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SUMMARY

Post-coronavirus disease condition (PCC) continues to affect many people globally, yet there remains a
lack of diagnostic biomarkers to distinguish PCC from those recovered from acute COVID-19. This study
compared biomarkers between two age- and gender-matched groups: PCC individuals and those recov-
ered within three months of acute COVID-19 in 2020 (n = 85 each). Biomarkers were assessed 12–
24 months after initial diagnosis, examining biochemical profiles, blood cell counts, coagulation status,
antibody serology, lymphocyte populations, and cytokine levels. PCC individuals exhibited significant al-
terations in 49 of 167 markers, including K+ levels, aGAD antibodies, antithrombin III, insulin-like growth
factor-binding protein 3 (IGFBP3), and interleukin-10 (IL-10). A panel of aGAD, IL-10, potassium levels, and
CD16brightCD56� cell presence distinguished PCC individuals from recovered patients with >88% accu-
racy and <92% precision.

INTRODUCTION

Since 2020, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread rapidly

throughout the world, seriously threatening global public health.1 Globally, as of January 2024, there have been 774,291,287 confirmed cases

of COVID-19 including 7,019,704 deaths.2 Most people with an acute SARS-CoV-2 infection recover within 1 month after diagnosis, depend-

ing on the severity of the symptoms.3,4 However, it is estimated that regardless of the severity of the symptomatology, approximately 20% of

peoplemaintain and/or developmultisystem symptoms after 5 weeks onward, whereasmore than 10%of people do so after 12weeks onward

since the acute infection.5,6 The World Health Organization (WHO) registered in December 2022 the official definition as ‘‘post-COVID-19

condition’’ (PCC)7 that is defined as the persistence or development of new symptoms 3 months after the initial SARS-CoV-2 infection, which

may last for at least 2 months with no other explanation.7

Apart from being confusing and not very specific, characteristic symptoms of PCC may be persistent or fluctuate over time8,9 Pro-

found fatigue, shortness of breath, fever, cough, headache, chest and/or throat pain, and muscle and body aches are symptoms that

frequently appear in the acute phase of COVID-19 and persist beyond the month following the infection and may last more than
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3 months. In addition, PCC patients over time develop cognitive deficits, myalgias, neurological symptoms, and depressive and anxiety

symptoms.10–12

Acute COVID-19 develops after upper airway infection with SARS-CoV-2, and it is characterized by a hyperinflammatory cascade

response resulting in a so-called ‘‘cytokine storm’’ in severe cases.13–16 As a result, severe disease is further characterized by endothelial

damage and activation, as well as intravascular coagulation, followed by lymphopenia and thrombocytopenia.17,18 In most cases, the in-

dividual’s biological immune response can control the infection, keeping symptoms mild or absent.9 Whether and how the alterations in

the immune, inflammatory, and coagulation responses in acute COVID-19 are mechanistically linked to the development of PCC is not very

well known.9,19,20 Initial studies comparing COVID-19 recovery cohorts with PCC individuals revealed a statistically significant correlation

between PCC symptoms and the increased levels of circulating interleukin-6 (IL-6), IL-10, interferon gamma (IFN-g), and tumor necrosis

factor alpha (TNF-a).21,22 It is also already known that excess activation of the immune response directly correlates with cognitive-behav-

ioral changes,23 as potentially ensues in PCC.

Although much PCC research is being performed, PCC cohorts are rarely compared with matched controls that were infected by the

same strain of virus at the same time and managed in the same outpatient setting. In this study, we analyzed more than 150 biomarkers to

survey the immunological, biochemical, and coagulation characteristics of a cohort of individuals who suffered an episode of acute COVID-

19 during 2020 and early 2021, comparing individuals who developed PCC versus individuals who overcame COVID-19 without persistent

or new symptoms. Using this large set of markers on a well-defined cohort of participants, this study aims to describe a panel of biomarkers

to aid in diagnosis of PCC.
RESULTS
Description of study population

A total of 170 individuals, 85 with PCC and 85 recovered individuals, were recruited. The inclusion of the participants is detailed in the

flowchart for parallel observational studies for sample selection (Figure 1). Individuals were recruited among those attending the Primary

Health Care Centers (PHCCs) with PCC, which included many more women than men (68 versus 17). The small differences between the

two groups for age, gender, and months elapsed between acute COVID-19 diagnosis and sample taking were not statistically

significant.

Delving into the persistent symptoms, as can be observed in Figure 2, themost frequent symptoms are tiredness or fatigue (84%), memory

loss or mental confusion (75%), dyspnea (71%), headache (68%), and myalgia (65%). Furthermore, in Figure 3, as can be observed, 42% of the

participants with PCC currently have seven or more persistent symptoms, with a mean of 5.35 symptoms (SD 2.23).

We assessed a total of 167 biomarkers previously related to the severity or outcome of acute COVID-19 disease or those routinely used in

patient care at the Hospital Universitario Miguel Servet. The tables below show the statistically significant results of the biochemical profile,

blood cell counts, coagulation test, serology, counts of specialized lymphocyte populations, and levels of pro-inflammatory cytokines,

comparing both groups of patients. Biomarkers whose levels were not statistically significant between the two groups can be viewed in

Tables S1–S4. The values of most of the markers with significant differences between the two cohorts lie within the normal ranges of those

parameters for known diseases. However, such valuesmay still be clinically relevant in the new and unknown context of PCC. Small differences

may discriminate between patient groups, even when values lie within normal boundaries.
Differences across biochemical, antibodies, and blood count profiles between PCC and recovered individuals

PCC individuals showed significantly lower levels of creatine kinase, glycohemoglobin, sodium, potassium, and glomerular filtration rate

compared to recovered individuals (Table 1). By contrast, PCC individuals showed higher creatinine, cholesterol, and albumin levels than

recovered individuals.

