **2016**.
- (4) a) Becke, D. *Phys. Rev. A* 1988, *38*, 3098-3100. b) Perdew, J. P. *Phys. Rev. B* 1986, *33*, 8822-8824.
- (5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- (6) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. *Theor. Chim. Acta* 1990, 77, 123–141.
- a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. b)
 Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
- Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.

Supporting Information

for

Chapter 3. Reactivity of platinum (II) and palladium (II) cyclometallated substrates towards sources of Me⁺.

•	1. Crystal data and structural refinement	S2
•	2. IR, NMR and MS spectra of complexes	S7
•	3. Computational details	S32
•	4. References	S33

1. Crystal data and structural refinement

Crystal data and other details of the structure analyses are presented in Tables S3.1 and S3.2. Suitable crystals for X-Ray diffraction studies were obtained by slow diffusion of *n*-hexane into concentrated solutions of the complexes in 3 mL of CH₂Cl₂ or acetone. Crystals were mounted at the end of a quartz fibre. The radiation used in all cases was graphite monochromated Mo-K_a ($\lambda = 71.073$ pm). X-Ray intensity data were collected on an Oxford Diffraction Xcalibur diffractometer. The diffraction frames were integrated and corrected from absorption by using the CrysAlis RED program.¹ The structures were solved by Patterson and Fourier methods and refined by full-matrix least squares on F^2 with SHELXL.² All atoms were assigned anisotropic displacement parameters and refined without positional constraints. The positions of the H atoms were constrained to idealised geometries and assigned isotropic displacement parameters equal to 1.2 or 1.5 times the U_{iso} values of their respective parent atoms. Full-matrix least-squares refinement of the models against F^2 converged to final residual indices given in Tables S3.1 and S3.2.

	28	29 ·CH ₂ Cl ₂	30	$31 \cdot CH_2Cl_2$	
Formula	C ₃₆ H ₂₉ INPPt	C ₃₆ H ₂₉ INPPt ·CH ₂ Cl ₂	$C_{38}H_{32}ClN_2O_4PPt$	C ₃₅ H ₂₉ INPPd ·CH ₂ Cl ₂	
M_t	828.56	913.49	842.16	824.80	
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	
Space group	P21/c	$P2_{1}/c$	P-1	<i>P2</i> ₁ / <i>c</i>	
a/Å	8.9792(2)	17.9149(2)	10.04095(1)	17.8942(3)	
b/Å	14.8014(3)	11.76174(2)	10.37391(1)	11.7904(2)	
c/Å	21.6854(4)	15.7395(2)	15.61981(2)	15.7499(3)	
a/°	90	90	91.7421(8)	90	
β/°	91.6012(2)	95.1962(12)	96.8298(9)	95.3038(17)	
γ/ ⁰	90	90	92.5803(9)	90	

Table S3.1. Crystal data and structure refinement for complexes [PtIMe(CNC)(PPh3)] (28), [Pt(CN-o-tol)I(PPh3)]·CH2Cl2 (29·CH2Cl2),[Pt(CN-o-tol)(MeCN)(PPh3)](ClO4) (30) and [Pd(CN-o-tol)I(PPh3)] (31·CH2Cl2).

$V/\text{\AA}^3$	2880.97(1)	3302.85(8)	1612.79(3)	3308.66(10)
Ζ	4	4	2	4
$D_c/\mathrm{g~cm^{-3}}$	1.910	1.837	1.734	1.656
T/K	100(2)	100(2)	293(2)	293(2)
μ/mm^{-1}	6.025	5.421	4.528	1.731
<i>F</i> (000)	1592	1760	832	1632
2θ range/°	5.4-56.6	5.4-56.4	5.6-56.8	5.8-50.0
Collected reflections	28098	25929	62383	29533
Unique reflections	6231	7136	7438	5812
R _{int}	0.0460	0.0351	0.0349	0.0607
$R_1, w R_2^a (I > 2\sigma(I))$	0.0311, 0.0695	0.0274, 0.0622	0.0217, 0.0488	0.0450, 0.1156
$R_1, w R_2^a$ (all data)	0.0390, 0.0736	0.0356, 0.0740	0.0244, 0.0500	0.0508, 0.1202
GOF $(F^2)^b$	1.029	1.114	1.036	1.066

 ${}^{a}R_{1} = \sum(|F_{o}| - |F_{c}|) / \sum |F_{o}|. wR_{2} = \left[\sum w \left(F_{o}^{2} - F_{c}^{2}\right)^{2} / \sum w(F_{o}^{2})^{2}\right]^{1/2}. {}^{b} \text{ Goodness-of-fit} = \left[\sum w \left(F_{o}^{2} - F_{c}^{2}\right)^{2} / (n_{obs} - n_{param})\right]^{1/2}.$

