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Abstract
The study of real discrete event systems requires the use of models to cope
with complexity and large scale. The only way to understand and analyse their
behaviour prior to implementation is, in practice, through distributed simu-
lation. Although it is a widely studied discipline, the difficulty of developing
efficient distributed simulation code remains a challenge. The use of model
driven engineering approaches allows a smooth way from informal specifica-
tions to executable code showing traces of the system behaviour. Formal models
allow to conduct the phases of this engineering process, and in this work, the
formalism is Petri nets. In the simulation literature, Petri nets have been shown
to be particularly suitable for modelling and simulation of discrete event sys-
tems. This article reviews the role of Petri nets as the core formalism to support
a model-driven engineering approach for the execution of large scale models
using distributed simulation. It deals with different aspects related to the Petri
net-based languages used at different stages of the modelling and simulation
process, from conceptual modelling of complex systems to the generation of code
for executing simulations of Petri net-based models. After the review, the arti-
cle proposes an efficient representation of Petri net-based models. It is analysed
from the perspective of the essential properties required for distributed simu-
lation, and was found to provide efficient execution, scalability and dynamic
configuration. The article highlights the importance of considering modelling
constraints in order to guarantee good properties such as liveness and structural
boundedness of Petri net components for the execution of large-scale Petri net
models. The Petri net-based methodology is illustrated from the perspective of
the impact of the formalism to help developing well-formed models and efficient
code for distributed simulation.
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1 INTRODUCTION

Dynamic systems, whose state is modified in a punctual and distinguishable way in their evolution, are grouped under
the term of discrete event systems (DESs). Such systems are of great importance today due to the multitude of relevant
applications in our society, for example: health systems,1,2 emergency response,3 the Internet of Things,4 cyber-physical
systems,5 or manufacturing systems.6,7 As applications become more complex, it is no longer viable to engineer individual
self-contained systems but rather to integrate large-scale systems of systems (SoS) involving several domains, for example,
smart factories, smart cities, smart power grids, intelligent transportation systems and so forth.8 Decision-making and
optimisations underlie the choice to build models of several complex scenarios such as those described above.

Dealing with the size of the resulting large-scale SoS model is a major challenge. This scale is the result of cap-
turing several factors and integrating different subsystems. The complexity of today’s techno-socio-economic systems
demands a comprehensive modelling that encompasses physical and computational interactions, the integration of
human behaviour into processes, and the consideration of economic and sustainability requirements. Separating con-
cepts and raising the level of abstraction have proven to be effective software engineering strategies to afford complexity.
However, the interrelationship of these separate models is part of the essential complexity of the problem domain. An
early separation of the different facets of the system’s design makes it difficult to assess the impact of various alternatives.9
The construction and simulation of large-scale models that represent the behaviour of complex systems in the most reli-
able manner is practically the only way to validate them. In this article, for the sake of brevity, the simulation of a model
is referred to as the execution of the program that mimics the behaviour of the modelled system. This program can be the
result of generating executable code from the model’s description, or from an interpreter (simulator) capable of executing
the model to generate its behaviour.10

In addition to the difficulties of handling large size models, there is the fact that they do not fit into a computer
for analysis or simulation. Distributed simulation has led to research on large-scale simulations and the acceleration of
those consisting of many model partitions running on distributed architectures. However, the translation of the concep-
tual models into efficient code, for large-scale distributed simulation remains a challenge. There is a large gap between
conceptual models that specify the system’s behaviour, the structure of components, and the executable code. In soft-
ware engineering, the model-driven engineering (MDE) is the methodological approach for bridging the semantic gap
between the specification of conceptual models and the code generation for an efficient execution on specific platforms.
A MDE is supported by a set of languages at different levels of abstraction, tool-based process automation and code gener-
ation. Therefore, the natural approach to the modelling and simulation (M&S) of complex systems is MDE for distributed
simulation.11

A rigorous model-based approach is required in a formal verification of the design, coding and testing phases in
order to detect defects in the requirements compliance. Moreover, it is important to maintain the semantics of model
representations from the conceptual modelling to the execution in a distributed simulation. However, formal-model based
analysis tools are only useful under certain assumptions. Otherwise, they are insufficient to afford the study of even simple
software systems.

In the approach used in this article, a central role is given to Petri net (PN) models, describing the system behaviour
and including timing as well as cost information. The goal is to use these models in an intensive way for analysis and
simulation purposes. PNs are a family of mathematical models that have been shown to be particularly suitable for mod-
elling (representing) the behaviour of DESs. In addition to their conceptual simplicity and graphic representation, they
can be executed. In PN models the state is represented by variables called places, and the modification of the state is indi-
cated through transitions that change the non-negative integer values stored in the places. The modification of the state
is done in a local and atomic way. The automatic analysis of properties is supported by software tools, and when formal
analysis becomes impracticable, the model can be executed. Therefore, the synergic combination of simulation and anal-
ysis of formal models is necessary for a reliable model design, as well as for an efficient model execution with simulation
purposes. The possibility of automating the analysis and execution of PN-based models makes the formalism ideal for
supporting an MDE methodology.

Functional and non-functional PN-based model properties can be extracted by means of a qualitative analysis in order
to decide whether the model is correct and meets the given qualitative functional properties (e.g., deadlock freedom), and
by a quantitative analysis that seeks performance-oriented interpretations of the model such as throughput, utilisation
rates, or queue lengths, that will allow to compute reward functions and optimise the system.12 State explosion can hamper
the use of qualitative and quantitative analysis when it is based on the construction of the reachability graph. For complex
and scalable DESs, simulation becomes the only alternative available in practice.
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ARRONATEGUI et al. 3

From the modelling point of view, large size PN models require modular and hierarchical PN specifications, which
provide more compact and manageable descriptions. However, their interpretation involves costly algorithms.13 The exe-
cution of large scale PNs models for simulation requires the translation of modular PN specifications into an efficient
representation code.

This article is within the context of previous works that specialise in the methodology presented in Reference 12 for the
conceptual modelling of DES in distributed simulation following an MDE approach based on PNs.1,14,15 The focus is on
the PN languages that support the MDE methodology, and the approach in this article is to define the most appropriate PN
representations for conceptual modelling and efficient execution in a distributed platform. The proposed code structure
for execution preserves the formal semantics of the PN specification translating it into an event dependency network that
supports an efficient enabling test and a minimal cost update of the enabled events. Reducing the PN representation to an
event dependency network without an explicit state representation provides good properties for distributed simulation
such as facilitating model partition and support for separated compilation, scalability, dynamic composition as well as
interactions with external agents of legacy simulators.

An MDE approach based on formal models can benefit from a modular analysis of properties. Well-formedness of PN
models can be ensured by following some constructive rules. The current paper will show how these constraints allow the
definition of basic primitives for the specification of complex models in particular domains and how simple constructive
rules facilitate the generation of modular code with good properties for simulation.

In this article, we improve on our previous conference papers,14–16 and add some theoretical analysis to generalise the
transition enabling characterisation, which simplify code generation and component composition, we focus on the role of
Petri nets for modelling and a LEF based coding for large scale distributed simulation, we provide a MDE approach based
on Petri nets for the M&S of complex discrete event systems, and finally examples to illustrate the modelling methodology
and experimental results using a proof of concept implementation of the simulation engine is presented.

The rest of the article is organised as follows. Section 2 reviews PN-based M&S from a methodological perspective.
Section 3 offers a formal definition of linear enabling functions (LEF) to characterise the enabling test. The PN encoding
based on LEF was introduced in previous works for an efficient interpretation of PN models. The novelty introduced
in this article is the utilisation of LEF based coding (LEF-code) for distributed simulation, for which it is particularly
well adapted. The translation of a PN component specification into a LEF-coded PN component allows us to bridge
the gap between the conceptual model and the executable code. As an additional contribution, this work introduces a
new vectorial LEF (VLEF) representation to generalise the transition enabling characterisation. VLEF encoding provides
support for separate compilation and the ability to link PN components encoded as LEF once deployed in a distributed
execution infrastructure. This feature is essential for modelling and simulating large-scale models. The section highlights
additional advantages resulting from the LEF encoding of each transition and the component composition based on
transition fusion. These facilitate load balancing among simulators through the exchange of transitions encoded as LEF
and enable the derivation of desirable properties, such as boundedness, through component composition.

Section 4 summarises the PN-based MDE approach. Although this work focuses on the languages that support the
methodology, particularly on the encoding of PNs to enable efficient interpretation and simulation of large-scale models
through the deployment of separately compiled components and their subsequent linking in simulators, this section
provides an overview of all the stages in which PN analysis and simulation tools support the entire M&S process. In the
context of M&S, an MDE approach involves model transformations throughout the simulation life cycle, including the
specification, implementation, and deployment of simulation applications. The peculiarity of the proposed methodology
is the use of PNs as the language in all stages, from modelling to simulation. The architectural design is a key aspect that
must be taken into account from the beginning for large-scale software systems.

Section 5 introduces examples to illustrate the methodology used for modelling DESs as a set of communicating pro-
cesses competing for resources. Section 6 shows some experimental results from the proof-of-concept implementation of
a LEF-code based distributed simulation engine. Finally, conclusions and lines for future work under this approach are
presented in Section 7.

2 RELATED WORK

The need to build more scalable simulations considering all involved aspects is not a new one. Distributed simulation is
a widely used discipline that has promoted standardisation efforts around high level architecture (HLA).17 The reuse of
legacy simulation components is regarded by HLA as the top driver for the adoption of a service oriented architecture,
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4 ARRONATEGUI et al.

which is achieved through the mediation of a brokering structure. HLA provides services for information exchange and
synchronisation between simulations that together form a simulation federation. A detailed explanation of a standardised
process for the building of distributed simulation federations can be found in Reference 11.

Tools for code generation of simulation object models, which conform an HLA simulation federation, generally
produce skeleton code such as callbacks. These skeletons require manual intervention to implement the behavioural spec-
ification of federate components.11 Therefore, large scale models assume the federation of compiled components, and
distribution exploits the natural parallelism at the level of model components. The Functional Mock-up Interface* (FMI)
defines another standardised interface to be used in computer simulations.

Interoperability and reuse are the main concerns of HLA and FMI. The focus on interoperability leads to neglecting
important aspects for efficiency, such as not considering changes in the execution platform, not providing mechanisms to
maintain the quality of services on a large scale, such as fault tolerance, or load balancing mechanisms,18 as well as locking
the model partition in components at compilation time. Therefore, it is an orthogonal approach to the methodological
aspects considered in this work. As it will be shown later, another important difference of the approach proposed in this
article is that the PN model specifications are executable, and therefore a manual intervention is not necessary to obtain
an executable component. PN specification is translated into a more adequate representation for efficient execution. This
article will focus on composing the behaviours specified by PN-based components, and not on the interoperability aspects
considered by an HLA-based simulation federation.