PCC individuals showed significantly lower levels of total immunoglobulin G (IgG), IgG1, and perinuclear anti-neutrophil cytoplasmic an-

tibodies (pANCAs) compared to recovered individuals (Table 1). By contrast, PCC individuals showed higher levels of IgE, complement C3

and C4, aGAD, and insulin growth factor-binding protein 3 (IGFBP3) compared to recovered individuals (Table 1).

PCC individuals showed significantly lower prothrombin time levels than recovered individuals (Table 1). By contrast, PCC individuals

showed higher levels of mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), erythrocyte sedimentation

rate (ESR), internation normalized ratio (INR), activated partial thromboplastin time (APTT) ratio, fibrinogen, and antithrombin III, compared to

recovered individuals (Table 1).

We next assessed the antibody titers against SARS-CoV-2 (specifically S1 and N) in the plasma of all study subjects. PCC individuals

showed lower aSpike IgG levels, as well as a-nucleocapsid IgG positivity, compared to individuals who recovered normally after acute

COVID-19 (Table 1).
Differences across flow cytometry and cytokine analysis between PCC and recovered individuals

PCC individuals had higher levels of naive CD8+ T cells and lower levels of effector CD8+ T cells (% among CD8+ cells) than recovered indi-

viduals (Table 2). PCC individuals also showed higher levels of cells with natural killer (NK) phenotype CD56+CD16+, as well as CD8+CD4low

cells, than recovered participants. On the contrary, the unconventional cell population with CD56�CD16bright phenotype was significantly

reduced in PCC individuals.
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Figure 1. The flowchart of participant’s selection

Out of 350 participants (with a COVID-19 diagnosis) who were assessed for eligibility, 170 participants (85 PCC patients and 85 recovered patients) were included

in the study. The two parallel groups were matched for age, sex, and date of acute COVID-19 diagnosis. The two groups are compared for mean age (years),

gender composition (Nº and percentage), and time elapsed between COVID-19 diagnosis and sample taking (months).
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We also studied levels of several circulating cytokines. We selected markers previously identified as relevant for the severity of acute

COVID-19 disease (CXCL10 and IL-6), additional markers relevant for diagnosis and disease severity in acute and PCC (TNF-a, IFN-g, IL-2,

IL-4, IL-8, IL-10),24 and cytokines involved in antiviral defense (IL-10, IFN-a, IFN-b, IL-28B).25 Due to low signal-to-noise ratios (SNRs), data

for IFN-a and IFN-b were not included in further analysis. Peripheral blood from PCC individuals showed higher levels of TNF-a, IFN-g,

IL-6, IL-8, IL-10, IL-4, IL-2, and CXCL10 compared to recovered individuals. However, PCC individuals showed lower levels of IL-28 (Figure 4).

Pro-inflammatory cytokines analysis (values of median and interquartile range) for the analytic sample can be viewed in Table S5.
Predictors of PCC revealed by multivariate logistic regression analysis

Table 3 shows two multivariate logistic regression analyses, including model A with 15 biomarkers and model B with 4 biomarkers. Both

multivariate logistic regression (MLR) models explain around 80% of the possibilities of PCC characterization, the highest in the prediction

model being with four biomarkers (aGAD, IL-10, potassium, and CD56�CD16bright). This prediction MLR model showed that the values of

aGAD and IL-10 were an independent predictor of PCC. In addition, this analysis showed that the values of CD56�CD16bright cells and

K+ were protective factors against persistent COVID-19. This model explains 81.8% of the possibilities of PCC characterization.
Predictors of PCC revealed by random forest analysis

In terms of significant variables, Figure 5 shows the feature importance of the variables included for the random forestmodel to observe which

values of these biomarkers achieve a better characterization of PCC.
iScience 27, 110839, September 20, 2024 3



Figure 2. Persistent symptomatology in the PCC group

The figure shows the percentage of individuals with PCC (85 participants) who reported the persistent symptoms listed on the x axis.
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We constructed two types ofmodels (RandomForest [RF] andMLR) to evaluate the effects of the independent variables on PCC. To assess

the importance of the included biomarkers, two types of classifications were used (type A, 15 biomarkers; type B, 4 biomarkers classified

among the main ones included in both models; see in Table 4).

The results indicated that, by including 15 biomarkers (Model A), theMLRmodel showed better accuracy, precision, recall, and F1 than the

RFmodel (Table 4). Meanwhile, by including only four biomarkers (Model B), bothmodels showed better results compared to those obtained

by including 15 biomarkers. In this case, the MLR model achieved better accuracy, precision, and F1 results; however, the RF model had the

highest recall rate (Table 4). The prediction MLR model with four biomarkers (aGAD, IL-10, potassium, and CD56�CD16bright) showed an ac-

curacy of 88.23%, a high precision of 92.43, and an F1 of 87.19%.

In all the results of the predictive models (Table 4), a high specificity and sensitivity could be observed, the highest in the predictionmodel

being the MLR with four biomarkers (aGAD, IL-10, potassium, and CD56�CD16bright) with a specificity of 92.94%, sensitivity of 84.71%, and

positive and negative predictive values of 92.31% and 85.87%, respectively. In this model, 13 participants out of the 85 PCC individuals

were classified by the algorithm as recovered patients (false negatives), whereas 6 participants out of the 85 recovered individuals were clas-

sified as PCC patients (false positives) in this same model. The levels of biomarkers were compared between individuals with false-negative

PCC compared to the average of individuals with PCC or between cases of false positives and the average of recovered individuals.