	32	33 ·0.75Me ₂ CO	35
Formula	C ₃₆ H ₂₈ NPPt	C ₃₇ H ₃₁ INPPt	C ₃₆ H ₂₉ ClNPPt
		·0.75Me ₂ CO	
M_t	700.65	886.14	737.11
Crystal system	monoclinic	monoclinic	monoclinic
Space group	<i>P2</i> ₁ / <i>c</i>	C2/c	<i>P2</i> ₁
a/Å	15.53448(2)	32.1325(5)	10.0613(3)
b/Å	17.7690(2)	8.54546(1)	8.2138(4)
c/Å	9.75836(1)	27.7966(5)	17.0990(7)
a/°	90	90	90
$\beta^{\prime \circ}$	91.9145(9)	112.078(2)	90.175(4)
γ/ ⁰	90	90	90

 Table S3.2. Crystal data and structure refinement for complexes and [Pt(CNC-Me)(PPh₃)] (32), [Pt(CN-2,6-xyl)I(PPh₃)]·0.75Me₂CO

 (33·0.75Me₂CO) and [Pt(CN-o-tol)Cl(PPh₃)] (35).
$V/Å^3$	2692.12(5)	7072.9(2)	1413.08(1)
Ζ	4	8	2
$D_c/\mathrm{g~cm^{-3}}$	1.729	1.664	1.732
T/K	100(2)	100(2)	100(2)
μ/mm^{-1}	5.299	4.915	5.143
<i>F</i> (000)	1376	3440	724
2θ range/°	5.4-56.6	5.3-56.8	5.5-56.6
Collected reflections	50852	28346	16248
Unique reflections	6194	7624	5933
$R_{ m int}$	0.0405	0.0276	0.0740
$R_1, w R_2^a (I > 2\sigma(I))$	0.0233, 0.0506	0.0302, 0.0766	0.0373, 0.0661
R_1 , wR_2^a (all data)	0.0281, 0.0520	0.0343, 0.0790	0.0505, 0.0689
GOF $(F^2)^b$	1.006	1.020	1.008

^{*a*} $R_1 = \sum (|F_o| - |F_c|) / \sum |F_o|$. $wR_2 = [\sum w (F_o^2 - F_c^2)^2 / \sum w (F_o^2)^2]^{1/2}$. ^{*b*} Goodness-of-fit = $[\sum w (F_o^2 - F_c^2)^2 / (n_{obs} - n_{param})]^{1/2}$.

2. IR, NMR and MS spectra of complexes

2.1. Spectra of complex [PtIMe(CNC)(PPh₃)] (28).

Figure S3.1. IR spectrum of complex [PtIMe(CNC)(PPh₃)] (28).

Figure S3.2. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [PtIMe(CNC)(PPh₃)] (28).

Figure \$3.3. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [PtIMe(CNC)(PPh₃)] (28).

Figure S3.4. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [PtIMe(CNC)(PPh₃)] (28).

Figure S3.5. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [PtIMe(CNC)(PPh₃)] (28).

Figure S3.6. $^{1}H^{-13}C$ HMBC NMR spectrum (CD₂Cl₂, RT) of complex [PtIMe(CNC)(PPh₃)] (28).

Figure S3.7. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [PtIMe(CNC)(PPh₃)] (28).

Figure S3.8. MS (MALDI+ DCTB) spectrum of complex [PtIMe(CNC)(PPh₃)] (28).

2.2. Spectra of complex [Pt(CN-o-tol)I(PPh₃)] (29).

Figure S3.9. IR spectrum of complex [Pt(CN-o-tol)I(PPh₃)] (29).

Figure S3.10. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)I(PPh₃)] (29).

Figure S3.11. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)I(PPh₃)] (**29**).

Figure S3.12. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-o-tol)I(PPh₃)] (29).

Figure S3.13. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)I(PPh₃)] (**29**).

Figure S3.14. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN*o*-tol)I(PPh₃)] (**29**).

Figure S3.15. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)I(PPh₃)] (29).

Figure S3.16. MS (MALDI+ DCTB) spectrum of complex [Pt(CN-*o*-tol)I(PPh₃)] (29).

2.3. Spectra of complex [Pt(CN-o-tol)(MeCN)(PPh₃)](ClO₄) (30).

Figure S3.17. IR spectrum of complex [Pt(CN-o-tol)(MeCN)(PPh₃)](ClO₄) (30).

Figure S3.18. ¹H NMR spectrum (CD_2Cl_2 , RT) of complex [Pt(CN-*o*-tol)(MeCN)(PPh₃)](ClO₄) (30).

Figure S3.19. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)(MeCN)(PPh₃)](ClO₄) (**30**).

