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A B S T R A C T

Determining whether Global Average Temperature (GAT) is an integrated process of order 1, I(1), or a
stationary process around a trend function is crucial for detection, attribution, impact, and forecasting studies
of climate change. In this paper, we investigate the nature of trends in GAT building on the analysis of
individual temperature grids. Our micro-founded evidence suggests that GAT is stationary around a non-linear
deterministic trend in the form of a linear function with one structural break. This break can be attributed to
a combination of breaks on individual grids and the standard aggregation method under acceleration in global
warming.
1. Introduction

Global Average Temperature (GAT) observed since the late 1800s
exhibits an upward trend widely interpreted as evidence of global
warming (GW) (Mann et al., 1998; Gadea and Gonzalo, 2020; AR6-
IPCC, 2021). The specific nature of the trend is an open question in
the empirical literature with a non-trivial answer. Neither theoretical
climate nor economic models with climatic variables help to identify a
particular trend specification.

From the quantitative climate perspective, two dominant strands of
literature debate. A first group of authors assume stochastic trends. Gor-
don (1991) and Yan and Wu (2010) use a random walk model to
show that the trend in GAT can be attributed to random fluctuations
rather than to specific physical drivers. Similarly, Woodward and Gray
(1995) concludes that GAT has a unit root instead of a deterministic
trend and suggests that temperature forecasts will not predict the
observed trend to continue. The literature using cointegration analy-
sis (Kaufmann et al., 2006, 2010; Dergiades et al., 2016; Bruns et al.,
2020; Chang et al., 2020; Pretis, 2020) also assumes stochastic trends,
but in contrast, their attribution argument is that the I(1) nature of
GAT is inherited from its association with the anthropogenic forcing
from CO2 and other greenhouse gases.1 Other recent references using
I(1) models for GAT and climate drivers include Turasie and Coelho
(2016), Reid (2017), and Cummins et al. (2022). A second group of
authors like Seidel and Lanzante (2004), Mudelsee (2019) and Gay-
Garcia et al. (2009), or Estrada and Perron (2017), focus more on the
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1 Bennedsen et al. (2023) studies the statistical properties of radiative forcing from different components (including CO2) and find that the series follows an
I(1), close to an I(2) process. Stochastic trends in radiative forcing are imparted by economic activity and atmospheric lifetimes.

statistical properties of the GAT series and conclude that the process
follows a clear deterministic trend with possible structural breaks. The
assumption of deterministic trends is also implicit in the statistical
procedures implemented by the Intergovernmental Panel on Climate
Change (IPCC) on its Sixth Assessment (AR6-IPCC, 2021) and previous
reports. A mixture of both models for GAT is proposed in McKitrick
et al. (2023) who conclude that if there is an I(1) component it must
be very small.

Determining whether GAT is an I(1) process or a stationary process
around a non-linear trend is crucial for detection, attribution, and
impact studies of climate change (see McKitrick et al. 2023). If GAT
is assumed to be I(1), attribution of GW using cointegration mod-
els involves demonstrating that the stochastic trends in temperature
and the radiative forcing from CO2 and other greenhouse gases are
common. However, the I(1) assumption also implies that exogenous
temporary shocks like solar flares or volcanic eruptions generate long-
lasting effects on temperature, which does not seem to be the case in
the observed record. If trends are detected to be deterministic, detection
of GW is possible through traditional trend-tests. But this assumption
poses challenges for attribution and impact studies due to the problem
of ‘unbalanced’ relations. In attribution studies, the mismatch in the
order of integration between GAT and anthropogenic forcing hinders
the estimation of the climate sensitivity (for a review, see Rohling et al.
(2018)) using regression analysis. This is also the case for the impact
studies that rely on dynamic growth equations linking the growth
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Fig. 1. Observation process for gridded temperatures.
rate of per-capita output with temperatures (see Dell et al., 2012 and
references therein). Beyond this literature, understanding the nature of
the trends is helpful for producing more accurate long-term forecasts
as stressed by Kaufmann et al. (2010).