These biomarkers and persistent symptoms of those cases of false positives or false negatives obtained in each of the different models

are compiled in Table S6. Specifically, the levels of several biomarkers (IL-10, aGAD, antithrombin III) are lower in patients with false-negative

PCC compared to the average of individuals with PCC and loser to the values observed in recovered patients (such as IL-10, aGAD, anti-

thrombin III).
Figure 3. Presence of total persistent symptoms in the PCC group

The figure shows the percentage of individuals with PCC (85 participants) who reported the number of persistent symptoms listed on the x axis.
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Table 1. Comparison of the biochemical profiles, liver and thyroid function tests, and measurements of electrolyte statistics between recovered and

PCC individuals

Variables Reference range Recovered (n = 85) PCC (n = 85) p value

Biochemical profile

Creatine kinase, ng/mL, median (IQR) 0.6–6.3 1.60 (1.80) 1.20 (1.30) 0.001

A1C, %, median (IQR) <5.6 5.40 (0.40) 5.30 (0.50) 0.016

Creatinine, mg/dL, median (IQR) 0.67–117 0.69 (0.19) 0.78 (0.18) 0.001

Cholesterol total, mg/dL, mean G SD 120–220 209.68 G 46.74 223.41 G 37.98 0.037

Cholesterol no-HDL, mg/dL, mean G SD <130 146.23 G 38.51 159.11 G 35.98 0.026

Albumin, g/dL, median (IQR) 3.5–5.2 4.40 (0.40) 4.50 (0.40) 0.008

Na +, mEq/L, median (IQR) 136–146 140 (2) 139 (3) 0.003

K +, mEq/L, median (IQR) 3.5–5.1 4.40 (0.40) 4.20 (0.40) <0.001

GFR, mL/min*1.73m^2, median (IQR) >90 102.61 (15.52) 94.23 (18.77) 0.002

Antibody levels

IgG total, pg/mL, median (IQR) 650–1600 1150 (210) 1007 (334) 0.009

IgG1, pg/mL, median (IQR) 382.4–928.6 521.80 (232.90) 453.85 (231.70) 0.004

IgE UI/mL, median (IQR) 0–115 21.80 (793.61) 41.150 (58.47) 0.009

Complement C3, mg/dL, median (IQR) 79–152 94.80 (23.0) 99.70 (26.2) 0.014

Complement C4, mg/dL, median (IQR) 16–38 21.40 (6.50) 25.00 (9.00) 0.004

aGAD, U/mL, median (IQR) <17 5.33 (0.93) 6.03 (1.09) <0.001

IGFBP3, mg/mL, mean G SD 3.2–6.6 5.64 G 1.10 6.33 G 1.24 <0.001

pANCA, u, mean G SD <20 3.31 G 1.32 2.95 G 0.52 0.020

Blood count and coagulation test

MCV, fL, median (IQR) 80–100 88.90 (5.4) 90.25 (5.0) 0.029

MCHC, g/dL, median (IQR) 31–37 29.90 (2.2) 30.2 (2.1) 0.006

ESR, mm/h, mean G SD <15 11.10 G 9.05 14.41 G 12.00 0.044

INR, mean G SD 0.8–1.2 0.92 G 0.05 0.94 G 0.07 0.019

Partial thromboplastin time, seg, mean G SD 24.8–37.2 29.74 G 2.06 30.77 G 2.72 0.006

APTT ratio, mean G SD 0.8–1.2 0.95 G 0.06 0.99 G 0.08 0.008

Prothrombin time, seg, median (IQR) 9.5–14.3 11.10 (0.80) 11.00 (1.40) 0.047

Fibrinogen, g/L, mean G SD 2–4 4.21 G 0.86 4.57 G 1.04 0.017

Antithrombin III, %, mean G SD 80–120 97.03 G 10.17 104.83 G 15.86 <0.001

COVID-19 serology antibodies

SARS-CoV-2 NC IgG positive, n (%) 80 (94.12) 68 (80) 0.011

SARS-CoV-2 S1 IgG levels, pg/mL, meanG SD 1794.16 G 645.09 1525.98 G 828.61 0.020

p value from c2, Mann-Whitney’s U-test, or Student’s t test. Recovered: individuals who completely recovered within 3 months after acute COVID-19;

PCC: individuals diagnosed with post-COVID-19 condition; A1c: glycohemoglobin; Na+: sodium; K+: potassium; GFR: glomerular filtration rate;

Ig: immunoglobulin; aGAD: GAD antibody; IGFBP3: insulin-like growth factor-binding protein 3; pANCA: perinuclear anti-neutrophil cytoplasmic anti-

body; MCV: mean corpuscular volume; MCHC: mean corpuscular hemoglobin concentration; ESR: erythrocyte sedimentation rate; INR: international

normalized ratio; APTT: activated partial thromboplastin time; NC, nucleocapsid; S1, Spike; SD, standard deviation; IQR, interquartile range. The

reference range includes each biomarker’s upper and lower limits based on a group of healthy people, indicated by the Miguel Servet University

Hospital (Zaragoza, Spain).
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Correlation between biomarkers obtained in the prediction models and persistent symptoms

Table 5 shows the bivariant analysis relating the 15 biomarkers obtained in the prediction models and the presence of persistent symptoms.

As Table 5 shows, the presence of IL-10 and IGFBP3wasmoderate correlatedwith all persistent symptoms analyzed, whereas higher counts of

CD56�CD16bright cell counts were inversely correlatedwith the persistent symptoms.On the other hand, alterations in the levels of biomarkers

such as aGAD, antithrombin III, and CD16+ NKT-like cell counts were more specifically associated with symptoms such as muscle pain, head-

ache, dyspnea, and fatigue.
iScience 27, 110839, September 20, 2024 5



Table 2. Comparison of flow cytometry statistics between recovered and PCC individuals

Variables Recovered (n = 85) PCC (n = 85) p value

CD56+CD16+ cells among NK + NKT, % 63.20 (25.30) 73.45 (28.72) 0.038

CD56+CD16� cells among NK + NKT, % 35.70 (27.00) 23.30 (26.50) 0.032

CD56�CD16bright among CD56� cells, % 2.21 (2.22) 1.60 (1.17) <0.001

Naive CD8+ cells among CD8+ cells, % 22.10 (20.73) 29.40 (25.93) 0.023

Effector CD8+ among CD8+ cells, % 16.60 (14.80) 13.15 (12.18) 0.015

CD8+CD4low cells among T lymphocytes % 0.37 (0.39) 0.50 (0.44) 0.013

Subsets of cells in human peripheral blood based on the relative expression of either CD16 and CD56 or CD8 and either CD45RA or CD62L. Frequencies (in %)

among CD3�CD56+ NK cells, CD56� lymphocytes cells, and CD3+CD8+ cells are indicated for each patient group. Recovered: individuals who completely recov-

ered within 3 months after acute COVID-19; PCC: individuals diagnosed with post-COVID-19 condition; values are presented as median (interquartile range).

