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Abstract—Localization in already mapped environments is a
critical component in many robotics and automotive applications,
where previously acquired information can be exploited along
with sensor fusion to provide robust and accurate localization
estimates. In this work, we offer a new perspective on map-
based localization by reusing prior topological and metric infor-
mation. Thus, we reformulate this long-studied problem to go
beyond the mere use of metric maps. Our framework seamlessly
integrates LiDAR, inertial and GNSS measurements, and cloud-
to-map registrations in a sliding window graph fashion, which
allows to accommodate the uncertainty of each observation. The
modularity of our framework allows it to work with different
sensor configurations (e.g., LiDAR resolutions, GNSS denial)
and environmental conditions (e.g., mapless regions, large en-
vironments). We have conducted several validation experiments,
including the deployment in a real-world automotive application,
demonstrating the accuracy, efficiency, and versatility of our
system in online localization.

Index Terms—Robot Localization, Graph Optimization, Topo-
metric Map.

I. INTRODUCTION

ROBUST and precise (global) localization is essential for
autonomous robots and self-driving vehicles. Simulta-

neous Localization and Mapping (SLAM) solutions [1], [2]
have emerged as a response to 3D reconstruction and online
localization, growing exponentially in recent years also in
the autonomous driving realm [3]. However, there are two
situations where these methods suffer from limitations. On the
one hand, they assume that the robot is teleoperated, or that the
motion actions are known a priori. Active SLAM tackles this
by integrating online path planning into the problem [4]. On
the other hand, it is desirable for many robotic applications
to navigate repeatedly in previously visited (and mapped)
areas without the need of further updating the built model
of the environment. For example, autonomous vehicles often
navigate familiar routes, and robots typically operate in known
environments when not engaged in exploratory tasks. Using
a previously built environment model in such situations can
scale down the problem of SLAM to map-based localization.
This work specifically focuses on the latter, aiming to leverage
existing prior information to address localization.
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Fig. 1: Visualization of G-Loc in a sequence of the Newer College
Extension dataset [5]. The prior topological (orange pose-graph) and
metric (colored pointcloud) model is exploited for online robust
localization. An active graph (blue) is optimized, containing certain
vertices from the prior graph and the most recent robot states.

At first glance, without the need of updating an environment
model, the use of Global Navigation Satellite System (GNSS)
in (semi-)urban areas may seem convenient for localization,
although its use alone has long been proven to be neither
robust nor accurate enough for the required applications [6].
Combining measurements from multiple sensors and finding
correspondences with a reference map model is key to robust,
reliable and accurate localization in automotive applications.
Most of the existing work tackles this task by using filters
for measurement integration, and by exploiting dense high-
resolution point cloud maps previously generated by SLAM
algorithms [7]–[10]. However, modern SLAM systems, based
on probability and graph theories [1], contain much more
information beyond the resulting reconstruction: a rich un-
derlying graph that captures the localization estimates and
accommodates the observation uncertainties. This valuable
topological information has been overlooked in the literature.

In this work, we present G-Loc (see Figure 1), a novel
tightly-coupled graph localization approach that exploits prior
topo-metric knowledge of the environment. We propose to go
beyond purely geometric maps and use all the information
provided by modern SLAM systems. In addition, we efficiently
fuse this information with LiDAR (Light Detection And Rang-
ing), IMU (Inertial Measurement Unit), and GNSS observa-
tions to create a robust and accurate localization system.

The rest of the paper is organized as follows. Section II
discusses related work and the contributions of this paper,
Section III formally defines the problem, Section IV details
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the components of our system, and Section V contains the
experimental results. This letter is concluded in Section VI.

II. RELATED WORK

Levinson et al. [6] are among the first to exploit a
previously-built map for localization. They correlate LiDAR
intensity measurements with the prior map (a grid repre-
sentation containing a Gaussian distribution of intensity in
each cell) using a particle filter. They also incorporate GNSS
measurements to limit particle dispersion. However, this and
other related work [11], reduce the estimation problem to
3 degrees of freedom, assuming that the rest are estimated,
e.g., from an IMU. [12] estimates a global 3D pose instead
after incorporating altitude into the distribution of the cells.