The specification/implementation gap is significant, and there are various contributions and strategies at all interme-
diate stages of the gap. Below, we review the most relevant works that have been developed, considering that there are
no comprehensive proposals like the one presented here, which aims to provide a complete proposal for the gap between
specification and implementation in distributed simulation. The main focus of this article is on the PN-based M&S of
large size models and the languages supporting the MDE to bridge the gap between conceptual and execution code. To
this end, a brief description of PN languages and their characteristics for supporting the methodology is presented.

2.1 DES formalisms

In Reference 19, a unified modelling framework is presented that encompasses all facets of DESs study. This frame-
work focuses on automata and PNs, coherently linking several topics that have previously been treated separately in
the literature. This framework encompasses the modelling, analysis techniques, and control procedures for complex
DESs. A comprehensive overview of how these formalisms are used for the control of DESs, covering notions such as
controllability, observability, diagnosis, and distributed control, can be found in Reference 20.

Finite state machine (FSM) is a popular formalism for representing sequential systems with a finite number of states.
For an FSM-based system specification, it is required the enumeration of all system global states (each one graphically
represented with a circle) and the explicit definition of all transitions between pairs of states (each one graphically rep-
resented by an arc). Large scale DESs that exhibit concurrency between actions in the system lead to the well known
state explosion problem when FSMs are used to specify these systems. Therefore, managing the representation of these
large FSMs requires the use of special techniques that consume an enormous amount of resources (if available). FSMs
are frequently used in the implementation phase of systems where specific synthesis algorithms are applied to obtain
implementations in a particular technology, such as in many domains of hardware systems. Nevertheless, in the design
phase of a system where some parameters can be modified in order to adjust the behaviour to the given requirements,
starting from an FSM specification can cause a complete rewriting of the FSM to integrate the change (even if it is local).
This is a typical situation when a DES must be studied under different scenarios of resource availability. These two dif-
ficulties associated with the FSM model, when considering scalable DESs with a high degree of concurrency, make PNs
an advantageous alternative.

When advancing in the life cycle of DESs, it is necessary to have methods for analysing the properties of the mod-
elled system for decision-making in the design process that leads to implementation. The use of a model with formal
semantics allows the application of analysis techniques supported by computer tools. In the case of FSM, model check-
ing techniques21 are widely used but they do not perform well for large systems so they cannot be applied in practice.
A systematic literature review of early validation and verification of system behaviour in MDE is out of the scope of the

*https://fmi-standard.org/.
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ARRONATEGUI et al. 5

article. The interested reader can found it in Reference 22 although it is not focused on simulation of DESs. It is at this
point where the availability of executable formal models such as PNs become a necessary tool to proceed with the analysis
using DES’ simulation techniques, which is advisable to be done on distributed platforms to deal with scalability.

The use of simulation techniques to analyze models is common in many existing formalisms, such as UML State-
charts,23 PNs, SDL24 and DEVS.10 These are executable description languages, well-suited for modelling concurrency
and supporting good capabilities for hierarchical and/or modular system description. Statecharts have been adopted by
object-oriented methodologies and the UML notation, SDL has become very popular within telecommunications, and
DEVS becomes popularity for facilitating the integration of discrete and continuous models.

Focusing on the distributed simulation of scalable DESs, PNs is the option adopted in this article due to a crucial
characteristic of this formalism: the structure of the net. This structural information makes the state of the model by
definition a distributed state (formed by the marking of the places in the net), which facilitates its distribution and mainte-
nance. The structure of the net reveals the causal relationships between the different parts of the model, which enhances
its distributability and the ability to exploit information from causally related parts of the model during the simulation.
Obtaining useful structural information for the simulation of a PN is possible thanks to the development of a structure
theory of PNs, which provides concepts, methods and tools for this purpose.

To address the deficiency in structural analysis compared to automata or PNs, model transformation between for-
malisms is utilised. This allow modellers the use of tools to automatize the analysis supported for each formalism.25 A
process of cross-verification is also supported by the transformation of one formalism to another formalism, and the veri-
fication of equivalent simulations.26 The verification of functional correctness of systems using this method is constrained
by time-consuming simulative executions of the specification.

Once the good properties of the conceptual model are verified, it can be transformed for simulation to other for-
malisms,23,27,28 simulation tools,25 or languages more suitable for implementation.29 The main difference of our approach
is the use of the PN formalism throughout all phases of M&S. In our approach, PN is not only a valuable conceptual
model for validation. Structural PN analysis allow an adequate PN coding for efficient distributed simulation, it can
be supplemented during simulation time, and refined based on the simulation results. Consequently, it can be associ-
ated with the model or its modules in such a way that it can be harnessed in further simulations where these nets will
be used.30 Structural analysis of PNs also face practical limitations when dealing with large-dimensional systems. In
Reference 30 is presented how to leverage the structure theory of PNs and to address Fujimoto’s challenges in parallel
and distributed simulation presented in Reference 31 by exploiting the information extracted from the net structure for
distributed simulation.

2.2 PN-based conceptual modelling

A PN has place nodes, transition nodes, and directed arcs connecting places with transitions. Places, transition and arcs do
not explicitly describe events, data flows or objects in the system, which makes the formalism inappropriate for conceptual
modelling.32 Therefore, it is necessary to specify the PN associated interpretation by defining the meaning of the elements.
For example, different semantics are provided to tokens to represent resources, parts, or orders, to places to represent the
state of an entity or process, and to arcs to represent data flows or process interactions.

Domain-specific languages (DSLs) facilitate the representation of domain concepts and their relations in a formal
manner. For example, in a flexible manufacturing system (FMS) domain the model is composed by physical resources such
as robots, buffers, conveyors, tools, and production plans.33 In the domain of workflow management systems, workflows
are made up of cases such a patient in a hospital, an order, or an administrative document that follows a business process,
and a workflow management system (WMS) provides the logistics, that is, the resources to perform the tasks .34

The modelling of domain artefacts can be supported by primitives suitable for the resolution of a certain type of
model analysis.11 For this purpose, intermediate conceptual modelling languages can be introduced to analyse different
perspectives, such as the resource allocation system (RAS) perspective in the context of limited resource provisions33; or
the communicating systems (CS) perspective, which is a widely known organisational principle for distributed systems.35

These perspectives include the necessary primitives (communicating processes and resources) to develop performance,36

scheduling,37 or economical-oriented models.38 Performance models are intended to obtain buffer occupancy, execution
times or the degree of resource utilisation; scheduling models are intended to obtain the allocation of resources and starting
operation times; and economical models can be developed to support the analysis of scarce resource consumption agents
whose behaviour is driven by goals that include competition and collaboration strategies.39
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6 ARRONATEGUI et al.

2.3 Modular and hierarchical PN-based modelling

In order to have good models, it is advisable to consider different levels of abstraction, a process of model refinement and
different perspectives. The modeller uses different modelling artefacts at each level of abstraction.

Modular and hierarchical PN specifications are the best option for PN-based conceptual modelling because they pro-
vide levels of abstraction, the composition of different perspectives, and more compact and manageable descriptions. In
Reference 40, a presentation of the main PN structuring mechanisms is provided. PN compositions are based on place or
transition fusion. These mechanisms provide a horizontal composition of PNs and a vertical composition based on compo-
nent refinement. An alternative mechanism is the folding abstraction used by high-level Petri nets (HLPNs). In a HLPN,
tokens carry information that may be represented by data structures, and arcs representing preconditions are labelled by
expressions, which identify states defined by the value of tokens. Arcs representing postconditions are labelled by expres-
sions which define state changes by means of the modification of the token values. Folding exploits structural similarities
and provides a more concise behaviour representation than ordinary Petri nets. HLPN tools such as CPN tool,41 one of
the most popular, use both mechanisms: composition mechanisms based on place or transition fusion, as well as folding
based on structured tokens. Structured tokens can also represent nets, which in turn can be dynamically composed by the
net containing them. This connection is achieved by merging the transitions of the structured tokens with the transitions
associated with the token’s container location. This is the case of reference nets and its M&S Renew tool.42

2.4 Well-formedness of components and PN compositions

Methodologies used to construct PN models of different domains usually have a modular nature, where a bottom-up
approach starts by defining the basic primitives. One of the most important challenges of component composition is
enabling the derivation of desired properties of the composed component behaviour (such as boundedness and liveness).

In general, the adopted solution is to impose model structural constraints (PN subclasses). These constraints limit
the modelling power, while improving the decision power. Therefore, a structurally constrained model can be supported
by analytical tools. Simulation is an attractive alternative to analytical methods because it can be used for unrestricted
classes of PNs. However it is important to remember that the focus of this work is on the M&S of large scale PN models.
It implies that the simulation will involve intense consumption of computing resources, as well as many executions for
the modeller to be confident in the model. The proposed approach is a methodology that deals with the complexity of
large-scale models, although, the modelling languages do not impose the methodology. In this sense, place and transition
fusion are allowed for component composition, but as it is shown in Section 3, execution code composition is based on
transition fusion, which allows us to derive good properties for the execution of model compositions with simulation
purposes.

Fortunately, there are different PN subclasses in the literature whose modelling power is adequate for a specific
domain. Well-formedness of PNs (boundedness and liveness) can be preserved by following some constructing rules. For
example, PN-based methodologies for FMS use a RAS perspective of a modular nature to construct PN models, where
modules are production plans composed via the fusion of a set of shared resources. Production plans are modelled as
strongly connected state machines.33 Workflow modelling uses the data-flow perspective as the most prominent.34 The
process definition consists in the composition of AND-splits, AND-joins, OR-splits, and OR-joins which results in a
free-choice PN. The use of a set of transformation rules for free-choice PNs preserves well-formedness.43 Finally, commu-
nicating sequential processes is a widely organisational principle for distributed systems. Constraining the modelling to
deterministically synchronised sequential processes, where process co-operation is organised by storing the producer output
in private buffers that respect the consumer’s internal choices until they accept the input, guarantees stronger analyti-
cal results in the PNs. However, this model is not appropriate for the representation of competition for resources.35 The
increase in modelling power, whether to model some competition patterns following an agent perspective,44 or to model
software applications from a RAS perspective,45 reduces the decision power.