Statistical differences were calculated using Mann-Whitney’s U-test.
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DISCUSSION

This study compares the immunological and biochemical characteristics of samples taken from two groups of individuals matched by

sex and age, who developed acute COVID-19 during the years 2020–2021 but experienced a different evolution. One group recovered

within 3 months and has been asymptomatic since. The other group developed PCC, defined as the continuation of symptoms or the

appearance of novel symptoms more than 3 months after SARS-CoV-2 diagnosis. We have investigated differences between the two

groups at the immunological level (serology, cell populations, and cytokine levels) and in terms of commonly analyzed biochemical

markers.

Our objective was to create a panel of biomarkers that differentiates between PCC individuals and recovered controls. Such a panel may

suggest underlying mechanisms, but relating the panel to the pathogenesis is a different task. Therefore, clinical interpretation was not the

direct goal of our analysis. We have been trying to understand the pathogenesis in separate studies, partially based on the biomarkers iden-

tified here.
Figure 4. Comparison of concentrations of circulating cytokines between recovered and PCC individuals

Cytokine levels have been analyzed by Luminex. The boxplot shows the levels of the cytokines indicated (horizontal axis) and their concentrations (y axis: pg/mL).

The median values and interquartile ranges in each group (recovered controls in green; patients with PCC in red) can be viewed in Table S5. The statistical

significance of differences from Mann-Whitney’s U-test between the two groups is indicated as: *p < 0.05; **p < 0.01; ***p < 0.001.
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Table 3. Multivariate logistic regression analysis of PCC predictors

Model Biomarker OR 95% CI

A)

aGAD 1.626 [1.084, 2.440]

IL-10 3.412 [2.252, 5.170]

Antithrombin III 1.116 [1.030, 1.208]

Potassium 0.003 [0.000, 0.129]

CD56�CD16bright cells 0.349 [0.189, 0.643]

pANCA 0.000 0.000

Prothrombin activity 1.034 [0.974, 1.099]

Aldolase 0.879 [0.614, 1.260]

Effector CD8+ T cells 0.996 [0.923, 1.074]

MCHC 0.627 [0.251, 1.570]

Sodium 0.418 [0.233, 0.752]

IGFBP3 0.523 [0.252, 1.085]

CD16+ NKT-like cells 1.012 [0.851, 1.202]

CD16+ NK cells 1.002 [0.849, 1.183]

NT-proBNP 0.984 [0.964, 1.005]

R2 Nagelkerke = 0.801

B)

aGAD 1.956 [1.177, 3.249]

IL-10 5.750 [2.829, 11.684]

Potassium 0.025 [0.003, 0.236]

CD56�CD16bright cells 0.546 [0.379, 0.786]

R2 Nagelkerke = 0.818

Multivariate logistic regression analysis using the stepwise method. Odds ratios (ORs) were calculated with a 95% confidence interval. aGAD: GAD antibody;

IGFBP3: insulin-like growth factor-binding protein 3; CD16: CD16 natural killer cells; CD56: CD56 natural killer cells; NT-proBNP: N-terminal pro b-type natriuretic

peptide; CD8: CD8 T lymphocytes or cytotoxic T cells; pANCA: perinuclear anti-neutrophil cytoplasmic antibody.
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Among the 167 markers analyzed, several showed statistically different values in PCC patients compared to controls.

Several of these markers have been previously associated with alterations in PCC: the immunosuppressive cytokine IL-1026 and the natri-

uretic NT-ProBNP.27 These earlier studies examined individuals with specific symptoms of PCC, such as somatic and affective symptoms,26

autonomic nervous system impairment,27 and a much more limited set of biomarkers. In our study, we confirmed reported results, using a

larger sample and with a control group of asymptomatic post-COVID-19 patients.

By contrast, other markers we identify in this study have not been previously linked to PCC. Not surprisingly, symptoms associated with

several of themarkers we found significantly modified in the present study do partially overlap with PCC symptoms. This holds for debilitating

symptoms, including post-exertional malaise, fatigue, neurological, and muscular pain associated with high IL-10 levels28; headache, tired-

ness, myalgia, cardiac arrhythmias, and fatigue associated with altered Na+/K+ levels29,30; and neurological symptoms, cognitive difficulties,

and fatigue associated with impaired GABA neurotransmission by high levels of aGAD antibodies31; dysautonomia has been

associated with the persistence of elevated levels of NT-ProBNP.27 Moreover, altered antithrombin levels are associated with several path-

ophysiological processes associated with COVID-19 disease and possibly PCC such as prolonged activation of coagulation, microvascular

injury, and thrombosis.32 IGFBP3 is the main carrier of insulin growth factor 1 (IGF-1) in the body. The production of IGFBP3 in the liver as

well as circulating levels are reportedly altered in chronic inflammatory diseases,33 although we are unaware of previous reports linking

IGFBP3 to PCC.