The existing evidence regarding the nature of trends in GAT relies
on the analysis of aggregated series. This paper contributes to the
debate by offering a micro-founded explanation for the observed trends
based on the study of the trend dynamics of individual units used in
computing those averages. Consistent with the hypothesis of Seidel and
Lanzante (2004) and Gay-Garcia et al. (2009), our findings suggest that
GAT is trend-stationary with a structural break in the trend function.
Unit root tests implemented on individual units provide evidence in
the same direction. We also discuss the effects of the aggregation
method on generating spurious structural breaks or accentuating the
existing breaks in the data. Concretely, our main hypothesis is that the
break in GAT can be attributed to a combination of individual grid
breaks and the standard aggregation method under warming acceler-
ation. Depending on the strength of the break’s signal, these situations
may bias standard unit root tests towards the non-rejection zone. We
illustrate this hypothesis through a set of Monte-Carlo simulations
assuming linear and broken-trend individual processes and emulating
the standard aggregation methods used to compute the GAT.

The rest of the paper is organized as follows. Section 2 provides
empirical evidence of the nature of trends in aggregated and individual
temperature series. Section 3 presents the simulation exercises. Finally,
Section 4 concludes.

2. Empirical evidence

2.1. Data

Temperature data is obtained from the latest version of the Had-
CRUT5 dataset2 jointly developed by the Climatic Research Unit (CRU)
at the University of East Anglia and the Hadley Centre at the UK Met
Office. For a more detailed information about the dataset, see Morice
et al. (2021). In our empirical analysis we use the series of gridded
temperature anomalies from the period 1961–1990 at a resolution of
5◦ × 5◦.3 A feature of the dataset is that the number of grids with non-
missing data is relatively low during the early part of the record and
gradually increases over time. Panel (a) of Fig. 1 presents the number
of grids that are continuously observed from the given year onwards,
while Panel (b) plots the proportion of non-missing grids (out of 2592)
each year.

2 Accessible at https://crudata.uea.ac.uk/cru/data/temperature/.
3 Similar results are obtained if we use raw-stations data.
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2.2. Computing average temperature

Two alternative methods to compute average temperatures are con-
sidered. Method A aggregates all grids with non-missing data each year.
For each 𝑡, the average 𝑇̄𝐴

𝑡 is obtained as:

𝑇̄𝐴
𝑡 = 1

𝑁𝑡

𝑁
∑

𝑖=1
𝐼𝑖𝑡 × 𝑇𝑖𝑡, 𝑡 = 1,… , 𝑇 , (1)

where 𝑇𝑖𝑡 is the temperature in grid 𝑖 at year 𝑡, 𝐼𝑖𝑡 is an indicator for 𝑇𝑖𝑡
non-missing, and 𝑁𝑡 =

∑𝑁
𝑖=1 𝐼𝑖𝑡. Due to the non-uniform observation

process for grids, 𝑁𝑡 grows with 𝑡. Method A closely resembles the
standard aggregation procedure adopted by CRU.

Method B, on the other hand, uses the set of grids with non-missing
data throughout the entire sample period, ensuring a stable number of
grids on the computation. For each 𝑡, 𝑇̄ 𝐵

𝑡 is obtained as:

𝑇̄ 𝐵
𝑡 = 1

|𝑆|
∑

𝑖∈𝑆
𝑇𝑖𝑡, 𝑡 = 1,… , 𝑇 , (2)

where 𝑆 = {𝑖 ∶ 𝐼𝑖𝑡 = 1, ∀𝑡} and |𝑆| is the cardinality of 𝑆. Method B
is the approach adopted by Gadea and Gonzalo (2020) to estimate the
mean and any other distributional characteristic of temperature.