A different approach is followed in [13], where the reference
map consists of road primitives. An Unscented Kalman Filter
(UKF) is used to combine GNSS, odometry and the matching
between the prior map and the online primitives extracted from
images via convolutional neural networks. The challenge of
maintaining and matching a dense point cloud map is also
addressed in [14], where such representations are transformed
into a sparse multi-layer vector map, and [15], where features
are extracted from lateral galleries in tunnel-like environments.

More recently, advances in point cloud registration have
brought these methods to the forefront of map-based localiza-
tion, whether feature-based or not. Yoneda and Mita [7] first
matched LiDAR measurements to a georeferenced point cloud
map using Iterative Closest Point (ICP) [16]. The limitations
of this single sensor approach and the sensitivity of ICP to the
initial guess are addressed in subsequent works, all of them
being filter-based [8]–[10], [17], [18]. Nagy and Benedek [9]
fuse point cloud and semantic matching with GNSS measure-
ments to localize a robot in a high resolution 3D semantic
cloud. In [19], instead of matching the online LiDAR data to
the reference point cloud map, the latter is rendered in 2D; this
allows to match monocular images. In [20] LiDAR Odometry
(LO) and IMU data are combined in a UKF to improve the
matching of the current scan with a portion of the prior point
cloud map; this portion is given by cropping the map around
the GNSS pose estimation. Autoware [8], a widely used open-
source library constantly under development, features global
localization in a prior map (either in the form of a point
cloud or a high-definition vector map). This approach relies
on aligning the input clouds with the reference map using
the Normal Distribution Transform (NDT) [21] technique. The
optimized transformation is integrated with IMU and GNSS
measurements within an extended Kalman filter module. Xia et
al. [22] combine GNSS, IMU and NDT-based map matching
on a Kalman filter. However, they use a light map instead
of selecting regions of interest from a dense map. On the
downside, this requires a special offline process. PoseMap [23]
incorporates the trajectory into the prior model. Each robot
pose is assigned a submap of surfels and the online cloud
is aligned only with the k-closest neighbors, reducing the
computational cost and allowing to use the full LiDAR range.

In contrast to the filter-based techniques mentioned above,
a handful of methods have recently started to use a graph

formulation, borrowing from the advances in graph SLAM
and due to its improved robustness and accuracy [24]. Dubé
et al. [25] estimate the robot’s pose in a prior global map
by extracting segments from a 3D point cloud and matching
neighbors in the feature space. The resulting transformations
are later fed into a pose-graph SLAM framework along with
pre-integrated IMU measurements. [26] also employs a pose-
graph formulation for localization, combining wheel odometry,
GNSS, and semantic matching with the reference map. In
parallel to our work, Koide et al. [27] recently proposed a
map-based localization approach that tightly couples range and
IMU data within a sliding window factor graph optimization.

The localization method proposed in this letter falls into
the graph-based category. G-Loc is a modular and optimized
framework that adapts to a wide variety of sensor and
environment configurations, capable of handling large-scale
environments, GNSS denial, mapless regions, etc. Unlike pre-
vious work [25]–[27] we go beyond geometric representations
and fully exploit the knowledge gathered during a previous
mapping task, somewhat following [23] but leveraging the
pose-graph topology instead of just the trajectory poses. More
specifically, our main contributions are as follows:

• A novel approach to map-based localization that exploits
the topology of the prior model both for an efficient
search of regions of interest, and for accommodating their
uncertainty in a graph optimization process.

• A complete localization system that combines precise
LiDAR-inertial odometry, GNSS and map matching con-
straints. It can accurately locate a robot under various
sensor configurations and environmental challenges.

• Thorough experiments demonstrating the accuracy and
versatility of our system compared to state-of-the-art
localization and SLAM methods, as well as real world
deployment in an autonomous driving scenario.