Immunological alterations and virus-specific T cell responses have been studied previously in acute COVID-19 disease. The extent to which

dysregulated immune responses contribute to PCC remains poorly understood. The immunological profile of the individuals with PCC from

our cohort appears to indicate a general tendency toward an immunological disorder, exemplified by a decrease in effector CD8+ T cells

along with an increase in naive CD8+T cells. These combined datamay point toward an impaired transition to CTLs (cytotoxic T lymphocytes)

or memory cells. A decrease in the activation of CD8+ memory T cells in PCC patients has been reported previously.34 SARS-CoV-2 evolution

appears driven by CD8 T cell escape, providing indirect evidence for a potential role of effector CD8+ T cell responses in PCC,34 consistent

with our own observations. The overexpression of cytokine IL-10 associated with decreased numbers of CD8+ CTLs in our PCC group is remi-

niscent of the long-term evasion of pathogens from immune response detected in persistent infections.35 In addition, we observed increased
iScience 27, 110839, September 20, 2024 7



Figure 5. The feature importance plot of Random Forest model for PCC prediction

Each plot is a bar graph with the feature importance on the x axis and the names of each feature on the y axis. The x axis represents the feature importance, with

the values indicating the contribution of the feature to the model. A higher value on the x axis indicates a higher importance of the feature in the model.
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levels of highly cytotoxic NK cells with CD56+CD16+ phenotype in individuals with PCC, in accordance with previous reports.36 These cells

may compensate for the reduced levels of CTLs and would likely contribute to the proinflammatory environment along with the increased

plasma levels of IL-6, IL-8, IL-2, IFN-g, and TNF-a we observed in our PCC. On the other hand, lower levels of cells with CD56�CD16bright

phenotype were also found in the PCC group, as reported previously for acute COVID-19 patients.36 These cells are unconventional cytotoxic

mediators for chronic diseases,19 and in fact, they are present in high levels in people living with HIV.20

Statistical analysis of the combined data identified two panels of markers whose levels permit the separation of PCC patients frompatients

who recovered within 3 months from acute COVID-19 disease with a high accuracy and precision, similar in both statistical methods. One of

this panel had 15 biomarkers, with most significances were the values of both CD8+ effector cells and CD56�CD16bright cells; lower sodium
and potassium ion concentrations; higher levels of IL-10, NT-proBNP, antithrombin III, prothrombin activity, IGFBP3, pANCA, aldolase,

MCHC, and aGAD antibodies; and higher numbers of CD16+NKT cells and CD16+ NK cells, with an accuracy of 0.864 and a precision of
Table 4. Performance of different models and predictors

Model Accuracy (95% CI) Precision (95% CI) Recall (95% CI) F1 (95% CI) Sensitivity Specificity PPV NPV

A)

MLR 86.47 (84.35–87.65) 88.45 (85.59–90.41) 84.33 (81.75–86.25) 85.36 (83.06–86.95) 85.88 91.76 91.25 86.67

RF 81.69 (79.50–82.50) 84.44 (81.44–86.56) 83.00 (80.44–85.56) 81.09 (79.35–82.65) 84.71 87.06 86.75 85.06

B)

MLR 88.23 (87.10–88.90) 92.43 (90.50–93.50) 84.29 (82.05–85.95) 87.19 (85.95–88.05) 84.71 92.94 92.31 85.87

RF 85.25 (83.50–86.50) 84.97 (81.75–86.25) 86.76 (84.05–87.95) 84.59 (82.50–85.50) 85.88 89.41 89.02 86.36

Describe different models for separation of PCC patients and controls etc. Variables included Model A: aGAD + IL-10 + Antithrombin III + Potassium +

CD56�CD16bright + pANCA + Prothrombin activity + Aldolase + Effector CD8+ T cells MCHC + Sodium + IGFBP3 + CD16+NKT cells + CD16+ NK cells +

NT-proBNP. Variables included Model B: aGAD + IL-10+ Potassium + CD56�CD16bright.
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Table 5. Correlation between biomarkers and persistent symptoms

Model Gastrointestinal Fatigue

Muscular

pain Headache Dyspnea Cardiovascular Neurological

Cognitive

difficulties

Total of

persistent

symptoms

aGAD 0.102 0.129 0.154* 0.069 0.231** 0.045 0.098 0.115 0.145

IL-10 0.300*** 0.433*** 0.281*** 0.264** 0.363*** 0.337*** 0.258** 0.426*** 0.412***

Antithrombin III 0.111 0.234** 0.242** 0.193* 0.242** 0.085 0.164* 0.127 0.219**

Potassium �0.142 �0.141 �0.103 �0.183* �0.196* �0.164* �0.147 �0.151* �0.198**

CD56�CD16bright cells �0.214** �0.296*** �0.254** �0.192* �0.252** �0.181* �0.220** �0.220** �0.283***

pANCA �0.122 �0.152* �0.133 �0.153* �0.154* �0.135 �0.107 �0.124 �0.167*

Prothrombin activity 0.005 �0.031 0.083 �0.000 0.063 0.025 �0.030 0.026 0.023

Aldolase �0.013 0.063 0.111 0.091 0.050 0.083 0.110 0.075 0.086

Effector CD8+ T cells �0.075 �0.061 �0.016 �0.107 �0.068 �0.111 �0.145 �0.079 �0.105

MCHC �0.099 �0.166* �0.125 �0.112 �0.162* �0.202** �0.105 �0.0201** �0.181*

Sodium �0.053 �0.097 �0.065 �0.098 �0.114 �0.183* �0.056 �0.105 �0.128

IGFBP3 0.222** 0.184* 0.255** 0.211** 0.200** 0.256** 0.262** 0.168* 0.264**

CD16+ NKT-like cells 0.198* 0.102 �0.010 0.086 0.035 0.027 0.043 0.0281 0.071

CD16+ NK cells �0.124 �0.113 �0.097 �0.000 �0.123 �0.076 �0.113 �0.091 �0.071

NT-proBNP. 0.083 0.098 0.003 �0.014 0.149 0.071 0.024 0.007 0.065

Relations between the levels of the 15 biomarkers obtained in the prediction models (indicate Figure/Table) and the presence of persistent symptoms were

analyzed through bivariate analysis using Point-Biserial rpb correlation coefficients. Point-Biserial’s rpb correlations are listed., Their statistical significance of dif-

ferences from Point-Biserial’s rpb correlation is indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001.
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0.884. The second panel found produced a highly accurate diagnostic model based on a combination of four markers (potassium decreased,

aGAD antibodies levels, the frequency of CD56�CD16bright cells, and higher values of IL-10) with an accuracy of 0.882 and a precision of 0.924.