Separate averages are calculated for the Northern (NH) and South-
ern Hemisphere (SH) using data from 1880 to 2022.4 Global tempera-
ture is obtained as a weighted average of both hemispheres, with the
weights accounting for the difference in land areas. The estimated series
under each method are presented in Fig. 2.

2.3. Trends in average temperature

The nature of the trends in average temperatures is studied. The
test-statistics of the Augmented Dickey Fuller (ADF) tests (Dickey and
Fuller, 1981) reported in Table 1 indicate that unit roots cannot be
rejected for the global and NH averages obtained under method A.5 For
method B series, the unit root is rejected in all cases. A similar result is
obtained if, instead, the more efficient (Elliott et al., 1996) (ERS) test
is implemented. In addition, we implement the Kim and Perron (2009)
(KP) test allowing for a break in the trend function under both the null
and alternative hypothesis. In this case, the unit root is rejected in all

4 Only 155 grids are observed over the full sample period, with the majority
of them located in the NH.

5 This is the main evidence for Kaufmann et al. (2010) and related literature
to suggest stochastic trends in temperature.

https://crudata.uea.ac.uk/cru/data/temperature/
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Fig. 2. Temperature averages (1880–2022).
series including the method A global and NH averages.6 The Perron and
Yabu (2009) (PY) procedure to estimate deterministic trends with ei-
ther integrated or stationary noise components detect structural breaks
in all aggregated series.7 The breaks in the trend occurs around 1964–
65 and is consistent with the ‘‘onset of a sustained global warming’’
also described in Estrada et al. (2013), a period characterized by a large
increase in the rate of growth of temperatures and radiative forcing as
a consequence of the post-World-War-II economic expansion and the
consequent acceleration in the emissions of greenhouse gases.8

Our aggregated evidence aligns with the literature defending de-
terministic trends in temperature. Accounting for structural breaks,
specially in method A aggregates, is crucial for the conclusions about
unit roots. In method B aggregates, the signal of the break is not strong
enough to drive the ADF test towards the non-rejection area.

2.4. Trends in individual grids

Unit root tests implemented on individual grids strongly reject
the presence of unit roots. Results reported in Table 2 indicate that
the proportion of rejections in the ADF test is high across the three
sample periods considered. This proportion increases further when
implementing the KP test.9

Assuming that individual trends are deterministic, we first model
each individual grid through a linear-trend model:

𝑇𝑖𝑡 = 𝛽0𝑖 + 𝛽1𝑖𝑡 + 𝑒𝑖𝑡, 𝑖 = 1,… ., 𝑁, 𝑡 = 1,… ., 𝑇 , (3)

where 𝑒𝑖𝑡 = 𝜌𝑖𝑒𝑖𝑡−1 + 𝑣𝑖𝑡, |𝜌𝑖| < 1, and 𝑣𝑖𝑡 are uncorrelated. For
each sample period, we estimate Eq. (3) and generate density plots
of 𝛽1. Panel (a) in Fig. 3 shows that the density shifts to the right
in more recent samples, reflecting the well-known acceleration in the
GW process (Mann et al., 1998; AR6-IPCC, 2021; Hansen et al., 2023).

6 Following the suggestion of a Referee, we implemented the unit root
test in Otto (2021) allowing for a general slowly-varying deterministic trend
component. The results for the aggregated series align with the KP tests.

7 This result is robust even when we allow for polynomial trends. For
instance, the Vogelsang (1997) test assuming linear and quadratic trends
suggests a structural break that occurs in the linear term for both method
A and method B aggregates.

8 We study the possibility of a second break in the aggregated series
following the sequential procedure of Kejriwal and Perron (2010). No evidence
of a second break in either of the aggregated series is obtained.

9 The null of unit root is rejected in 100% of the cases with the Otto (2021)
test.
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Table 1
Test-statistics of the unit root tests and structural break detection analysis in average
temperatures (1880–2022).