2.5 Code generation for PN interpretation: Enabling test and updating

The translation of a PN specification into executable code is called a PN implementation. Given a PN model of a DES, the
simulation of the system can be done by playing the token game, that is, by moving tokens when transitions are enabled. If a
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ARRONATEGUI et al. 7

deterministic or stochastic time interpretation is associated to transitions—timed PNs (TPNs) or stochastic PNs (SPNs)—,
the interpretation of the TPN or SPN yields, actually, a discrete event simulation system.

The implementation of a PN can be classified as compiled or interpreted. The compiled implementation from
the PN generates code whose execution traces mimic the sequences in PN. An interpreted PN codifies the struc-
ture and marking as data structures used by one or more interpreters to make the PN evolve from a state to
another PN state. Compiled implementations have been the option for the development of discrete event control
systems.46,47

An interpreted implementation is a model execution based on its interpretation separating the model specification
from the simulator, which is essential for scaling simulations and simplifying the dynamic deployment of simulation
code on distributed execution platforms.10 When the model is not wired with the simulator, it enables model portability
to other simulators. In simulation contexts where the execution code is not a data structure to be interpreted (e.g., the
system is a set of logical processes (LPs) compiled before simulation) the execution code is generated at compile-time. LPs
define partitions of code that correspond to object or components. Therefore, the level of parallelism and distribution is
locked at compilation-time.16 Even if the best model partition were achieved and deployed, small changes in the hardware
configuration or the simulation evolution would produce large imbalances.48

The use of micro-kernels specialised in the interpreted implementation of the model avoids having to develop the
systems entirely from scratch.49 Simulation micro-kernels provide a core invariant portion of services that can be executed
in heterogeneous infrastructures such as mini clusters, the cloud, and even allow to embed these simulation services into
IoT devices.

The interpretation of a PN model by playing the token game involves a simulation cycle similar to the produc-
tion system’s match-resolve-act cycle with three stages13,50: (1) to test the enabling of transitions; (2) to select enabled
transitions to fire (some associated activity can be executed), and decision making in conflicts; and (3) to update the
state by moving tokens involved in firings. The first stage is the most time-consuming operation, and the efficiency
of a PN interpreter is mainly related to that of the implementation of the transition enabling and transition firing
algorithms. In a PN, preconditions are specified by those arcs going from places to transitions, whereas postcondi-
tions are specified by arcs going from transitions to places. Transitions whose preconditions are met are enabled and
may be fired. When a transition is fired, it removes the enabling tokens from their previous places and puts them in
subsequent places.

Two classes of enabling test can be implemented51: (1) Place-driven approach: a place called the representative place
of the transition is selected to verify whether the number of tokens in this place is lower than the weight of the arc
that connects it to the represented transition. The remaining input places of the transition (synchronisation places) are
only tested in order to verify if the transition is finally enabled when the representative place has enough tokens. A
representative place is good when its output transition is enabled when marked. Place driven approaches were intro-
duced in Reference 52, and they have been extensively considered under different names.47,53,54 (2) Transition-driven
approach: The search for enabled transitions is based on testing the value of a function (enabling function). Transi-
tion driven approaches have only been efficiently applied to binary PNs.53 In Reference 55, a transition-driven method
was introduced for weighted place/transition PNs (P/T nets) to characterise the transition enabling by means of a
LEF. A comprehensive view of the LEF characterisation of transitions requires a transition classification as well as
model transformations. These local transformations add new transitions to the original net, introducing an overhead
for the simulation algorithm that reduces, in some cases, the possible advantages of the method. A combination of
LEFs with place-driven approaches is proposed in Reference 56 in order to solve these problems for some classes of
transitions.

This article introduces a simpler and more suitable LEF characterisation for dynamic composition and distributed
simulation. The enabling function is built from the marking of the input places of the transition and the weights of the
corresponding arcs. Additionally to the LEF, an event dependency network is built in the compilation process to update
the enabling functions of those transitions whose input places marking has been modified.

Finally, HLPNs facilitate the modelling of large-scale models. However, their interpretation introduces costly pat-
tern matching or unification algorithms to evaluate enabled transitions.13 Although optimisations of the enabling test
of HLPNs have been developed around the unification algorithm,13,57–59 for an efficient PN model execution, it is nec-
essary to unfold and flatten the HLPN. This phase is called the elaboration process because it is similar to the process
of flattening the design hierarchy in VHDL, which results in a flat collection of signal nets and processes suitable for
simulation.60
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8 ARRONATEGUI et al.

2.6 TPN-based distributed simulation

There is substantial work on distributed simulation of timed place/transition nets (TPNs),61–66 which shows how formal-
ism can contribute to the efficient implementation of distributed discrete event simulations. These previous works focused
on good partitioning based on the PN structure and synchronisation algorithms. In these works, the TPN is decomposed
into a set of LPs assuming a FIFO communication. The LP interface is defined by a subset of places, and the arcs connect-
ing these places are replaced by communication channels. LPs interact exchanging time-stamped messages that represent
token transfers. Each LP executes a simulation engine that implements the same simulation strategy to interpret the PN
partition and to preserve causality with events simulated by other LPs. The PN structure can also help to obtain lookahead
for simulations, and to keep the necessary conflict-resolution information local.62,67

2.7 Software architecture, deployment and configuration languages: Specifications
and implementation refinements

According to the ISO/IEC/IEEE 42010 standard, the software system’s architecture is the fundamental document for
developing a complex system throughout its entire life cycle. It embodies the design choices concerning the overall
structure and behaviour of the system and facilitates the evaluation of system qualities during all decision-making
phases, from conception to design and implementation. It describes components, relationships, environment interac-
tion, and guiding design principles. As mentioned earlier, HLA is the architectural proposal for distributed simulation
with a primary focus on interoperability and reusability. The design and implementation of reactive systems require
the refinement and evolution of the software architecture structure and a clear understanding of the system’s intended
behaviour.68

In the case of the construction of a model for simulation the behaviour’s description is the central aspect. However, it
is not considered in HLA, which makes difficult to evaluate design choices concerning the behaviour of the system in all
life cycle stages. The focus on interoperability and reusability is concerned with component interfaces conformance, and
the semantic and format of interchanged data for basic simulation services. The behaviour of components is considered
an implementation issue that must be completed by the programmer.

As the software architecture evolves it requires the incorporation of low level details such as the execution platform and
model partitions. Pnueli and Harel68 consider the evolution and refinement of the software architecture in two different
dimensions: (1) refinement of software components and design, and (2) the implementation dimension that requires the
adaptation of the behaviour to the specific execution platform.

How to breakup the system’s behaviour into components and how to deploy them into the executing platform corre-
spond to the implementation dimension. Pnueli and Harel postpone the problem of connecting the behaviour description
of reactive system with their implementation ones and establish the following requisites for any satisfactory method for
a behavioural description: (1) it should provide well-structured descriptions with a clear semantic, and (2) it should min-
imise the dependence on any implementation issues. PNs is a formalism with well defined semantic recommended for
use for architectural design.69,70 The main advantage is that it is an executable specification that allows execution from
the early stages of software system design.

Our hypothesis in this article is that the main challenges of distributed DES simulations pointed in Reference 71
are related with the connection of the behaviour description of simulation models with their implementation, that is:
(1) the definition of modelling languages allowing the generation of efficient parallel and distributed simulation code;
(2) the statement of a clear execution semantic of the model, and the execution policy of its interpreter.72,73 They
must be oriented to a distributed implementation; (3) the availability of load balancing mechanisms to cope with the
unpredictability of the underlying execution environment74,75; and (4) the incorporation of the economic cost and energy
consumption, in addition to the traditional speed-up metric in distributed simulations.

Additionally to the need of a executable code that can be easily decomposed, a distributed simulation requires writ-
ing the configuration specification in a configuration language.76 A complete configuration specification includes the
components, how these components are connected, and where they are located in the execution platform. To build
large-scale distributed simulations it is necessary to decompose the conceptual model into components that can be sep-
arately compiled to generate executable code for simulation. The OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) provides a language to describe and manage complex cloud. The management protocols of
TOSCA can be modelled by means of Petri nets.77
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ARRONATEGUI et al. 9

While structuring mechanisms in conceptual models are oriented to manage large models, configuration languages are
designed to deploy executable code in a distributed environment. Conceptual and configuration languages share hierar-
chical and model composition provided by a declarative knowledge representation scheme. Examples of these structuring
declarative specifications are the DEVs System Entity Structure (SES),10 the entities and architectures of VHDL, the CONIC
programming language,76 or the Page level scripting of TPN Designer to compose PN models.78 These structuring languages
define the interface of components including input and output port specifications, primitives for composing component
behaviours by means of the connection of entry and exit ports representing event interactions, and a hierarchical compo-
sition of components. In the next section, it is presented a PN representation of the modelled system behaviour oriented
to an efficient distributed simulation bringing the gap between the executable specification and the implementation
dimensions.

3 EFFICIENT CODE GENERATION FOR PNS DISTRIBUTED SIMULATION

On the one hand, focusing on the properties required for distributed simulation, the current paper points out the advan-
tages of a model execution based on a model interpretation. On the other hand, HLPNs are more appropriate for modelling
complex systems, but their model interpretation is inefficient. Therefore, it is assumed that a model flattening process
(elaboration) has been done resulting in a P/T net. For this reason, when this article mentions code generation, it refers
to the adequate representation of flat P/T nets to interpret the model. From a semantics point of view, the code must pre-
serve the behaviour specification. From an operational point of view, it must provide an efficient model interpretation,
facilitate the initial deployment and accommodate an evolutionary change of distributed simulation.

3.1 LEF-coded flat P/T net models

For and efficient interpretation of PN models, a compiler translates a P/T net specification into an event dependency
network based on the idea of LEF.55 A LEF value allows to characterise the enabling of a transition (an event that can
occur) with a simple linear function of the marking. The LEF characterisation of transition enabling applies to general
PNs, even with inhibitors arcs. A LEF of a transition t is a function ft ∶ R( ,m0) → Z, that maps each marking m
belonging to the set of reachable markings, R( ,m0), to an integer, in such a way, that t can occur for m, iff ft(m) ≤ 0.

To define the LEF of transitions, in Reference 55 a transition characterisation in different classes is presented. The
classification is based on the number of input places with an structural bound greater than the weight of their respective
arcs. The structural marking bound (SB) (number of tokens) of a place can be computed as a linear programming problem
in polynomial time (on the net structure size) before the compilation time.79

A PN  is said to be structurally bounded if all places are structurally bounded for any initial marking m0. This
is a desired and important property to validate the model because places represent limited model resources, such as
memory or buffers, and an unbounded place in the model can produce a memory overflow during simulation. Considering
large-scale models, the calculation of SBs can be done at component level, and easily extended to large-scale models
following some methodological approaches.