Because of the lower number of markers included in this second panel, it may be more easily adapted into clinical practice. Distinct statistical

methods used in our research give similar results when establishing the profile characterization of the PCC patients, which bolsters our

findings.

The main strength of our research is that we have compared specifically between PCC patients and individuals recovered after 3 months

after a confirmed episode of COVID-19 disease, since we have not found in the literature similar studies, as PCC is usually compared with a

general population cohort; in addition, we compared paired cases, reducing the possibility of age, gender and the dates of infection being

confounding factors. We also analyzed many markers in a reasonable number of PCC outpatients and the controls.

All participants were recruited among those who passed COVID-19 on an outpatient basis, so we surmised that our findings were more

related to the SARS-CoV-2 infection itself, eliminating the potential effects of severe disease and hospitalization. Fulfilling a widely reported

necessity, we here present an accurate panel of biomarkers for the diagnosis of PCC.

The addition of CD56�CD16bright cell counts to the diagnostic panel improved the accuracy and precision of the model. As this marker is

not easily available in a primary care/hospital setting, we continue the search for substitutemarkers. Nevertheless, our results may prove to be

of widespread use to the primary care services, setting where these patients are routinely cared for. Future implementation of this panel in a

care setting may help separate PCC individuals from other individuals with similar symptoms but different causes and disease courses. This is

essential to find therapeutic solutions for PCC individuals who suffer from a series of highly disabling symptoms in many cases.37

The classificationmodels presentedmay be hard to implement in clinical practice in their present configuration, because of the inability to

measure specific cell counts in a hospital/primary care setting and insufficient computational literacy among primary care physicians. In addi-

tion to the recruitment and analysis of a validation cohort, efforts are on the way to evaluate an array of markers either related or not to the

specific cell populations identified. It is our hope that we can substitute cell counts for single-molecule biochemical assays and/or immuno-

assays. Using the present models as a starting point, we aim to incorporate additional markers for the development of a next generation of

models based on more readily available biomarkers. As examples, proteomic studies found that several markers of vascular health related to

ANGPT1 and vascular endothelial growth factor (VEGF) signaling, and the sustainability of the vascular bed (includingHIF1, PDGFA, PDGFRA)

may be associated with PCC and/or progression from acute COVID-19 disease to PCC.38 A separate study has indicated specifically high

ANG-1/P-SEL levels in PCC.39 Addition of these and relatedmarkers may improve future versions of these panels and facilitate its integration

into clinical practice. The integration of validated classification models into clinical practice may improve through the contribution of special-

ized units (at a hospital or regional scale) or the implementation of handheld devices.

We present data on markers that may differentiate PCC individuals from recovered individuals, independent of symptoms. The profile

representing our individuals with PCC was characterized by lower levels of potassium and CD56�CD16bright cells and higher levels of IL-10

and aGAD. This model will help clinicians in decision-making and reduce the professionals’ uncertainty about this new disease. We hope
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ll
OPEN ACCESS

iScience
Article
to proceed toward a diagnostic panel of markers that underlie post COVID-19 syndrome and work on a predictive algorithm for PCC and

patient stratification.

Limitations of the study

Several limitations must be considered in this report. Sample taking, and subsequent data were collected once per participant, rather than

longitudinally. This cross-sectional analysis limits the ability to draw causal inferences from the data obtained, which provides no predictive

value regarding the evolution or progress of the disease. Our sample size in both cohorts (n = 170) was small from the statistical and machine

learning perspective. Future prospective studies with a larger sample size and lower SNR thresholds are warranted to validate our findings.

This is especially true for the levels of TNF-a, IL-6, and IL-10 that we reported here, as the signal-to-noise ratio we calculated for these data was

close to a minimum threshold of 14 dB for acceptance.

Future corroboration on an independent group of participants (preferably representing either a more diverse set of individuals or distinct

geographical localizations) and/or set of external data obtained under a similar experimental protocol is pending. Moreover, similarities and

reproducibility among other PCC-biomarkers’ conducted studies have not been consistent, so there is a need for standardization and vali-

dation of the specificity/sensibility of the biomarkers, to be able to drawmore rigorous conclusions and valuable comparisons.40 Even consid-

ering these limitations, we hope that our study may contribute to a better definition of diagnostic markers specific for PCC.

Although the diagnosis of PCC was established 3 months after acute infection and disease (Centers of Disease Control and Prevention

[CDC] andWHOdefinitions), samples for the analysis of biomarkers were taken at 1–2 years after the acute infection. It would have been pref-

erable to take and analyze timed samples, in order to describe the alterations of markers over time. The results of such an analysis may eluci-

date changes and markers that predict PCC condition and help understand the pathophysiology of PCC. As only 10%–20% of individuals

would develop PCC,5,6 this approach would have required an enormous amount of samples to do. Unfortunately, neither the personnel

nor funding was available during the pandemic. As carried out, the biomarkers identified in our study lack predictive value. We do provide

biomarkers that are hopefully applicable to clinical practice for diagnosing PCC in a next step.