Temperature series ADF test KP test PY-SB

Aggregation method A

Global −1.619 −5.514*** YES
Northern Hemisphere −0.863 −4.323*** YES
Southern Hemisphere −6.972*** −9.189*** YES

Aggregation method B

Global −4.336*** −7.569*** YES
Northern Hemisphere −4.413*** −7.680*** YES
Southern Hemisphere −8.5615*** −9.739*** YES

Notes: The table contains the tes𝑡-statistics of the ADF and KP unit root tests imple-
mented on each average temperature series. ADF-test equation includes an intercept
and a linear trend. Number of lags selected based on the BIC. The KP tests allows for
one break in the intercept and the linear slope under both the null and alternative
hypotheses. Critical values at the 1% of significance are −4.028 for the ADF-test and
−3.445 for the KP-test. ***, **, and * denotes rejection of the null hypothesis at 1, 5
and 10% level of significance respectively. Column PY-SB reports the conclusion about
the existence of structural breaks in the Perron and Yabu (2009) (PY) procedure.

Table 2
Proportion of rejections in the unit root tests and structural break detection analysis
on individual grids.

Sample ADF test KP test PY-SB

1880–2022 92.90% 97.42% 81.94%
1920–2022 88.15% 98.84% 67.05%
1960–2022 90.87% 97.01% 25.98%

Notes: The table reports the proportion of units for which the null of unit root is
rejected in the ADF and KP tests. The number of grids are 155, 346, and 635 for the
sample periods 1880-2022, 1920–2022, and 1960–2022, respectively. ADF-test equation
includes an intercept and a linear trend. Number of lags selected based on the BIC.
The KP tests allows for one break in the intercept and the linear slope under both
the null and alternative hypotheses. Tests at 1% of significance. Column PY-SB reports
the proportion of grids with structural breaks detected by the Perron and Yabu (2009)
(PY) procedure.

Focusing solely on the estimated slopes for the sample period 1960–
2022, the mean of the coefficient is higher for the set of grids that
appear later in the record.

Acceleration in GW, combined with the standard aggregation
method A, can trivially generate the breaks in aggregated series even
when the individual units follow a linear model. Consider the following
extreme case. During the initial part of the record, a set of 𝑁1 units with
an average trend-slope 𝛽1 are observed. Assume that at a certain period,
𝑇 ∗, a different set of 𝑁2 units start to be observed with average slope
𝛽 , with 𝛽 > 𝛽 . The slope of the average series is 𝛽 before 𝑇 ∗, and
2 2 1 1
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Fig. 3. Density of individual estimates.
(𝑁1𝛽1+𝑁2𝛽2)∕(𝑁1+𝑁2) after. For the average computed using Method
B the slope is 𝛽1 the full period. Depending on the weights, the ADF
test can be biased towards non-rejection.

Alternatively, we explore trend-breaks within individual grids:

𝑇𝑖𝑡 = 𝛼0𝑖 + 𝛼1𝑖𝐷𝑢𝑖 + 𝛾1𝑖𝑡 + 𝛾2𝑖𝐷𝑡𝑖 + 𝑒𝑖𝑡, 𝑖 = 1,… ., 𝑁, 𝑡 = 1,… ., 𝑇 , (4)

where 𝐷𝑢𝑖 = 1{𝑡 > 𝑇𝐵𝑖}, 𝐷𝑡𝑖 = 1{𝑡 > 𝑇𝐵𝑖} × (𝑡 − 𝑇𝐵𝑖), 𝑇𝐵𝑖 is the
period in which the structural break occurs for unit 𝑖, and 𝑒𝑖𝑡 follows
the same structure as before. This corresponds to model A3 in Kim and
Perron (2009) where 𝛾1𝑖 is the trend-slope before the break date, and
𝛾1𝑖+𝛾2𝑖 is the trend-slope after the break. According to the PY results in
Table 2, out of the 155 grids observed continuously from 1880 to 2022,
approximately 82% contain a break in the linear trend, with this break
occurring around 1965 as in the aggregated series. The densities of 𝛾1
and 𝛾1 + 𝛾2 plotted in Panel (b) of Fig. 3 provide micro-level evidence
of the warming acceleration phenomenon.