Figure S3.20. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-o-tol)(MeCN)(PPh₃)](ClO₄) (30).

Figure S3.21. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)(MeCN)(PPh₃)](ClO₄) (**30**).

Figure S3.22. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN*o*-tol)(MeCN)(PPh₃)](ClO₄) (**30**).

Figure S3.23. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)(MeCN)(PPh₃)](ClO₄) (**30**).

Figure S3.24. MS (MALDI+ DCTB) selected peak of complex [Pt(CN-o-tol)(MeCN)(PPh₃)](ClO₄) (30).

2.4. Spectra of complex [Pt(CNC-Me)(PPh₃)] (32).

Figure S3.25. IR spectrum of complex [Pt(CNC-Me)(PPh₃)] (32).

Figure S3.26. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-Me)(PPh₃)] (32).

Figure S3.27. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-Me)(PPh₃)] (**32**).

Figure S3.28. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-Me)(PPh₃)] (32).

Figure S3.29. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-Me)(PPh₃)] (**32**).

Figure S3.30. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-Me)(PPh₃)] (**32**).

Figure S3.31. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CNC-Me)(PPh₃)] (32).

Figure S3.32. MS (MALDI+ DCTB) selected peak of complex [Pt(CNC-Me)(PPh₃)] (32).

2.5. Spectra of complex [Pt(CN-2,6-xyl)I(PPh₃)] (33).

Figure S3.33. IR spectrum of complex [Pt(CN-2,6-xyl)I(PPh₃)] (33).

Figure S3.34. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-2,6-xyl)I(PPh₃)] (33).

Figure S3.35. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-2,6-xyl)I(PPh₃)] (**33**).

Figure S3.36. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-2,6-xyl)I(PPh₃)] (33).

Figure S3.37. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-2,6-xyl)I(PPh₃)] (**33**).

Figure S3.38. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-2,6-xyl)I(PPh₃)] (**33**).

Figure S3.39. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-2,6-xyl)I(PPh₃)] (33).

Figure S3.40. MS (MALDI+ DCTB) selected peak of complex [Pt(CN-2,6-xyl)I(PPh₃)] (33).

2.6. Spectra of complex [Pt(CN-o-tol)Cl(PPh₃)] (35).

Figure S3.41. IR spectrum of complex [Pt(CN-o-tol)Cl(PPh₃)] (35).

Figure S3.42. ¹H NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-o-tol)Cl(PPh₃)] (35).

Figure S3.43. ¹H-¹H COSY NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)Cl(PPh₃)] (**35**).

Figure S3.44. ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-o-tol)Cl(PPh₃)] (35).

Figure S3.45. ¹H-¹³C HSQC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)Cl(PPh₃)] (**35**).

Figure S3.46. ¹H-¹³C HMBC NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN*o*-tol)Cl(PPh₃)] (**35**).

Figure S3.47. APT ${}^{13}C{}^{1}H$ NMR spectrum (CD₂Cl₂, RT) of complex [Pt(CN-*o*-tol)Cl(PPh₃)] (35).

Figure S3.48. MS (MALDI+ DCTB) molecular peak of complex [Pt(CN-o-tol)Cl(PPh₃)] (35).

3. Computational details

Density Functional Theory (DFT) calculations were carried out with the Gaussian 16^3 suite of programs, using the BP-86 density functional⁴ together with Grimme's D3 dispersion correction.⁵ The ECP-60-mwb pseudopotential⁶ was used for platinum, the ECP-46-mwb pseudopotential was used for iodine,⁶ and the $6-31G(d)^7$ basis set was used for all other atoms. Geometry optimizations were performed without any symmetry constraint, either in CH₂Cl₂ or CH₃CN by using the solvation model based on density (SMD)⁸ or in the gas phase. Stationary points were characterized by calculating the Hessian matrix analytically to confirm that all species are minima (no imaginary frequencies) or transition states (one single imaginary frequency) on the potential energy surface. Conceptual DFT post analysis was performed from the optimized geometry obtained from Gaussian 16, using the Multiwfn package.⁹ Atomic coordinates (x, y, z) for the optimized structures are included in a separate file (*DFT-chapter3.xyz*).

4. References

- (1) CrysAlis Pro 1.171.39.44a, Rigaku Oxford Diffraction 2018.
- (2) Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3-8.
- (3) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16 Rev. C.01*, Wallingford, CT, **2016**.
- (4) a) Becke, D. *Phys. Rev. A* 1988, *38*, 3098-3100 b) Perdew, J. P. *Phys. Rev. B* 1986, *33*, 8822-8824.
- (5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- (6) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. *Theor. Chim. Acta* 1990, 77, 123–141.
- a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724-728. b)
 Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213-222.
- Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.
- (9) Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592.