Compared with the characterisation presented in Reference 55, this article reduces the classification to two classes and
avoids the interpretation overheads introduced by the model transformations presented in the previous work to obtain
the LEF function:

• Class 1. Transitions with at least one input place, and at most one input place with a SB greater than the weight of its
respective arc.

• Class 2. Transitions with at least one input place, and at least two input places with a SB greater than the weight of
their respective arcs.

It is not possible to characterise the enabling of a Class 2 transition by a single linear function of the net marking. Class
2 transitions enabling can be characterised by means of a family of LEFs. In it, each LEF determines the contribution of
a subset of input places to the enabling of the transition. The minimal number of LEFs is equal to the number of input
places with an SB greater than the weight of the arc connecting it to t. A Minimal Legal Covering is configured with a
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10 ARRONATEGUI et al.

subset of places for each place with an SB greater than the weight of the arc. The rest of the input places are distributed
discretionally among these subsets. Therefore, different configurations are possible. Every subset can be characterised by
a LEF. The set of functions can have a vectorial representation called Vectorial LEF (VLEF). The firing of a transition t
of Class 2 can occur at a marking m iff the value of its VLEF for m is less than or equal to the vector zero, ft(m) ≤ 0 (i.e.,
∀j ∈ {1, … , k}, ft(m)[j] ≤ 0).

In the following examples, for simplicity and clarity in the explanations, all transitions have their input places with
structural bounds lower than the weight of their respective arcs. In this case, LEFs adopt the simplified form ft(m) =
∑

p∈(•t) Pre[p, t] − m[p], equivalent to the down-counter of a transition in the simulation method called enabled transition
method.56

Figure 1 shows P/T nets in components that will be used in the next subsection to illustrate component composition
of PNs based on the fusion of LEF-coded transitions. For now, for the sake of clarity, the components and composition
details will be ignored and the work will focus on PNs as if they were independently defined. For example, for transition t1
in componentsub1 in the Figure 1, the LEF is: ft1(m) = 1 − (m[P1]),∀m ∈ R(sub1,m0), where m0 is the initial marking
depicted. At m0, place P1 doesn’t have any tokens, the value of ft1(m0) = 1 ≰ 0, and the t1 transition is not enabled at
m0. However, the initial LEF value of t0 in component sub0 is defined by the linear function ft0(m) = 1 − (m[P0]),∀m ∈
R(sub0,m0), its value for the initial marking is ft0(m0) = 0, and it is therefore enabled.

The use of LEFs, as previously presented, for the characterisation of the enabling of a transition requires an explicit
representation of the marking of the net and the LEF itself as a marking function for each transition. In the case of
a distributed simulation, this causes two problems that make this execution model of a PN not well-adapted for this
purpose: (1) the explicit representation of the marking in a distributed environment is a set of variables shared by a set
of distributed simulation engines. It requires mechanisms to maintain the coherence and consistency of the marking
variables (which is in fact a bottleneck for distributed simulation); (2) the functional representation of the LEF requires
a continuous evaluation for the marking in order to determine the enabling of a transition.

To address these two problems, the LEF mechanism for a transition is implemented according to the following prin-
ciples: (1) the current value of the LEF is stored exclusively in the simulation engine that owns the transition in the
simulation (initially this value corresponds to the value of the LEF at m0 and computed in compilation-time); (2) each
time a transition occurs in the net, a constant is sent to each transition whose enabling is being affected by its occurrence.
This constant is used for the updating of the LEF value of the affected transition.

In this way, the LEF data structures represent an event dependency network, where the marking of the net and places
has been removed from the PN representation. It is important to note that this feature of LEF encoding makes it partic-
ularly suitable for the simulation of distributed systems, as it eliminates access to shared memory. With this strategy, the
explicit representation of the marking and the re-evaluation of the LEF are not needed. The changes of a LEF are based

in the constants sent by the transitions that modify its enabling conditions. That is, if m
t′
−−→m′, ft(m′) can be computed

from the value of ft(m), and from a static parameter known at compilation-time that represents the change of ft after the
occurrence of t′. This parameter corresponds to changes in the contents of tokens of the t input places as a consequence

F I G U R E 1 Petri net components and LEF codification of transitions.
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ARRONATEGUI et al. 11

of the occurrence of t′. Thus, the updating equation for any LEF when t′ occurs is ft(m′) = ft(m) + UF(t′ → t), where
UF(t′ → t) is known as the Updating Factor (UF) of t′ over t obtained from the structure of the net and its initial marking.
According to the previous comments, the compilation of a P/T net produces a representation of the net where there is an
entry for each transition t grouping: (1) the variable maintaining the current value of the LEF and initialised to ft(m0); and
(2) the list of updating factors (simulation’s events), UF(t → t′), that will be sent to each t′ ∈ (•t)• ∪ (t•)• whose enabling
conditions have been affected by the occurrence of t.

The enabling characterisation of class 2 transitions, which are defined by a a set of functions, is represented by a vector
of LEF structures. Taking into account these new VLEF structures, in all transitions the UFs addressed to VLEF-coded
transitions are represented by vectors of UFs accordingly.

The partition of a model for a distributed simulation only requires defining the set of transitions to be grouped in
each of the distributed simulation engines and loading the previous data associated to transitions in the corresponding
engine. The information associated to each LEF/VLEF encoded transition is independent of the information of any other
transition.

3.1.1 LEF-coded P/T net component composition

As previously presented, conceptual hierarchical modelling can use place or transition fusion for component composition.
To support the scalability of distributed simulation, large-scale models require separate compilation and further linking
of the components that are distributed in different nodes. In addition to the characterisation of class 2 transitions, the idea
of VLEFs can be used to facilitate distributed compiled component linking. The VLEF data structure, which represents
a set of LEFs, can be useful to represent a transition fusion easily obtained from the collection of initial LEF/VLEF data
structures of transitions.

The composition of structurally bounded PNs by transition fusion has the advantage of resulting in structurally
bounded PNs.80 It is a good property to ensure that LEF values will be bounded during the simulation. For this reason, in
this methodological approach, transition fusion is the option chosen for component composition and linking compiled
code, as well as for the conceptual modelling in order to ensure boundedness.

Left Figure 1 shows two components, sub1 and sub2, which are instances of subnet2, and the middle component
sub0 which is an instance of subnet1. Interfaces for composition by transition fusion are graphically represented by
black transitions with a diamond symbol. Fusion operations are represented by the dotted lines that connect interface
transitions. The graphical representation of entities is similar to DEVS10 or TPN designer76 tools’ notation with boxes
representing entities, and input–output arrows (black transitions in the interface) representing ports. In contrast to these
previous tools, the diamond symbol represents a rendezvous, and therefore there are not oriented port mappings. We will
denote in the text transition fusion with the symbol <>. The bottom left figure shows the resulting flat PN.

Each one of these components can be compiled separately. In the example, right Figure 1 shows the LEF code of
transitions sub1.tin and sub0.tout1, which result respectively from the separated compilation of the sub1 and
sub0 components. All transitions of components are of Class 1, and can be represented by LEF code, which is illustrated
by the labelled boxes that contain the current LEF value, and the list of UFs (scalars) to be sent to the transitions affected
by the occurrence of the owner transition.

The components composition results in transition fusions sub1.tout<>sub0.tin1, sub2.tout<>sub0.tin2,
sub0.tout1<>sub1.tin and sub0.tout2<>sub2.tin. The naming convention for hierarchical entities
follows the usual dotted notation. URI conventions can be used to assign a unique identifier to distributed com-
ponents upon deployment. Bottom right figure shows the resulting CompositionNet flat PN. For example,
the sub0.tout1<>sub1.tin mapping specifies that transition sub1.tin will be fused with transition
sub0.tout1. Uri.

If component composition is specified before it is compiled and the size of the model allows the compilation in a
machine, the model can be flattened and then compiled. The flat model that results from the component composition
of Figure 1 is shown in Figure 2. The resulting LEF code of fusion transition sub0.tout<>sub1.tin is shown in the
top right position of Figure 2. In this example, all transitions are of class 1, and therefore if the model is flattened and
compiled in one machine, all LEF values are scalar.

Alternatively, if the components are separately compiled, the steps to configure the data structure of a VLEF resulting
from the fusion of two LEFs (or VLEFs) compiled transitions are: (1) LEF values are stacked up in a vector of LEFs. The
order in the mapping declaration is used to interpret the index of the resulting VLEF value of transition fusion. (2) For
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12 ARRONATEGUI et al.

F I G U R E 2 Flat model of a component composition with alternative codification of transitions. VLEF resulting from linking separated
compiled components, and alternative LEF code representation after model flattening.

each mapped t, and for all t′∈•(•t) ∪ (t•)•, search the UF for t in the list of t′, and substitute it by a 0 vector, where the
index specified by order of t in the mapping, is replaced by the UF(t → t). (3) Retain the list of UFs of fusion transitions.
If there are two UFs with the same destination transition, substitute them by a unique UF resulting from the addition of
the two ones found.

In the bottom right position of Figure 2 it is shown the alternative VLEF data structure resulting from the tran-
sition fusion specified by the mapping sub0.tout1<>sub1.tin. The first step of fusion results in the vector
value (+1, 0). The mapping specifies the first index of the VLEF value from sub0.tout1, and the second one from
sub1.tin. In the second step, the UF of sub0.tout1 Sento(sub0.tout1):(+1) is replaced by the vector
(+1, 0), and the UF of sub1.tin Sento(sub1.tin):(+1) by the vector (0,+1). As sub0.tout1 and sub1.tin
share the same identity after the transition fusion, the resulting UF Sendto(sub0.tout1<>sub1.tin):(+1,+1)
results from the addition of the two previously obtained vector UFs. Step 3 completes the list of UFs with the
retaining of the rest of UFs (Sendto(sub1.t0) and Sendto(sub0.tin1)). Finally, Sendto(sub0.tin1)) is
replaced by Sendto(sub1.tout<>sub0.tin):(0,-1), which is the result of step 2 for the fusion of transitions
sub1.tout<>sub0.tin1.

The resultant LEF/VLEF code representation of a transition fusion must be deployed in only one of the components
when they are distributed.

