000145244 001__ 145244
000145244 005__ 20241015122513.0
000145244 0247_ $$2doi$$a10.1038/s43246-021-00119-0
000145244 0248_ $$2sideral$$a124030
000145244 037__ $$aART-2021-124030
000145244 041__ $$aeng
000145244 100__ $$0(orcid)0000-0001-7246-2149$$aHaro, M.$$uUniversidad de Zaragoza
000145244 245__ $$aNano-vault architecture mitigates stress in silicon-based anodes for lithium-ion batteries
000145244 260__ $$c2021
000145244 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145244 5203_ $$aNanomaterials undergoing cyclic swelling-deswelling benefit from inner void spaces that help accommodate significant volumetric changes. Such flexibility, however, typically comes at a price of reduced mechanical stability, which leads to component deterioration and, eventually, failure. Here, we identify an optimised building block for silicon-based lithium-ion battery (LIB) anodes, fabricate it with a ligand- and effluent-free cluster beam deposition method, and investigate its robustness by atomistic computer simulations. A columnar amorphous-silicon film was grown on a tantalum-nanoparticle scaffold due to its shadowing effect. PeakForce quantitative nanomechanical mapping revealed a critical change in mechanical behaviour when columns touched forming a vaulted structure. The resulting maximisation of measured elastic modulus (similar to 120GPa) is ascribed to arch action, a well-known civil engineering concept. The vaulted nanostructure displays a sealed surface resistant to deformation that results in reduced electrode-electrolyte interface and increased Coulombic efficiency. More importantly, its vertical repetition in a double-layered aqueduct-like structure improves both the capacity retention and Coulombic efficiency of the LIB. Lithiation of anodes during cycling of lithium-ion batteries generates stresses that reduce operation lifetime. Here, a composite silicon-based anode with a nanoscale vaulted architecture shows high mechanical stability and electrochemical performance in a lithium-ion battery.
000145244 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-108247RA-I00$$9info:eu-repo/grantAgreement/ES/MICINN/RYC-2018-025222-I
000145244 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145244 594__ $$a4.0$$b2021
000145244 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145244 700__ $$aKumar, P.
000145244 700__ $$aZhao, J.L.
000145244 700__ $$aKoutsogiannis, P.
000145244 700__ $$aPorkovich, A.J.
000145244 700__ $$aZiadi, Z.
000145244 700__ $$aBouloumis, T.
000145244 700__ $$aSingh, V.
000145244 700__ $$0(orcid)0000-0001-6040-1920$$aJuarez-Perez, E.J.
000145244 700__ $$aToulkeridou, E.
000145244 700__ $$aNordlund, K.
000145244 700__ $$aDjurabekova, F.
000145244 700__ $$aSowwan, M.
000145244 700__ $$aGrammatikopoulos, P.
000145244 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000145244 773__ $$g2, 1 (2021), 16 [10 pp]$$pCommun. mater.$$tCommunications materials$$x2662-4443
000145244 8564_ $$s2059414$$uhttps://zaguan.unizar.es/record/145244/files/texto_completo.pdf$$yVersión publicada
000145244 8564_ $$s1790608$$uhttps://zaguan.unizar.es/record/145244/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145244 909CO $$ooai:zaguan.unizar.es:145244$$particulos$$pdriver
000145244 951__ $$a2024-10-15-10:50:40
000145244 980__ $$aARTICLE