Likewise, the influence of sex and/or gender on these results cannot be studied, given that the population diagnosed with CCP has been

predominantly female and therefore the percentage of male population in question is very low. That is why, in order to generalize our results

comparing CCP with recovered individuals, we made a selection of the two parallel groups that were matched by age, sex/gender, and date

of acute COVID-19 diagnosis.
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Durand, M., and Rousseau, S. (2023).
Validation of ANG-1 and P-SEL as biomarkers
of post-COVID-19 conditions using data from
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD4-FITC/CD8-PE/CD3-PE Cy5.1

antibody Cocktail

Beckman Coulter IM1650

CD10 Cytognos CYT-10AP

CD56 Cytognos CYT-56F

CD45 Immunostep Cat# 45CFB1-100T, RRID:AB_11140404

CD45RA Immunostep Cat# 45RAA2-100T, RRID:AB_11141726

CD14 Immunostep Cat# 14A-100T, RRID:AB_11140663

CD16 Immunostep Cat# 16PE2-100T, RRID:AB_11142639

CD3 Antibody, anti-human, APC Miltenyi Biotec Cat# 130-113-687, RRID:AB_2726228

CD62L (L-Selectin) Monoclonal Antibody

(DREG-56 (DREG56)), APC-eFluor� 780,

eBioscience

Thermo Fisher Scientific Cat# 47-0629-42, RRID:AB_1582224

Critical commercial assays

Custom Luminex Assays R&D Systems https://www.bio-techne.com/luminex-assay-

customization-tool

Deposited data

Data Zenodo Zenodo database: https://doi.org/10.5281/

ZENODO.8211331

Software and algorithms

IBM SPSS Statistics for Windows,

Version 24.0 (Armonk, NY: IBM Corp).

IBM SPSS� https://www.ibm.com/cn-zh/products/spss-

statistics

xPONENT 3.1 software R&D Systems https://www.luminexcorp.com/xponent/

Kaluza Analysis Software Beckman Coulter https://www.beckman.com/flow-cytometry/

software/kaluza

Python 3.0 Python Software Foundation https://www.python.org/download/

releases/3.0/

Optuna optimization framework

3.1.1

Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019.

Optuna: A Next-generation Hyperparameter

Optimization Framework. In KDD.

https://optuna.org/

Other

RBC lysis solution Cytognos CYT-QL-1
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A cross-sectional study was conducted comparing two parallel groups of human participants: individuals diagnosed with PCC (PCC individ-

uals) versus individuals who completely recovered within 3 months after acute COVID-19 (recovered individuals).

For the sample size, we used the prevalence of PCC obtained in Global Burden of Disease Long COVID Collaborators study41 as the main

variable. For a one-sided test, with a confidence level of 95% and a statistical power of 80%, we assumed empirically that up to 30% of analyt-

ical abnormalities can persist in the control group and up to 50%of them in the intervention group (considering only a 20%difference between

them). Total sample size required was 156 (73 participants in each group to find that difference).

All participants were enrolled during 2022 in Primary Health Care Centers (PHCCs) of Zaragoza (Spain). Participants have been recruited

through different methods: (1) during visits that were part of regular medical care, (2) advertising on posters inside PHCCs, and (3) telephone

calls to individuals who were selected through review of electronic medical records. The two parallel groups were matched by age, sex/

gender, and date of acute COVID-19 diagnosis. All human participants were interviewed to collect information on age, biological sex,
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and gender. The diagnosis of PCCwas determined by a general practitioner, following theWHO criteria,7 before or at the time of inclusion in

the study. Recovered individuals were required to have passed acute COVID-19, confirmed by RT-qPCR, antigen test, or SARS-CoV-2

serology. The exclusion criteria for participants were: (1) the presence of symptoms prior to acute SARS-CoV-2 infection; (2) the refusal or

inability to consent or communicate; (3) be institutionalized at the time of appointment.

The project was approvedby theClinical Research Ethics Committee of Aragon (Spain) (protocol reference PI21/278). The studywas devel-

oped in accordance with the Declaration of Helsinki. Since the project involves the collection and processing of personal data (including per-

sonal information) the collection, treatment, communication, and transfer of personal data of all participating subjects comply with the pro-

visions of the General Data Protection Regulation (EU) (GDPR 2016/679) and the applicable national legislation, Organic Law 3/2018, of

December 5, on the Protection of Personal Data. Samples and data from patients included in this study were provided by the Biobank of

the Aragon Health System (National Registry of Biobanks B. B.0000873) (PT20/00112), integrated in the Platform ISCIII Biobanks and Bio-

models and they were processed following standard operating procedures with the appropriate approval of the Ethics and Scientific Com-

mittees. Informed consent was obtained from all participants. This study has been reported according to Strengthening the Reporting of

Observational studies in Epidemiology STROBE guidelines.

METHOD DETAILS

Peripheral blood sampleswere collectedby intravenous puncture using different vacuum collection systems. For each analysis, samples of the

same type were used from all individuals: serum for biochemical profiles, sodium-citrate plasma for coagulation status, and EDTA plasma for

blood cell counts, flow cytometry and cytokine analysis.

The main outcome variable was the diagnosis of PCC, used as a dichotomous variable (Yes/No). The persistent symptoms of the partic-

ipants were also recorded. Persistent symptoms includedwere: Gastrointestinal symptoms, tiredness or fatigue, dyspnea, headaches, cardio-

vascular symptoms (dizziness, tachycardia, orthostatic hypotension), muscular pain, neurological symptoms (tingling, spasms, etc.), and

cognitive difficulties (memory loss, brain fog or confusion or poor attention and concentration capacity). Samples were analyzed to determine

biomarkers routinely used in Patients’ Care at the Hospital UniversitarioMiguel Servet (Zaragoza, Spain): biochemical profile, complete blood

cell counts, coagulation status, and serology (See more details in Table S7). In addition, we measured counts of specialized lymphocyte pop-

ulations (T cell populations, Natural Killer cells, monocytes, and neutrophil maturation) and levels of pro-inflammatory cytokines. Flow cytom-

etry and cytokine analysis using Luminex technology were carried out using standard procedures with modifications.