VLEF encoding is well suited for the simulation of large-scale PNs. It offers support for modularity in describing the
model, and furthermore, facilitates the compilation of these models to generate the code that will ultimately be loaded
into various simulation engines. The concept of modular and hierarchical component-oriented PN descriptions that
allow models to be built and described in manageable module dimensions is not new, as demonstrated in the related
work. However, compiling one of these descriptions, which can contain millions or even tens of millions of transitions,
presents a significant challenge that requires substantial computational resources (both in terms of time and memory). As
a result, the practical limitations on the sizes of PNs that can be simulated are severe, undermining one of the objectives
of distributed simulation even before the simulation can be initiated.

To address this issue in model compilation, VLEF encoding provides suitable mechanisms to support the separated
compilation of modules or parts of the model, each of manageable size. These modules can be linked together when
loading the model into the simulation engines.

3.1.2 LEF-coded TPN distributed simulation

Previous subsection has presented a LEF-coded P/T net representation for efficient test-enabling and updating enabling
state. In P/T nets, these actions are atomic, instantaneous and indistinguishable. TPNs introduce firing delays to
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ARRONATEGUI et al. 13

transitions. The model interpretation of TPNs requires dealing with the problem of race conditions, providing support for
temporal interpretation of the model (firing time, enabling time), and interpreting the concurrent firing of transitions (sin-
gle server, or multiple server semantics).72 For simplicity, this article considers single server semantics. Race conditions
and the temporal interpretation of TPN makes it necessary to perform the transition firing in two phases: immediate and
projected update. It is reflected in the LEF data structure where UFs are decomposed into immediate and projected lists.

To explain a distributed simulation based in the LEF-coded TPN interpretation, Figure 3 reproduces the example
presented by Chiola and Ferscha in Reference 81. T1 represents the occurrence of a machine failure event, and T2 the
repair rate. Future t1 and t2 values represent respectively the sequence of exponentially distributed random times (exp(𝜆 =
0.5)) for T1 and T2.

To exploit concurrency, the model example is partitioned in two PN components (dashed boxes). Following the tradi-
tional nomenclature in distributed simulation, these partitions together with their interpretation engines are called logical
processes LP1 and LP2. To highlight the fact that simulation engines can dynamically interchange LEF-coded transitions,
and therefore the partition is not locked in a compiled LP, the current work designates Simulation process (SP), or Simbot
as the pair made up of a model partition and a simulation engine. In this example, it is assumed that the complete PN has
been compiled generating the LEF-coded transitions illustrated in the figure, and that each transition has been deployed
in different Simbots. The only constraint that has been considered to distribute transitions is that conflicting transitions
must reside in the same Simbot .62

Figure 3 shows the extended LEF codification associated to each transition t′ for the simulation of TPNs: (1) Identifier
of t′, which is a global name recognised in all sites of the simulation process; and the coupled conflict set (CCS). A
CCS is a structural relation that groups transitions which share some previous input place. The coupled conflict relation
is defined as the transitive closure of the structural conflict relation. The equivalence class (or coupled conflict set) of
transition t′ is denoted by CCS(t′)79; (2) 𝜏(t′). Firing time associated to transition t′. It stands for the duration time of
the action associated to the occurrence of t′; (3) Counter. Variable containing the current value of the LEF (or values of
VLEF) initialised with ft′ (m0); and updated whenever the transition—or a transition affecting it– occurs, according to the
received updating factor; (4) Immediate Updating List (IUL(t′)). Set of transitions (•t′)• whose LEFs/VLEFs must be
immediately updated after the occurrence of t′ containing the corresponding UFs to be sent [ (•t′)• includes t′], and (5)
Projected Updating List (PUL(t′)). Set of transitions (t′•)• whose LEFs/VLEFs must be updated after the firing time of
t′, which contains the corresponding UFs to be sent.

F I G U R E 3 Distributed simulation log reproducing the Chiola and Ferscha sample presented in Reference 81, and illustrating event
interaction (interchanged UFs) between two Lef-coded PN partitions.
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14 ARRONATEGUI et al.

Distributed simulation introduces the need for protocols that prevent causality errors. A multitude of such protocols
for time synchronisation have been described in Reference 82. The execution model presented here and the mechanisms
for its distributed implementation are the core of the development of any distributed simulation strategy, either conserva-
tive or optimistic.83 The distributed simulation is coordinated by means of time-stamped messages between PN partitions,
which represent how to update the enabling of external transitions when a transition fires.

Algorithm 1 shows a conservative distributed simulation manager sketch that invokes the interpreter algorithm, and
Algorithm 2 implements the simulation interpreter, which is executed until the local virtual time (LVT) reaches the local
horizon virtual time (LHVT).16 The LHVT or lower bound time stamp is the minimum time stamp message received from
all adjacent Simbots.

Algorithm 1. Conservative distributed simulation manager.

1: when Start() is received ⊳ Initialise Simbot
2: VT ← 0; FUL ← {};
3: for all (t ∈ PULext) do ⊳ Send lookahead to all adjacent Simbots
4: Adj[t] ← 0;
5: t ! <0, lookahead(t)>
6: end for
7: for all (t ∈ LEFs) do ⊳ Initialize the Event List (Enabled transitions list)
8: if (ft(M) ≤ 0) then insert(EVL, t);
9: end if
10: end for
11:
12: when Event(t,UF,ts) is received ⊳ Event Received
13: Adj[t] ← ts;
14: insert − FUL (t,UF, ts);
15: if allReceived(Adj) then ⊳ When time stamp messages are received from all adjacent Simbots,
16: LHVT = min(Adj); ⊳ it simulates until the LHVT
17: Simulate(LHVT);
18: for all (t ∈ PULext) do ⊳ Once reached LHVT, it sends messages to adjacent Simbots
19: if (t ∈ FUL) then
20: t ! <UF, ts>; remove-FUL(t);
21: else
22: t ! <0, lookahead(t)>;
23: end if
24: end for
25: end if

The bottom Figure 3 shows a sample log (events recording) of the conservative distributed simulation. Grey back-
ground shows the variables of Simbots executing LP1, and LP2, and white background shows the input and output buffers
(IB, OB), the time-stamped messages with the interchanged UFs, and the steps executed by the respective distributed
simulation managers.

For simplicity, the simulation manager in Algorithm 1 shows only the reactive behaviour when an event is received
in an actor-like style. The Start message (lines 1-10) initialises the simulation manager. It initialises the Event List
(EVL) that contains the initial list of enabled internal transitions (lines 7-10), and also initialises to zero all time
stamps received from adjacent Simbots (Adj). It sends the lookahead value to each transition in PULext as well, which
contains the list of transitions in adjacent Simbots that can be affected by the firing of transitions in the Simbot.

When an Event message is received, the simulation manager executes a simulation step of the simulation interpreter
Algorithm 2: the first step of the simulation manager is to update the received time stamp of transition in Adj (line
13), and it translates the external event of the Input Buffer (IB) into the Future Updating List (FUL) (line 14), which
plays the role of the future event list in an event-driven simulation. The function insert-FUL() maintains events ordered
by time stamp. Every event in the FUL has a pointer to the transition t to be updated, the updating factor UF(t′ → t)
delivered by each fired transition t′ (t ∈ (t′•)•), and the time at which the updating must take place. In the log shown in
the figure, UFs are removed from the FUL to avoid redundant information. After that, the event processing checks that
a message has been received from each adjacent Simbot (allreceived(Adj), line 15). In this case, the minimum
time stamp (ts, line 16) is used as LHVT to execute a simulation step of the interpreter. After this, messages are
inserted in the Output Buffer (OB) for each transition in PULext. Then, the simulation manager empties the OB and sends
asynchronous messages to all adjacent Simbots. These messages allow them to advance their simulations expecting not
to receive messages with smaller timestamp in the future. In order to know when transitions in adjacent Simbots must be
updated, the message contains the t identifier, the UF and the ts (line 20). In case there are not events for the adjacent
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ARRONATEGUI et al. 15

Algorithm 2. Simulation interpreter of a LEFs-coded TPN.

1: procedure Simulate (LHVT)
2: while (LVT< = LHVT) do
3: if (head − FUL.time>LVT) then LVT ← head-FUL.time ⊳ Update Virtual Time
4: end if
5: while (head-FUL.time = LVT) do ⊳ Update Event List
6: t ← head-FUL.pt; ft(M) ∶= ft(M) + head-FUL.UF;
7: if (ft(M) ≤ 0) then insert(EL, t);
8: end if
9: head-FUL ← pop(FUL);

10: end while
11: EVL ← Sort(EVL, CCS, Strategy); ⊳ prioritises transitions in conflict in EVL
12: for all (t′ ∈ EL) do ⊳ Fires enabled transitions
13: if (ft′ (M) ≤ 0) then ⊳ Checks transition is enabled yet
14: for all (t ∈ IUL(t′)) do
15: ft(M) ← ft(M) + UF(t′ → t);
16: if (t = t′and ft(M) ≤ 0) then ⊳ Avoids race conditions
17: insert − FUL (t, 0, 𝜏(t) + LVT);
18: end if
19: end for
20: for all (t ∈ PUL(t′)) do
21: insert − FUL (t,UF(t′ → t), 𝜏(t′) + LVT);
22: end for
23: end if
24: end for
25: end while
26: end procedure

Simbot, the message contains a zero (null) UF value and the lookahead time stamp (line 22). The algorithm can be
improved by reducing the number of messages.82

When the simulation manager executes a conservative strategy, the model requires to exploit the lookahead informa-
tion to speed up the simulation. The lookahead comes directly from the net structure.81 To calculate the lookahead for
every external transition, the sample uses the precomputed future list of firing times. The lookahead of a transition is cal-
culated as the minimum time-stamp of events that reference this transition in the FUL and the times that result from the
addition of the times in the future list and the LVT taking into account a number of times equal to the enabling degree of
transition.

The simulation interpreter in Algorithm 2 executes the interpreter until the LHVT. First, it advances the LVT until
it reaches the time stamp of the first event in the FUL (line 3-4). The algorithm then updates all LEF values with the
UF of events that are in the FUL and have the current LVT. Afterwards, it inserts enabled transitions in the EVL (lines
5-10). In line 9, pop(FUL) pops and returns the head of FUL (head-FUL), granting access to the fields of events in
FUL using the dot notation. Subsequently, the algorithm deals with all enabled transitions in CCS (line 11), solving
conflicts by sorting enabled transitions according to a defined strategy (policy).