Aggregating individual grids with broken trends using either
method A or B results in average series with structural breaks, as those
in Fig. 2. Moreover, the aggregation method A under acceleration in
GW can deepen the break signal. Imagine that 𝑁1 grids are observed all
periods, with average parameters 𝛾̄11 and 𝛾̄12 as defined in Eq. (4), with
𝑇𝐵𝑖 = 𝑇 ∗ being the period of the individual break. Assume that at 𝑇 ∗ a
different set of 𝑁2 units start to be observed with average parameters
̄21 and 𝛾̄22 , with 𝛾̄21 + 𝛾̄22 > 𝛾̄11 + 𝛾̄12 to allow for warming acceleration.
Similar to the linear case, the slope of the method A average series is
̄11 before 𝑇 ∗, and [𝑁1(𝛾̄11 + 𝛾̄12 )+𝑁2(𝛾̄21 + 𝛾̄22 )]∕(𝑁1 +𝑁2) after. This slope
is higher than the method B average, which is 𝛾̄11 + 𝛾̄12 after 𝑇 ∗.

In summary, our individual evidence rejects the existence of unit
roots in individual grids. Structural breaks in aggregated series are
originated from individual breaks. The aggregation method A under
acceleration in GW can deepen the magnitude of such breaks. Due
to the small number of grids involved in the computation of method
B averages, the signal of the break is not strong enough to wrongly
drive the ADF test towards the conclusion of unit roots. For method A
averages, the non-rejection of the ADF test can be attributed to both
a higher signal, stemming from the utilization of more information
each period, and the deepening of the break due to the acceleration
in GW that implies the inclusion of more grids in periods of higher
trend. These hypotheses are further explored with simulations in the
next section.

3. Simulations

The proposed ‘micro-founded’ explanations for the nature of the
trends in aggregate temperatures are validated heuristically using sim-
ulations. We consider two alternatives to simulate the non-missing
indicator, 𝐼 :
𝑖𝑡
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• Alternative 1: A fixed number of units are non-missing during the
whole sample. A second group of series are missing during the
first 𝑇 ∗ periods, and non-missing from 𝑇 ∗ on. 𝑇 ∗ is set to 100 in
the simulations.

• Alternative 2: 𝐼𝑖𝑡 follows a Markov Switching (MS) process with
two states (missing and non-missing) and transition-probability
matrix 𝐏.

First, we analyze the case where individual units follow a linear-
trend model. Two groups of series are simulated:

Group 1: 𝑇 1
𝑖𝑡 = 𝛽10𝑖 + 𝛽11𝑖𝑡 + 𝑒1𝑖𝑡, 𝑖 = 1,… ., 𝑁1, 𝑡 = 1,… ., 𝑇 , (5)

Group 2: 𝑇 2
𝑖𝑡 = 𝛽20𝑖 + 𝛽21𝑖𝑡 + 𝑒2𝑖𝑡, 𝑖 = 1,… ., 𝑁2, 𝑡 = 1,… ., 𝑇 , (6)

where 𝛽21 > 𝛽11 and 𝑒𝑗𝑖𝑡 = 𝜌𝑗𝑖 𝑒
𝑗
𝑖𝑡−1 + 𝑣𝑗𝑖𝑡, 𝑗 = 1, 2. Observation alternatives

1 and 2 assume that stations entering later in the average computation
are chosen randomly from groups 1 or 2. To account for warming
acceleration, we define observation alternatives 1* and 2* assuming
that the series of group 2 (i.e. those with higher trend-slopes) appear
as non-missing later in the record.