III. PROBLEM FORMULATION

Map-based localization aims to determine the pose of a
robot or sensor within an existing map of the environment.
This can intuitively be seen as a coordinate transformation
process, which consists of establishing correspondences be-
tween the map information and the current perception [28].

First of all, let us denote the map and robot base frames by
m and r, respectively. To simplify the notation, all the sensors
will be assumed to be in r. In its most basic form, map-based
3D localization can be formulated as the problem of estimating
the robot poses that best match the sensor observations with
each other and with the map, i.e., finding the maximum a
posteriori estimates

T ⋆ ≜ argmax
T

p(T |M,Z) , (1)

where p(·) denotes probability, M is the prior map, Z is the
set of sensor measurements, and T ≜ {mT ri ∈ SE(3) | i ∈ Kt}
is the set of relative transformations between the map and the
latest NK+1 robot frames. To maintain tractability, the set of
frame indices Kt ≜ {max(0, t-NK), . . . , t} has been limited in
a sliding window fashion.
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On the one hand, we assume that M has been previously
built by a graph-SLAM algorithm, and thus contains metric
and topological information (in the form of point clouds and
a pose-graph, respectively). Furthermore, the metric part is
associated with the nodes of the graph in such a way that
each vertex is assigned a local map (or submap, S ′) of its
surroundings (see upper part of Figure 4). Then:

M ≜ {G ,Sℓ | ℓ ∈ R} , (2a)

G ≜ {V, E} , (2b)

where R ≜ {0, . . . , dim(V)} is the reference frame index set,
and (V, E) are the sets of vertices and edges in the pose-graph.
The ℓ-th submap will be formed by concatenating the point
clouds between the ℓ and ℓ−Ns LiDAR frames, as described
in [29], or just a region around the reference vertex. The
latter can be easily obtained by splitting the resulting map
of a typical SLAM process [30] into grids. Notice that the
submaps of nearby vertices might overlap and that elements
of the pose-graph will live in SE(3). Additionally, the graph
may contain GNSS information, making also the map geo-
referenced and aligned to the East, North, Up (ENU) global
coordinate system. On the other hand, the set of measurements
collected up to time t consists of LiDAR point clouds, IMU
observations between consecutive frames, and GNSS data:
Zt ≜ {ZLiDAR

i ,Z IMU
i,j ,ZGNSS

i }i,j∈Kt .
Assuming (i) that the robot poses are normally distributed

(i.e., T ≜ T̄ exp(δ) ∈ SE(3), with T̄ a large mean trans-
formation and δ ∈ R6 a random vector normally distributed
around zero) and pairwise independent, (ii) the measurements
are conditionally independent w.r.t. the poses, and (iii) LiDAR
and IMU observations are combined to provide odometry
estimates, (1) can be rewritten as follows:

T ⋆ = argmin
T

F (T ) (3)

s.t. F (T ) =
∑

i,j∈Kt

∥eLIO
i,j ∥2 +

∑
i∈Kt

∥eMi ∥2 +
∑

i∈Kt

∥eGNSS
i ∥2 ,

where ∥e∥2 ≜ (eTΣ-1e) ∈ R is the quadratic error for a
measurement with covariance Σ. eLIO

i,j are the residual errors
associated with the LiDAR-inertial odometry (LIO) estimates,
eM
i are those associated with the correspondences between

LiDAR observations and the prior map, and eGNSS
i are the

translation errors associated with the GNSS measurements.

IV. METHODS

G-Loc is divided into three main threads: LIO, Localization
and Dynamic Loading, to which the following subsections
are dedicated. Figure 2 provides an overview of the system,
showing the different modules and their connections. Thanks
to its parallelized architecture, the entire system runs in real
time within a ROS2 Humble [31] framework. It is able to use
GPU-accelerated cloud registration and is robust to a wide
range of sensor configurations with minimal parameter tuning.