Then, the interpreter takes all enabled transitions in the EVL firing enabled transitions in order (lines 12-24). For
every enabled transition, the algorithm immediately applies IUF update factors, that is, tokens are removed from input
places as soon as a transition occurs (lines 14-19). The algorithm then inserts events into the FUL for subsequent
processing using the PUL update factors, which means that tokens will appear in output places in future clock time
(lines 20-22). Then, all transitions’ LEFs values in the FUL with the same time-stamp of the current LVT are checked,
and enabled transitions are inserted in the EVL. As it was highlighted in Reference 16, LEFs make the representation and
updating of the marking of the PN model unnecessary. The PN marking can be easily defined collecting a log that contains
the occurrence of transitions, where each one of them is labelled with the simulation time. The occurrence sequence and
the net state equation (an algebraic computation) can be used to compute the reached marking from the initial one.

Only a mailbox is associated with a Simbot, which allows to adapt the algorithm to support dynamic topologies of
Simbots, or to use optimistic strategies incorporating an exception handling mechanism.

3.1.3 VLEF-coded PN supported interoperability and simulation federation

VLEF encoding is also well suited for models whose simulation needs to interact with external agents or legacy simulators
in order to federate a set of simulators. In some cases, when modelling a given system using PNs, certain parts of the
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16 ARRONATEGUI et al.

system cannot be represented solely in terms of nets. For instance, there may be predicates associated with the occurrence
of a transition that require consulting external variables to determine their truth value. These external variables can be
inputs to the system from an unspecified environment or simply the inputs coming from human agents that must be
integrated in the system’s behaviour (e.g., decision making processes external to the system). A typical example such a
predicate is a function used to resolve conflicts between transitions.

To support the simulation of models in this class of systems, simulation engines need to be equipped with the capability
to evaluate predicates associated with transitions, where the truth value of these predicates determines the enabling con-
dition of the transition, but is not based on Petri net terms. The VLEFs allow a natural integration of these predicate-based
enabling conditions. To achieve this, the following mechanisms should be introduced in the simulation engines and the
data structures associated with the transitions:

• Extend the vectors that represent the VLEF encoding to include an additional entry for each predicate associated with
the occurrence of a transition. Instead of storing an integer value, this entry should store a call to an external function.
This function evaluates the associated predicate when all the variables involved in the predicate have been obtained.
The function will return 0 if the predicate is true (enabling the transition) or 1 if the predicate is false (disabling the
transition). By extending the VLEF with these predicate entries, the transition will be enabled only if all its components
are less than or equal to zero. Before performing this test, the evaluation functions of the predicates need to be invoked
to obtain the vector of values for comparison.

• In cases where constants need to be transmitted to transitions with predicates from transitions that modify their
enabling degree, the components related to the predicates are generally set to zero. However, in certain cases, the trans-
mission of parameters to a simulation data repository or a data collection mechanism for decision-making purposes
within the simulation can be achieved by including invocation of transmission procedures within these entries. This
allows for the seamless sending of data during the simulation process.

4 THE OVERALL PN-BASED MDE APPROACH FOR LARGE SCALE
DISTRIBUTED SIMULATION

The objective of large-scale DES M&S is to obtain the most precise model by coupling all perspective models, and to allow
the modeller to observe the effect of decisions in a clearer way. Figure 4 summarises the stages of the MDE approach
presented in References 1,14,16:

Conceptual PN-modelling: Modelling with a DSL language that provides the basic conceptual entities of an appli-
cation in a specific domain. Interactions with the environment or external simulators are also modelled. The conceptual
model is the initial product that can be verified before executing the simulation model. A PN-based model can leverage
structural analysis to support the functional verification process pointed in Figure 4.

As shown in Reference 30, PN models that are well-formed for simulation are those where the resulting net system
remains bounded for any initial marking. This requirement, known as the structural boundedness property, must be
guaranteed by the net structure. This property can be verified using the incidence matrix C by checking if the following
inequality has at least one solution: ∃y > 0 such that y ⋅ C ≤ 0 (place-based characterisation).

While algebra software packages can generally handle matrices with tens of thousands of rows and columns on mod-
ern systems with sufficient memory, this is relatively limited for scalable Petri net modelling of complex system-of-systems
using a modular approach, which may consist of millions of places and transitions. The solution proposed in References
1,16,30 involves obtaining structurally bounded models by construction, starting from small-sized components that each
possess this property. The construction process involves integrating these components through operations that maintain
the property (closed operators with respect to the class of structurally bounded Petri nets). For instance, components can
be Petri subnets that are integrated by merging specific interface transitions defined within each component.

Composition of live components can result in a deadlock. The executable nature of PNs allows the incremental
verification of coupled components by simulation. Alternatively, once again, well-formed models can be constructed
using a methodology that incorporates constrained PN models tailored to a specific domain. Significant efforts have
been to identify subclasses of Petri nets that are suitable for specific domains and facilitate the verification of proper-
ties. The well-formedness of Petri nets (including boundedness and liveness) can be maintained by adhering to specific
construction rules in these domains that can be found in the literature referenced in Section 2.4.
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ARRONATEGUI et al. 17

F I G U R E 4 Large scale M&S supporting decision-making workflow on a PN-based MDE approach.

Timing and decision model annotations: The model can be annotated with labels that constraint its interpretation.
These annotations are required when the model refinement process goes down the level of abstraction until it is not possible
to achieve a more detailed description.

If the limit in the abstraction level is due to the lack of knowledge, PN models can be annotated and configured with
deterministic time, probability distributions, or declarative knowledge that mimics the system’s behaviour. For example,
when the resource behaviour in a model cannot be detailed, time annotations can be obtained from data acquired by
profiling the execution on the resource.84 If there is not any information of how decisions are made in conflict resolutions,
a rule-based engine can make decisions when the model is not deterministic.

An alternative methodological approach when the execution of large-scale models is not possible is Recursive simula-
tion.39,85 It consists of conducting simulations at lower levels, which are launched to compute parameters that are useful
for higher base simulation.

Operational model: In order to provide assistance in the next phase of deployment and configuration, it is essen-
tial to develop an operational model of the simulation platform. The operational model enriches the functional model
with characteristics of the execution platform to develop a quantitative analysis. The efficiency of distributed simulation
depends on the implementation of efficient simulation engines, the definition of data structures representing the work-
load, the number of events interchanged between model partitions, and the dynamic deployment of these workloads
among the computational resources. The definition of metrics for the evaluation and estimation of workload is an essen-
tial aspect for distributed simulation, especially in the cloud, where computation and communication come at a cost.15

It makes it necessary to profile components by micro-simulations on resources. A PN-based model labelled with time
obtained from the result profiling is essential to perform the performance verification pointed in Figure 4. An example
of this methodological approach for performance verification can be found in Reference 12. It should be noted that the
conceptual model that results from the composition of the functional and operational levels in different domains (FMS,
WMS), is considered the functional level for the simulation process.

Elaboration and compilation: An elaboration process translates high level PN specifications into a flat model
that is more adequate for efficient interpretation. The conceptual model is compiled into efficient code based on the
idea of the LEF summarised in Section 3. LEF code generation for efficient simulation is not properly a verification
process; however, the same representation has been used in the Figure 4. The reason is that it requires PN structural
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18 ARRONATEGUI et al.

analysis to compute the structural bounds of each place. Once again, the method is scalable because it is possible to
easily compute the structural bound of each place of a large component using the previously computed bounds of
subcomponents.

Compilation of large scale models is a challenging problem that requires a large amount of computational resources
(time and memory). If the size of the model does not fit on a computer, the model is partitioned for the compilation of sep-
arated components. HLPN provides higher-level primitives/components defining entities that can be the base to provide
a first partition. Model partitions for compilation are guided by component reusability and component size manageabil-
ity criteria taking into account the computational resources (available memory) for their compilation. It is possible to
separately compile manageable-sized modules, which can later be linked when loading the model into the simbots of the
distributed simulator by merging transitions over the corresponding VLEFs.

Deployment and distributed system configuration: Model Partition for distributed execution requires, a pri-
ori, to identify the good parts in which the model is divided. The initial model partition can use criteria similar to
those used for compilation, that is, it can use component or entities defined in the conceptual model to provide a
first model partition. However, distributed partitions can also be independent of conceptual model entities or compiled
components.

Model partition verification (see Figure 4) uses HPN and flat PNs models that contribute to a rich structural infor-
mation of the system. The partition can be supported by applying structural and behavioural analysis.46,61,81,86 In this
sense, strategies based on the identification of sequential state machines can be used to extract the maximum concur-
rency (for example, computing p-semiflows in an incremental way). The operational model (hardware architecture and
synchronisation algorithms) must be taken into account.74 Due to the NP-hardness nature of these problems, research
has been directed to find fast approximate solutions using optimisation techniques.87,88

A fundamental aspect of a TPN distributed code concerns the deployment of compiled components and the definition
of connections between PNs deployed in different nodes. Spatially large models require for connections to be specified by a
scripting configuration language.78 Deployed components can be easily connected by the fusion of LEF-coded transitions
that conform the component interface. Our LEF-coded representation of TPNs allows us to drill down the partitions
to the maximum level of granularity and maximum concurrency: transitions represent events that can be distributed
into different components. The only constraint to be considered is to keep transitions in structural conflicts in the same
components to maintain conflict-resolution local, and avoid unnecessary messages.62

Dynamic configuration and load-balancing. In a large computing infrastructure, resources are shared by many
users, resulting in a much greater variability in the allocation of computing and communication resources. Even if the best
model partition were achieved and deployed, small changes in the hardware configuration or the evolution of the simula-
tion would produce large imbalances.48 Load-balancing can be supported by considering LPs as containers of interacting
entities that can move between LPs.48 The set of partitions or LPs in these approaches is stated before the simulation
itself. Once the code of the LP is generated it cannot be reconfigured in runtime. Moreover, these approaches lack of an
event model that defines what entities are related and how the chain of events is propagated between them, delegating
and locking communications and adjacent relationships in LPs.

LEF-coded model is not locked in Simbots, which enables the portability of the model between them. The code carries
event network dependencies, which can be used by Simbots to redefine neighbourhood relationships facilitating dynamic
load balancing.

Execution, data-collection, monitoring, fault detection. The architectural proposal for distributed simulation is
based on micro-kernels specialised in an interpreted simulation of the model. Each of these simulation micro-kernels is
referred to as Simbots. A Simbot provides an efficient LEF-coded PN interpreter, simulation services such as conserva-
tive/optimistic synchronisation protocols, load-balancing mechanisms, as well as monitoring and result collection.16 The
verification of the model partition supports finding the best partition dynamically when the workload is unbalanced.
The collection of simulation data is also essential for the validation of the functional model, as well as for feeding the
operational model to improve performance predictions in future simulations.