The simulation parameters are set based on empirical evidence,
aiming to match simulated and observed trends in the aggregated
series. Specifically, we construct the empirical distribution of the es-
timates of a linear model fitted to the individual gridded data over
two different samples: 1880–2021 for group 1 and 1960–2021 for
group 2. Individual series are simulated using the following calibration:
𝛽10𝑖 ∼  (−0.7234, 0.42662), 𝛽11𝑖 ∼  (0.0108, 0.00432), 𝛽20𝑖 = −2.36, 𝛽21𝑖 ∼
 (0.0271, 0.01452). 𝛽20𝑖 is a fixed parameter defined to avoid abrupt
changes in the level of the aggregated series. The value of −2.36 is
determined by equating the average level of the group 1 and group
2 series after 𝑇 ∗ = 100 simulation periods, when the second group of
series begins to be observed under alternatives 1 and 1*.

Autocorrelation is accounted for by defining 𝜌1𝑖 ∼  (0.264, 0.11762),
𝜌2𝑖 ∼  (0.155, 0.17472), and 𝑣𝑗𝑖𝑡 ∼  (0, 2.90462), 𝑗 = 1, 2. These
autocorrelation parameters are obtained from the empirical distribution
of the estimates of an AR(1) model fitted on the residuals of each indi-
vidual regression. The value of 2.9046 for the standard deviation of the
error term is calibrated to match the residual variance of the observed
aggregated series with that of the simulated series. Specifically, the
standard deviation of the residuals after fitting a broken linear-trend
model to the method B average is 0.2333. For an aggregated series
calculated with 155 grids, this corresponds to an individual standard
deviation of 2.9046.

To specify the transition probability matrix 𝐏, the number of transi-
tions between missing and non-missing states in the data were counted
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Table 3
Proportion of non-rejections in the unit root tests and structural break detection analysis
on simulated averages (linear-trend model).

Alternative Aggregation method A Aggregation method B

ADF-test KP-test PY-SB ADF-test KP-test PY-SB

1 2.20% 0.20% 21.90% 0.10% 0.10% 3.60%
1* 70.60% 3.80% 99.90% 0.00% 0.00% 3.70%
2 1.30% 0.00% 11.30% 0.00% 0.00% 4.60%
2* 59.90% 5.40% 99.90% 0.00% 0.00% 4.20%

Notes: The table reports the proportion of times that the null of unit root is non-rejected
or the ADF and KP tests. Tests at 1% of significance. The PY-SB column reports the
roportion of times in which the aggregated series contain structural breaks according
o the Perron and Yabu (2009) procedure. For alternatives 1 and 1*, we set 𝑁1 = 150
nd 𝑁2 = 850. For alternatives 2 and 2*, the proportion of units observed from the
nitial period is set to 15%.

nd the empirical conditional probabilities were computed. We ob-
ained an initial matrix:

0 =
[

0.9950 0.0050
0.0087 0.9913

]

, (7)

here the entrance (𝑖, 𝑗) corresponds to the transition probability from
tate 𝑖 to state 𝑗, and state 1 represents a missing value. We impose that
fter the first non-missing value, the series remain non-missing for the
est of the record. Therefore, the second row of P is replaced by [0, 1],

and the used P becomes:

𝐏 =
[

0.9950 0.0050
0 1

]

. (8)

Sample size is 𝑇 = 150. For observation alternatives 1 and 1*, the
number of series in each group are set at 𝑁1 = 150 and 𝑁2 = 850;
for observation alternatives 2 and 2*, we impose that 15% of units are
observed from the initial period. In both cases, we aim to approximately
reproduce the proportion of continuously observed units from the
initial period, that is close to 15% in the North Hemisphere from 1880
onwards. Simulations are replicated 𝑅 = 1000 times.