LIO combines range and inertial measurements within a
graph optimization framework. Online LiDAR data is aligned
with most recent point clouds (which are contained in a
submap), and high-frequency IMU data is pre-integrated for
an efficient optimization. The output of LIO is then fed into
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Fig. 2: Block diagram of G-Loc. The dashed lines represent the initial
guess fed to the registration methods.

the localization module, along with GNSS measurements and
the results from cloud-to-map registration. A second pose-
graph is optimized taking into account the previous constraints.
Splitting the optimization problem into two different graphs
improves the stability and convergence of the system and
facilitates the noise configuration [30]. The dynamic loader
allows to work with large prior maps by limiting the number
of point clouds loaded in memory. Finally, visualization is
based on OpenGL and handled in a separate thread.

A. LiDAR-inertial Odometry (LIO)

Relative measurements between consecutive robot poses are
computed in a graph-based LIO framework. The incremental
inertial state can be defined as

X ≜ {xi | i ∈ It} , (4a)

xi ≜ {T i, vi, bi} , (4b)

where v ∈ R3 is the linear velocity and b = (bg, ba) ∈
R6, with bg, ba in R3 the gyroscope and accelerometer
bias, respectively. The dimension of X is constrained by
It ≜ {max(0, t-NI), . . . , t}, similarly to Kt. The map frame
superindex notation has been dropped for readability.

First, a preprocessing step is performed. The input cloud
is downsampled to a desired voxel resolution, and points
too close/distant are removed. Then, a de-skew operation is
performed to mitigate the noise in the input scan Lt. In this
way, the angular distortion caused by the robot’s ego-motion
while capturing the data is corrected. Since each point has an
associated acquisition timestamp, angular velocity measure-
ments from the IMU can be integrated and then interpolated
to compute the relative orientation w.r.t. the start of the scan.

The de-skewed cloud is then aligned with the previous
submap St−1 created by concatenating the NS previous point
clouds (see Figure 3). Scan-to-submap alignment relies either
on the efficient and GPU-accelerated implementation of vox-
elized generalized ICP (FastGICP) [32], or the parallelized
version of NDT (NDTOmp) [33]. This process outputs LO
estimates between frames (i.e., the transformations i-1T̃

LO
i ),

which can be introduced into the graph as prior edges
to constrain the pose of the inertial state after computing
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Fig. 3: Scheme of how the different constraints are integrated into
the graph-based LIO optimization framework.

iT̃
LO

=
(
T i-1

i-1T̃
LO
i

)-1
. The residuals for the i-th frame will

be given by:

eLO
i ≜ log

(
T i

iT̃
LO
)∨

∈ R6 , (5)

where the logarithm and vee operators are, respectively, log(·) :
SE(3) 7→ se(3) and (·)∨ : se(3) 7→ R6, being se(3) the Lie
algebra of SE(3). The covariance of this measurement is
inherited from the registration method [32]. Note that only
unaccented variables will be optimization variables.

Simultaneously with the above, IMU measurements be-
tween LiDAR frames are pre-integrated following [34].
Pre-integration provides an estimate of the robot’s motion
between successive frames, also allowing the scan-to-submap
matching to be fed with a decent initial guess (see Figure 3).
High-frequency odometry (at IMU rate) can be obtained by
composing the LO with the relative motion predictions from
the preintegrated measurement model. IMU data is efficiently
incorporated into the graph optimization framework by creat-
ing an inertial edge [2], [30] between frames; this edge is
actually composed of several different edges that correlate
the poses and velocities between frames, and also model
the bias variation over time (assumed to follow a Brownian
motion pattern). We use the method proposed in [34] to define
the relative increments between frames and the preintegrated
measurement model, i.e., ∆R̃ij , ∆ṽij and ∆p̃ij (see [34]
for details). This allows us to define their residual error as
eIMU ≜ (e∆R, e∆v, e∆p, e∆b)

T ∈ R15, where:

e∆Ri,j
≜ log(∆R̃

T

ijR
T
i Rj)

∨ , (6a)

e∆vi,j
≜ RT

i (vj-vi-g∆ti,j)-∆ṽij , (6b)

e∆pi,j
≜ RT

i (pj-pi-vi∆ti,j-
1

2
g∆t2i,j)-∆p̃ij , (6c)

all of which live in R3, and e∆bi,j ≜ bj − bi ∈ R6. Note that
the vee and logarithmic operators are now over SO(3).