In addition to the basic services provided by a Simbot, large-scale distributed simulation requires a more complete
list of services to support an MDE approach. An essential component is a Simulation Information System. Conceptual
models, compiled code, and collected information must be supported by a database. Non-behavioural semantic aspects
of the conceptual model must be removed from the executable code in order to prioritise efficiency, scalability and load
balancing. However, the execution of the flat model and the collection of simulation results, require a translation into
the conceptual model semantics to be interpreted by the model users. Compilation and elaboration processes store the
correspondence between events in the flat model and the conceptual model in a database.
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ARRONATEGUI et al. 19

Load balancing will move LEF-coded transitions that reference other transitions. A distributed Name Service is
required to provide the location of any transition. A large-scale distributed simulation also requires a fault tolerance system
to configure replicas and detect faults.

5 MODULAR DESIGN WITH PN-BASED COMPONENTS FOR
DISTRIBUTED SIMULATIONS

By providing communicating processes and resources as basic primitives it is possible to represent a large range of prob-
lems in different disciplines such as manufacturing,89 software,90 cloud,12 or healthcare91 systems. In this work the
methodology followed by most of the approaches to construct PN models is reused: (1) definition of the functional model,
(2) definition of the operational model, and (3) construction of the global model by composition through resource sharing
or communication.

The methodology is illustrated by two different examples: a manufacturing system, and a wavefront model. The
methodology is applied to the modelling of restricted classes of PNs. It shows how the methodology allows the modelling
of complex scalable models that can be translated into flat well-formed LEF-coded PNs for distributed simulation. Due
to limitations in the length of the article, intentionally simple examples have been chosen. Despite their simplicity, these
examples illustrate the possibility of easily scaling the presented models. The modelling methodology presented imposes
constraints, such as defining structurally limited models, which are easy to meet since modelling finite resources natu-
rally leads to this type of constraint. The composition of these PN components results in structurally limited PNs, ensuring
that the values of the VLEF values are bounded during the simulation. Runtime errors due to variable overflow are not
possible. Without these restrictions, following the proposed PN-based methodology, it is possible to avoid these overflow
errors in our simulations. However, it can appear in other simulation languages.

5.1 RAS: Composition of processes and resources

Figure 5 sketches a production cell where parts are processed. The cell is composed by four machines M1, M2, M3, and M4
with capacity for processing concurrently two parts. M1 shares the working place with M2, and M3 shares a working place
with M4. There are three robots R1, R2 and R3 to transport parts. R1 transports parts from the input I1 to load machines
M1 and M2, and can unload M3 in output O2. R2 can transport parts between the four machines. Finally, R3 can load parts
from input I2 and unload parts from M2 to output O2.

Two different types of parts have to be processed. Type 1 parts are taken from the point I1, processed in machine M1
or M3, then in machine M2, and finally unloaded to output O2. Type 2 parts are loaded at input I2, processed in machine
M4, then in machine M3, and finally unloaded to output O2.

Left Figure 6 shows the entities to model the cell and processes. The production plan for type 1 parts is modelled by an
instance of Plan1, and that for type 2 parts by an instance of Plan2. Black transitions and diamond symbols represent
interface transitions of plan instances. All transitions in the model are in the interface of components. The names of
transitions in the plans are Ti. The load of machine instances is named M1 and the unload M2. The transport of parts
by the robot starts with TR1 and ends with TR2. Places whose name begins with Pi model states that can be reached by
type i parts. For example, P1M2 corresponds to a type 1 part being processed in M2. P1_0 and P2_0 models respectively

F I G U R E 5 Layout of a manufacturing cell.

 1097024x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3374 by U

niversidad D
e Z

aragoza, W
iley O

nline L
ibrary on [03/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 ARRONATEGUI et al.

F I G U R E 6 RAS perspective in the context of FMS: On the left, entities to model processes (process plans) competing for resources. On
the right, resulting flat PN model.

type 1 and 2 parts out of the systems. The initial marking in these places provides upper bounds to places, which allow
to calculate initial LEF values of transitions.

Each part in these states needs some resources. Resources R#i represent instances of robots, and resources M#i
instances of machines. Places named I represent idle resources, P places represent the processing of parts on machines,
and T places represent robots transporting a part. At state P1M2 the part is using machine M2, and needs robots R2 and
R3 to load and unload the machine.

To define the RAS model, production plans of parts are composed with the resources through transition fusion. Note
that the links between components represent transitions fusions. To avoid crossing links, only the other fusion transition
of the link is labelled in each component interface. For example, T2 of plan Plan#1 is linked with R#1.TR2, using the
usual doted notation to represent the transition TR2 of R#1, and with M#1.M1. All these transitions are merged into one.

On the other side, robot transition R#1.TR2 can upload parts in machine M1 and M3 for processing parts of plan1, and
load parts from M3. This means that a replica of transition TR2 is merged for each one of these transitions. In order to
represent this fact, the diamond symbol that stands for the interface has been split. Therefore, in addition to transition
merging, a unary transition replica operator is required. This operator, like the merger of transitions, maintains the upper
bound of the marking of component places.

Right Figure 6 shows the resulting flat PN obtained after component composition. This model is well defined and
belongs to the class called S4PR. Initially there is no activity in the system, and each possible production path has enough
resources to be executed separately. All transitions are live, resources are used in a conservative way, and all places are
bounded.33 This means that once transformed into a flat LEF-coded PN, the simulation is free of deadlocks, and the
LEF-values are free of overflows.

Instead of defining the model by composing resources and process plans, we could have defined the cell model in
Figure 5 through composition. This simple cell can be instantiated and composed with other cells, transportation systems,
warehouses, and so on. Finally, the manufacturing plant model can be composed with process plans. Ultimately, the
methodology is easily scalable, allowing for the modelling of complete manufacturing plants and complex process plans.

5.2 Channels: Composition of processes by asynchronous messages

Communication is the alternative form of interaction to resource sharing between processes. Process interactions imply
the use of a channel that represents the synchronisation of the internal behaviour of entities. Transition fusion of different
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ARRONATEGUI et al. 21

components means that both processes engage simultaneously in the event represented by fusion transition. If buffering
is required on a channel, this is achieved by interposing a buffer between the two processes. If the buffer has a limited
capacity, the channel can be modelled as a resource shared by sender and receiver. In this case, however, it is an open
loop, and there is no competition for the resource.

Typically, the modeller thinks of the communication channel as a buffer of infinite capacity. Left Figure 7 shows two
communicating processes and an asynchronous channel. It shows sender, receiver and the asynchronous channel
components, with component interfaces defined as places. In this case, entity interactions are defined by connecting ports
as illustrated in the figure. The coupling relation between the output Sender#1.Mo and the input port Channel#1.Mi
results in the fusion of places that represent the delivery of a message to the Receiver#1 through the channel Chan-
nel#1, and the connection of Channel#1.Mo and Receiver#1.Mi port results in the fusion place that shows the
message is ready to be received. This sample shows how the language also supports the classical port mapping between
components, similar to DEVs, VHDL, or TPN Designer. With this design, a repetitive firing of transitions t1, t2 and t3
can result in an unbounded number of tokens in place Channel#Mi. An interpreter playing the token game could cause
an error due to an overflow of the LEF value (the number of tokens in a place in classical PN interpreters).

Right Figure 7 shows the alternative representation of structural bounded components with the interface defined by
transitions, and links representing the fusion of transitions. The channel is provided with a buffer capacity. In this case,
every component is live and bounded, and the component composition results in a well-formed PN.

In order to illustrate the model scalability, the matrix-vector multiplication problem is used. It can be modelled in
a streaming fashion where data are flowing through different processing tasks that transform them.12,36 A wavefront
algorithm modelled in streaming is a systolic computation with the same functionality as the stages conformed by systolic
cells arranged in a regular form with the nearest neighbour.

The functional PN model of the wavefront algorithm sketched in Figure 9 is constructed in a modular fashion. The
basic component primitives needed in this case are: (1) the component to describe a systolic cell in a node of the wavefront
array in left Figure 8; (2) a component to describe the data transmission of the input and output data streams to/from the
wavefront array in right Figure 8.

Once a functional model is achieved, it is necessary to know how it will behave in a specific computing infrastruc-
ture. For this purpose, a model of the computational resources and infrastructure is created. Then, the functional model

F I G U R E 7 Composition based on port mapping and place fusion versus composition based on transition fusion to model processes
communicating by a channel. On the left, composition based on port mapping and place fusion. On the right, composition based on
transition fusion.

F I G U R E 8 Basic modules for the construction of the functional Petri net model of the wavefront algorithm. On the left, computational
process associated to a node. On the right, data transmission process for the external/internal data streams.
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22 ARRONATEGUI et al.

F I G U R E 9 Untimed functional Petri net model of the wavefront algorithm.

is combined with the infrastructure model. This is referred to as an operational model. The functional model of the wave-
front can be merged with computational resources (e.g., cloud resources) in order to define an operational model and to
simulate a wavefront operated in a streaming fashion, or to model the regular systolic cells implemented in hardware. In
this example, describing the resources can be as simple as labelling the transitions that represent the usage of resources
mentioned at a high level in the functional model with time. Of course, a more comprehensive model would require a
more detailed description of the resources and infrastructure. The addition of time to the model of Figure 9 can be done
by labelling begin’s Ch#ij transitions with the expected communication time, and begin’s Cell#ij transitions with
the operation time. In a streaming pipeline in the cloud, performance analysis can be obtained by profiling the cloud
infrastructure to feed the current models with time distribution annotations in order to estimate bounds, or by running
simulations using probability distributions with different Coefficients of Variation in order to estimate the performance
on different execution platforms.12

The behavioural analysis of the design obtained in Figure 9 can be performed by exploiting the structural properties
of the net. It is a strongly connected marked graph (a subclass of Petri nets where each place has only one input and one
output transition, being strongly connected in the sense of graph theory).12 The wavefront model has a regular structure
that is adequate to generate large-scale models and to test the scalability of a centralised LEF-code based simulator.