Table 3 presents the proportion of non-rejections of the ADF and
KP tests for each observation alternative and aggregation method.
Additionally, it presents the proportion of times in which the aggre-
gated series contain a structural break according to the PY procedure.
Consistent with our hypothesis, even though the series are generated
without a unit root, the ADF test fails to reject the null hypothesis in
70.60% and 59.90% of cases for observation alternatives 1* and 2*,
respectively, using aggregation method A. The KP test, which allows
for structural breaks under the null and the alternative hypothesis,
detects far fewer unit roots. The generated breaks detected by the
PY procedure are entirely attributed to the aggregation process. For
aggregation method B, the unit root is rejected in almost all cases using
both the ADF and the KP tests. The proportion of series with breaks is
small and can be attributed to sample variability.

The analysis of the linear model without breaks serves to demon-
strate that under extreme conditions, where individual variables do not
exhibit breaks or unit roots, the aggregation process itself can introduce
spurious breaks that bias the ADF unit root tests if such breaks are not
adequately accounted for.

Next, lets consider the case where individual units contain one break
in the trend function. Similar to the previous case, we simulate two
groups of series of the form:

Group 1: 𝑇 1
𝑖𝑡 = 𝛼1

0𝑖 + 𝛼1
1𝑖𝐷

1
𝑢𝑖 + 𝛾11𝑖𝑡+ 𝛾12𝑖𝐷

1
𝑡𝑖 + 𝑒1𝑖𝑡, 𝑖 = 1,… ., 𝑁1, 𝑡 = 1,… ., 𝑇 ,

(9)

Group 2: 𝑇 2
𝑖𝑡 = 𝛼2

0𝑖 + 𝛼2
1𝑖𝐷

1
𝑢𝑖 + 𝛾21𝑖𝑡+ 𝛾22𝑖𝐷

2
𝑡𝑖 + 𝑒2𝑖𝑡, 𝑖 = 1,… ., 𝑁2, 𝑡 = 1,… ., 𝑇 ,
(10)
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Table 4
Proportion of non-rejections in the unit root tests and structural break detection analysis
on simulated averages (model with broken-trend).

Alternative Aggregation method A Aggregation method B

ADF-test KP-test PY-SB ADF-test KP-test PY-SB

1 95.30% 4.40% 99.70% 55.30% 2.40% 100%
1* 93.50% 5.90% 100% 18.30% 0.70% 99.60%
2 99.10% 1.00% 99.90% 52.60% 1.60% 100%
2* 98.30% 1.00% 100% 20.00% 0.60% 99.80%

Notes: The table reports the proportion of times that the null of unit root is non-rejected
for the ADF and KP tests. Tests at 1% of significance. The PY-SB column reports the
proportion of times in which the aggregated series contain structural breaks according
to the Perron and Yabu (2009) procedure. For alternatives 1 and 1*, we set 𝑁1 = 150
and 𝑁2 = 850. For alternatives 2 and 2*, the proportion of units observed from the
initial period is set to 15%.

where the variables and parameters are defined in Eq. (4), 𝑒𝑗𝑖𝑡 =
𝜌𝑗𝑖 𝑒

𝑗
𝑖𝑡−1 + 𝑣𝑗𝑖𝑡, 𝑗 = 1, 2, and we impose 𝛾̄22 > 𝛾̄12 to the capture warming

acceleration. As in the previous case, alternatives 1* and 2* assume
that the series in group 2 start to count later for the average compu-
tation. Individual series are simulated using the following calibration:
𝛼10𝑖, 𝛼

2
0𝑖 ∼  (−0.6061, 0.56422), 𝛼11𝑖, 𝛼

2
1𝑖 ∼  (−0.5524, 0.68992), 𝛾11𝑖, 𝛾

2
1𝑖 ∼

 (0.0110, 0.01742), 𝛾12𝑖,∼  (0.0182, 0.02332), 𝛾22𝑖,∼  (0.0271, 0.01452),
𝜌𝑗𝑖 ∼  (0.1101, 0.08992), and 𝑣𝑗𝑖𝑡 ∼  (0, 2.90462), 𝑗 = 1, 2. These values
are based on the estimates of fitting a model to the individual grids
allowing for a break in the trend. Other simulation parameters remain
as before.