Finally, the graph containing the above constraints (see Fig-
ure 3) is optimized using g2o [35], solving the optimization:

X ⋆ = argmin
X

(∑
i∈It

∥eLO
i ∥2 +

∑
i,j∈It

∥eIMU
i,j ∥2

)
(7)

The success of registration algorithms depend on a good
initial guess and sufficient overlap between the input clouds.
The first issue has already been addressed, and the second
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Ref. Map Pose Lidar Frame

GNSS Prior

Robot Pose 

Fig. 4: Overview of the proposed graph-based localization method
using prior topological and metric information. Orange elements form
the reference graph, and blue elements form the active graph.

is mitigated by the submaps, which in turn require some
attention. We use the scan-to-submap alignment to add new
point clouds to the submap. Then, the latter is downsampled
(e.g., via uniform sampling) to prune redundant points. To
restrain complexity, the submap size is limited to include the
last NS point clouds. A side effect of this approach is high
adaptability to different range sensors: we can handle densities
from 16 to 128 beams and different patterns by changing NS

By effectively configuring the submaps (e.g., NS = 1 for 128-
plane LiDARs), we keep the computational cost manageable
while achieving the precision required for each application.

B. 3D Graph-based Localization
The global localization process is based on optimizing the

active graph, which composed of a sliding graph with the
latest robot states (T ), and regions of interest of the reference
graph (i.e., certain reference vertices, T ′). See Figure 4.

The localization process starts with estimating the robot’s
initial pose within the prior map using GNSS measurements1.
It then queries the prior topo-metric model to find the k-
closest reference vertices (for the exemplary graph shown in
Figure 4, at time t, they will be T ′

ℓ and T ′
ℓ+1). Next, the

current scan is aligned with the submaps associated with these
vertices (S ′

ℓ,S ′
ℓ+1). The active graph combines the constraints

enforced by the results of these alignments with the relative
motion data provided by the LIO and GNSS measurements (if
available). Therefore, this new graph will contain vertices from
both the prior reference graph and the online sliding graph.
The latter encodes current and past robot states in a sliding
window approach (i.e., T ), being older nodes marginalized as
they leave the window. Figure 1 displays the active (blue) and
reference (orange) graphs on top of the prior point cloud map
for a localization task. The online cloud is shown in red. Note
how multiple reference vertices can be associated with a single
vertex in the sliding graph (as is also shown in Figure 4).

The optimization of the active graph is governed by (3), s.t.:

eLIO
i,j ≜ log

(
T i

iT̃
LIO
j (T j)

-1
)∨

∈ R6 , (8a)

1In the absence of GNSS, this initial estimate can be given manually by
the user, e.g., using a ROS2 service.
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Fig. 5: Visualization of dynamic loading. The prior graph is shown in
orange, while the active graph is depicted in blue. For efficiency, only
a subset of the geometric model is loaded, specifically the submaps
corresponding to vertices within the robot’s neighborhood.

eMi ≜
∑

k∈Ri

log
(
T i

iT̃
M
k (T ′

k)
-1
)∨

∈ R6 , (8b)

eGNSS
i ≜ pi-p̃i ∈ R3 , (8c)

where iT̃
LIO
j is the output from the previous subsection, iT̃

M
k

are the registration results between the current scan and the
prior map, and T ′

k ∈ G. Note that correspondences with the
prior map are only evaluated for a subset of the reference
vertices, i.e., k ∈ Ri ⊂ R. Finally, p̃i = UTMp̃i-

UTMp̃m, with
UTMp̃i the actual GNSS measurement and UTMp̃m the origin of
the prior model (this origin will be associated with a Universal
Transverse Mercator coordinate). Relativizing GNSS allows to
merge it with cloud-to-map matching and LIO constraints.