Total blood was stained with specific antibodies using 4 different panels. Panel 1 (T cell populations): CD3, CD4, CD8, CD45, CD45 RA and

CD62L. Panel 2 NK Cells: CD3, CD45 and CD56. Panel 3 Monocytes: CD14, CD16 and CD45; and Panel 4 NKs and Neutrophil maturation

(CD16, CD10, CD45 and CD56).

For the cytometry staining 50 mL of whole blood was stained with the different antibody cocktails with the volumes indicated for 15 min at

4�C in the dark. (Table S8). After incubation, RBCswere lysed for 30min at room temperaturewith 950 mL of RBC lysis solution (Cytognos; CYT-

QL-1) after vigorously stir. Data were acquired on a Gallios flow cytometer (Beckman Coulter) and analyzed using Kaluza Analysis Software

(Beckman-Coulter, Miami, FL). The following antibodies were used for the immune phenotyping: (from Beckman Coulter) CD4-FITC/CD8-

PE/CD3-PE Cy5.1 antibody Cocktail (IM1650); from Cytognos: CD10-APC (CYT-10AP) and CD56-FITC (CYT-56F); from IMMUNOSTEP:

CD45-CF Blue (45CFB1-100T), CD45 RA-APC (45RAA2-100T), CD14-APC (14A-100T) and CD16-PE (16PE2-100T); from Miltenyi CD3-APC

(130-113-687) and from eBiosciece CD62L-APC eFluor 780 (47-0629-42). See details about gating strategies in Figures S1–S4.

Luminex assay was run according to manufacturer’s instructions in 25 mL of plasma, samples were run in duplicate, a custom human cyto-

kine panel (R&D Systems; LXSAHM) the next proteins were included: TNF a, IL2, IL4, IL6, IL8, IL10, IL28B, IFN a, IFN b, IFN g and CXCL10

Supernatants (previously diluted 1:2 with the buffer provided in the kit) were mixed with magnetic beads coated with capture antibodies

and incubated on a 96 well plate for 2 h after washing beads were incubated with biotin labeled antibodies for 1 h washed again and finally

incubated with streptavidin-PE for 30min. Assay plates weremeasured using a Lumimex 200 (luminex corporation) acquiring aminimumof 50

beads per analyte and analyzed with xPONENT 3.1 software.

QUANTIFICATION AND STATISTICAL ANALYSIS

A descriptive analysis (frequencies for categorical variables; means and standard deviation for parametric variables; median and interquartile

range for non-parametric variables) was performed to determine the characteristics of the sample. Pearson’sc2 test (qualitative variables), the

Student’s t-test (parametric variables), and U Mann-Whitney (non-parametric variables) compared differences between independent vari-

ables. Different correlation analyses (Pearson’s r, Point-Biserial’s rpb, Kendall’s t, and Spearman’s r correlation coefficients)42 were applied

to the combined data (biochemical, cytokines, cell counts, and persistent symptoms) to identify the analytical parameters that had a greater

resolution capacity in relation to the classification variables.

The statistical significance of differences from the different bivariante analysis is indicated as: *p < 0.05; **p < 0.01; ***p < 0.001. The

descriptive and correlation analyses were performed using IBM SPSS Statistics software (version 25.0). Also, we constructed two prediction

models, an artificial intelligence (AI)-assisted regression and machine learning (Random Forest) (RF) and a Multivariate Logistic Regression

(MLR) model to observe which values of these biomarkers achieve a better characterization of the PCC. In order to find optimal models to

identify PCC patiens, we wrote our own code over Python3. Pandas library has been used for data preprocessing and manipulation, and sci-

kit-learn provided us with a framework containing several classification algorithms and evaluation metrics, which have been boosted through

the Optuna library to increase our model performance. To generate the classification model, we just included as input variables those
14 iScience 27, 110839, September 20, 2024
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considered biochemical markers, as these variables can provide an objective and generalizable characterization for any input subject. In this

subset of data, outliers suspicious of being errors or artifacts were identified and removed through the expert knowledge of various profes-

sionals, including biologists, doctors, and nurses. Subsequently, the data were normalized using the Z score algorithm. At this point, the sub-

set of data was cleaned and prepared for processing, but the number of selected dimensions was still too high. Therefore, we decided to

proceed with a dimensional reduction using a set of algorithms that allow us to identify the most relevant variables for our purpose. Among

the most important algorithms considered were the correlation between each independent variable and the dependent variable, as well as

the implementation of random forest. This reduction allows us to get a simpler, easier computable andmore reliable dataset. Finally, we used

Optuna to search for the combination of biomarkers, along with a selection of classification models and their hyperparameters, aiming to

increase the accuracy and recall of the resulting model. To achieve a more robust model, we used the cross-validation technique. Lastly,

we aimed to obtain a good model using the MLR algorithm, as it is considered a ’white-box’ model that allows us to easily understand

why a patient has been classified into a specific category. The performance parameters taken while designing the classifiers RF, and MLR

are presented in Table S9.
ADDITIONAL RESOURCES

This study was registered with ISRCTN Registry during recruitment (ISRCTN27312680).
iScience 27, 110839, September 20, 2024 15


	Characterization model of the post COVID-19 condition based on immunological, biochemical, and cytokine markers
	Introduction
	Results
	Description of study population
	Differences across biochemical, antibodies, and blood count profiles between PCC and recovered individuals
	Differences across flow cytometry and cytokine analysis between PCC and recovered individuals
	Predictors of PCC revealed by multivariate logistic regression analysis
	Predictors of PCC revealed by random forest analysis
	Correlation between biomarkers obtained in the prediction models and persistent symptoms

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Method details
	Quantification and statistical analysis
	Additional resources