Table 4 presents the proportion of non-rejections of the ADF and KP
tests, as well as the proportion of times in which the aggregated series
contain structural breaks according to the PY procedure. Consistent
with our hypothesis, when averages are computed using method A,
the unit root using the ADF test is non-rejected in more than 90% of
the cases under all observation alternatives. For alternatives 1 and 2,
the breaks in aggregated series detected using the PY procedure are
completely attributed to individual breaks, while for alternatives 1* and
2*, those breaks can be generated by a combination of both individual
grid breaks and the aggregation process under warming acceleration.

For method B, even though the original series contain a break and it
is inherited by the aggregated series (see PY-SB column), the signal of
the break is not always strong enough to drive the ADF test towards
the non-rejection zone. For alternatives 1* and 2*, that replicates
closely the real observation process, the ADF test detects unit roots only
18.30% and 20.00% of the cases, respectively. If the number of 𝑁1 units
or the proportion of units that are observed from the beginning of the
record is increased, the signal of the break eventually becomes stronger
and the ADF test concludes the presence of unit roots more frequently.
Notice that for both aggregation methods, the KP-test rejects unit roots
in almost all replications, showcasing the importance of accounting for
structural breaks under the null and the alternative hypothesis in the
unit roots testing procedure.

Once the existence of a break in the trend is established, disentan-
gling its source within the data is difficult, if not impossible, due to the
inherent identification problem. In the simulations, an approach is to
compare the trends in the method A aggregates before and after the
break, between alternatives 1 and 1* (or 2 versus 2*).10 However, in
the data, we observe method A and method B averages under the true
non-missing process. If we consider that the non-missing process is well
represented by alternative 1* (or 2*), it is required for identification to
assume that the observed method B average is a valid counterfactual for
the unobserved method A under alternative 1 (or 2), for a meaningful
comparison of trends. However, this assumption is very unlikely to

10 Any break in alternative 1 aggregates is due to individual breaks, while
breaks in alternative 1* are attributed to a combination of both individual
breaks and the aggregation procedure.
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hold in the data because both series are observed under the same
observational regime. Moreover, the true observational regime can be
more complex than alternative 1* (or 2*), with units entering and
going out of the record at any period. In this sense, the purpose of
the simulations is to emulate what is actually done in practice and to
heuristically demonstrate the potential mechanisms causing breaks in
the aggregated series.

4. Conclusions

Aggregate and micro-founded evidence do not support the hypoth-
esis of stochastic trends in temperature. Our evidence suggests that
temperatures averages are stationary around a non-linear trend, with
the non-linearity being modeled as a one-time break in a linear trend
function. The break can be attributed to a combination of individ-
ual grid breaks and the standard aggregation method under warming
acceleration. The aggregation method is relevant to bias ADF-tests
towards the non-rejection zone by amplifying the signal of the break.
Our findings carry important empirical implications for studies on the
detection, attribution, impact, and forecasting of GW. Radiative forcing
from anthropogenic greenhouse gases (such as CO2, methane, and
nitrous oxide) is modeled as an I(1), or even I(2) process. It intro-
duces a problem of ‘unbalanced’ regressions if the aim is to establish
human influence on GW using cointegration methods. A similar issue
is present on impact studies relating economic growth and temperature
data. Alternatives to study the relationship between temperature and
greenhouse gases include the use of co-trending methods robust to
either type of trends such as Chen et al. (2022), or to adequately
transform the forcing series to achieve balanced regressions. Bennedsen
et al. (2023), for instance, obtain that the CO2 concentrations series
in the first differences can be modeled as a trend stationary process,
therefore, a regression of temperature and 𝛥CO2 concentrations is a
valid balanced regression for attribution.

Data availability

Data will be made available on request.
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