6 EXPERIMENTAL RESULTS

In distributed simulations it is necessary to look for the best system configuration considering latency, bandwidth, model
partition, processing rates and memory usage. The point of this article is that a PN-based MDE approach can help in all
these aspects related with the M&S of complex systems. The experimental work of the current work is only focused on
the feasibility of a LEF based interpreter of TPN models as the first necessary tool for the construction of a framework
to support a PN-based MDE approach. By maintaining PNs as the underlying model representation in all stages, it is
possible to benefit from a modular PN analysis/simulation throughout the development life-cycle of the M&S process.
The LEF-coded interpreter presented in Algorithm 2 has been implemented with version 1.52.1 of the Rust compiler. Rust
is a language focused on safety and performance establishing itself as an alternative to C++.
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The current experimental evaluation is based on two models with different characteristics. The first model is the wave-
front presented in the previous section to illustrate the LEF-based efficiency of the centralised interpreter. This model is
easily scalable and presents a high density of events (number of events per unit of simulated time). We will observe that
the simulation time behaves well with the scale of the model. When the number of events in the event queue exceeds a
certain order of magnitude, the simulator’s performance is drastically affected. Managing the event queue is the biggest
challenge in the simulation of discrete event systems. The only possible solution is to partition the model and use dis-
tributed simulation to reduce the number of events in the event queue. The second model is a synthetic Petri net model
that is easily parametrizable, aimed at determining when the workload on the simulator is significant enough to justify
distributing the model.

In order to carry out the first experimental task, we used the wavefront model, in which all transitions have been
labelled with a unit of time. The interpretation of PNs heavily depends on the model size. The wavefront model presents a
high event density, that is, a high number of events by simulated second, and it is greatly affected by the efficiency of event
scheduling in the EVL queue. Half of the transitions in the model are fired in each simulation time, and each transition
firing updates at least two LEF values. It enqueues, for each fired transition, one immediate UF, and a future UF for the
transition in the PUL. It supposes that the event queue size is equal to the number of transitions in the model.

Table 1 shows the execution of wavefront models with different number of cells and transitions cells 3 × 3, 9 × 9, 81 ×
81,243 × 243 and 729 × 729, that is, each model has a number of transitions 9 times greater than the previous one. All
transitions have a duration of a unit of time, and the simulated time for all experiments is 1,000,000 simulated seconds.
The first column shows the number of transitions in the respective models, the second one the number of fired transitions
during simulation, the third column the wall-clock time, and the fourth column shows the processing event rate (P)
(events/second) that is the usual metric to compare centralised DES simulators. The experimentation has been executed
in a PC with an Intel i5-4690 3.50GHz processor, 32 GB of RAM and an Ubuntu 18.04 operating system with kernel version
5.4.0-70-generic.

Figure 10A shows the execution time of the LEF-based interpreter depending on the wavefront model size in a log-
arithmic scale. As it can be seen, the execution time has a good behaviour until the lack of resources due to the model
size slows down the simulation. The event queue, which has been implemented with a binary heap queue, has a size
occupancy equal to the number of transitions in the model. It shows a similar behaviour to compiled simulators where
the event queue performance is the most relevant aspect. Figure 10B shows the event processing rate based on maximum
occupancy of the event queue in a logarithmic scale. It shows the expected behaviour affected by the scheduling of events
in the EVL in a heap-queue whose cost for operation pop is O(log(n)).

For the second experimental task, we based our work on the previous study of Andras Varga et al.92 Authors provide in
this work a guide for model partitioning that includes a comprehensive metric considering both the model and the physi-
cal characteristics of the node (processing rate and communications) for conservative simulations They proposes that null
messages should reach the target LP before it runs out of work, and express it with the condition: 𝜏 < LHVT∕R, where
𝜏 is the latency, LHVT is the local horizon virtual time presented in Section 3.1 (Section 3.1.2), and R is the simulation
time advanced rate that shows how many seconds of simulation are advanced by walk-clock seconds. A more intuitive
definition of this condition can be expressed as 𝜏 ∗ P < LHVT ∗ E, where P is the event processing rate (events/sec), and
E is the event density, that is, the number of processed events per simulated second in (events/simSec) that can be calcu-
lated as E = P∕R. This expression shows that the number of events the CPU can process during message transit (𝜏 ∗ P),
which are dependent on CPU, network latency, and interpreter efficiency, must be less than the number of events to

T A B L E 1 Centralised LEF-based simulation of wavefront model with different model sizes.

Transitions Fired Time (s) P (ev/s)

21 10,999,972 0.31 35957609.14

171 86,998,710 2.76 31552801.68

1485 746,961,948 32.47 23001560.58

13,203 6,613,948,350 429,27 15407567.28

118,341 59,182,401,492 9586.95 6173226.22

1,063,611 531,153,047,430 117970.90 4502407.39
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24 ARRONATEGUI et al.

(A) (B)

F I G U R E 10 Walk-clock simulation time and event processing rate of centralised LEF-based simulation with different wavefront
model sizes. (A) Walk-clock simulation time in function model size. (B) Event processing rate in function of max event queue size.

F I G U R E 11 Model to configure Petri nets with different sizes/workload for distributed simulation.

be processed by the LP until the next horizon time defined by the LBTS, which is model dependent. A more detailed
discussion about the work load in distributed simulation can be found in Reference 15.

The model in Figure 11 has been used for supporting the experimentation of distributed simulations. This synthetic
PN can be easily parametrised with the number of branches, which are chains of events that can be executed in parallel
without violating the causality constraint, and the number of transitions that represents the simulation workload of each
branch. This model has a low event density (equal to one for each branch). In this way, the simulation is not affected
by the event management efficiency of the EVL. The model can be easily partitioned and scaled with the number of
branches and their length. A greater branch length implies a higher lookahead value. The distributed simulation has
been implemented following the LEF-PN code interpreted by Algorithm 2, and the conservative distributed simulation
Algorithm 1 presented in Section 3.

It is important to note that the presented models are defined without adding any synthetic load associated to the occur-
rence of events. The consideration of this additional load in each node is very relevant and could require the processing of
large amount of data. It is an additional aspect to be considered for scalability issues. In the current case, the model exam-
ples are presented without adding any synthetic load, and the data processing is simulated with transition annotation of
the estimated load processing time. Scalability issues related with data processing have been considered orthogonal to
distributed simulation. They have their own scalability and load balancing mechanisms.
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T A B L E 2 Distributed simulation versus centralised simulation with different loads by Simbot implemented in rust.

Simulation #br. trans/br. Events Nodes Events/s Exec. time

Centr. 2 10,000 19,998,003 1 7,522,936 2.658 s

Distr. 2 10,000 19,998,003 3 2,609,886 7.619 s

Centr. 7 10,000 69,988,013 1 4,407,922 17.79 s

Distr. 7 10,000 69,988,013 8 6,652,821 10.52 s

This decision leads the disadvantage of distributed setups with respect to the centralised approach, from a performance
evaluation point of view. Distributing the model means parallel computation, but involves event interchanges subject to
bandwidth and latency constraints.93

Table 2 shows the results obtained from the conservative simulator implemented in Rust language running on a mini
cluster of Raspberries Pi 4 with 8 GB of RAM each. It also illustrates the advantage of using a simulation micro-kernel,
which allows to deploy the model partitions on different hardware. The same PNs, modelled as Figure 9, have been tested
with variations in depth and number of branches. The simulated time for these experiments is 10M SimSeconds.

First two rows show a lower load case: 2 branches with 10K transitions per branch. It is found that better results are
obtained for the centralised simulator. In the next two rows, the number of branches has been increased, trying to find
a situation that is more suitable to the use of a distributed simulator. In this case, the real simulation time is less in the
distributed version, which indicates that if the number of branches that run in parallel increases, the simulation time of
the centralised one substantially does too, so that a distributed solution is more suitable. The sixth column shows the total
number of events/second in the simulation. The number of nodes is one by branch, and one additional node contains
the PN part that synchronises all branches at the beginning and at the end. This Simbot contains a negligible number of
transitions and is not considered for the processing rate of each branch. The number of events/second reached in the last
case with 7 branches is approximately 6,652,821, which is near the centralised approach in the first row but executing a
larger model.

7 CONCLUSIONS AND FUTURE WORK

This article focuses on the role of PNs as the core formalisms to support an MDE approach for the M&S of large models.
PNs are an executable specification, which make them particularly suitable for M&S of DES. However, formal-model
based analysis tools are only useful under certain assumptions or are insufficient to afford the study of large models.

This work reviews the role of hierarchical PNs in each stage of the M&S of large DES, from conceptual modelling
to the generation of code execution. From the modelling point of view, it has been proven that it is possible to ensure
well-formedness composition of PNs using structurally constrained PNs adequate for the domain. In this way, large-scale
PN models deadlock free and bounded can be obtained. From the simulation point of view, the paper presents a PN model
adequate for efficient interpretation and configuration of the simulation. LEF-coded PN components can be composed
by transition fusion, which preserves bounded models. Separate compilation and composition allow the development of
large-scale models.

P/T nets explicitly specify preconditions and state changes. This offers the possibility of compiling them in an
event-dependency network. The interest of LEFs lies in their use in the simulation of PNs to reduce the number of tests
(to determine the enabling of a transition) during the simulation cycle, with respect to a place-driven simulation. The
proposed LEF-code structure maintains the enabling-transition state when transitions fire. It uses the event-dependency
network to update the function value of affected transitions and requires only integer addition operations.

From the perspective of distributed simulation, the desirable characteristics of the code are the facilities to scale and
adapt to the execution environment through mechanisms such as the dynamic composition of components, and load
balancing. The main contributions of this work from this point of view are:

• The exchange of messages between simulators to update the enabling transition state is reduced to the transmission
of integers. It is the minimum information to be transmitted from a transition that has occurred to another transition
when the marking contents of their input places have been modified. Therefore, the costs of transmitting messages
through the communication network are reduced to the essential minimum.
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26 ARRONATEGUI et al.

• The compilation of large-scale models is an important bottleneck for the generation of executable code and the deploy-
ment in large scale execution infrastructures. VLEFs provide the adequate transition characterisation to support the
separated compilation of modules or parts of the model, and component linkage of distributed simulators.

• PNs can be dynamically composed at simulation time when transitions involved in the fusion are assigned to the same
simulation engine by stacking the data structures of VLEFs.

• LEFS present good characteristics for load balancing: (1) the model is not wired with the simulator, which enables
its portability to other simulators, (2) the representation of the event-dependency network facilitates the evolution
of a dynamic graph of LPs since the migration of code carries the event-network dependencies that can be used by
interpreters to redefine neighbourhood relationships, and (3) the granularity of the code is not defined at compiled
time, and it can used at different levels of abstraction (from large components down to transitions).15

The LEF-based dependency-network representation of PNs supposes a new perspective of PNs, which opens many
lines of future work. The main objective is to develop a framework for the definition, management, and distributed
simulation of large-scale PN models. It comprises HLPN specifications, elaboration, analysis, partitioning, compilation,
management, deployment and monitoring.

Current efforts are directed at the implementation of a scalable version of the compiler based on the VLEF structures,
and the exploitation of the PN structure for the simulation of scalable systems.
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