On the one hand, LIO is used to connect sequential ver-
tices of the sliding graph with the covariance depending
on the alignment result (defined as the mean error between
all matched points, weighted by the match percentage). In
addition, it provides an initial guess for the cloud-to-map reg-
istration. On the other hand, registrations between the current
scan and the reference submaps are introduced as binary edges
between vertices in the reference and sliding graphs, with
information also depending on the alignment result. Also, the
transformation with the smallest covariance is used to compute
the initial estimate for the optimization process (handled by
g2o). The previous constraints connect the two graphs and
form the active graph (blue elements in Figure 4). Should the
sliding and reference graphs become disconnected, either due
to alignment failure or the lack of nearby reference vertices,
the algorithm will rely on LIO and GNSS until re-localization
occurs. Finally, GNSS measurements are used as prior unary
edges when they are synchronized with the online cloud and
if their uncertainty is below a certain threshold.

C. Dynamic Loading

This module allows loading only nearby parts of the ref-
erence model, M, as the robot moves; this is especially
useful for large maps where maintaining (and visualizing)
all submaps at high resolution is intractable. Since both the
reference and sliding graphs are georeferenced, it is possible
to load the submaps near the current localization estimate
in a sliding window fashion. To do this, as a new vertex is

added to the sliding graph, we query the closest vertex in the
reference graph and load its associated submap and those of its
k-closest neighbors. While the number of reference submaps in
memory is below a user-specified limit, the process is repeated
after blacklisting the loaded submaps to avoid duplicates. In
addition, the submaps that leave this window are removed from
memory. This method allows us to control the total load by
specifiying the maximum number of submaps (in practice, we
load 15 to 30 submaps). Figure 5 illustrates the dynamic load
of a portion of the environment. Thus, we maintain a constant
RAM memory usage during operation (e.g., ∼50 MB for 30
submaps). In contrast, for some of the experiments in large
environments that we present in the next section, loading the
entire dense cloud would require up to 2 GB of memory.

V. EXPERIMENTAL RESULTS

In this section, we present a thorough evaluation of G-Loc
in different applications and under different sensor configu-
rations, demonstrating the versatility of our approach. We
use three real urban datasets: European Union Long-Term
(EULT) [36], Newer College Extension (NCE) [5], and our
own dataset collected on the Campus of the University of
Zaragoza (CUZ). In addition, we present the results of using
G-Loc in a real-world automotive application, in the context
of an autonomous driving bus. The dataset experiments were
performed on a laptop equipped with an Intel® CoreTM i7-
1165G7 CPU and an Nvidia GeForce® RTX® 3080 GPU, while
the bus was equipped with an Intel® CoreTM i9-12900TE and
an Nvidia RTX® A2000 (note that many other autonomous
driving processes were running concurrently on this hardware).
Unless otherwise noted, [32] was used for registration. Table I
contains a short summary of the experiments and the sensors
installed in the mobile platforms. The error metrics presented
in this section were obtained using evo [37].

A. Dataset Evaluation

The EULT dataset contains several sequences recorded with
a car in a downtown. They all follow a similar trajectory under
different conditions (e.g., traffic, weather); this is particularly
interesting for testing map-based localization, since we need
different but overlapping reference and evaluation trajectories.
Sequence and sensor details are shown in Table I.

To evaluate the performance of G-Loc, we first generated
a georeferenced model of the environment using one of the
available sequences, which we will refer to as the reference se-
quence2. To obtain the required prior model with topological (a
pose-graph) and metric (point cloud submaps) information, we
used [29], a SLAM system with a similar architecture to G-Loc
but replacing the localization module with a mapping module
for robust loop closing and global optimization. To evaluate
the performance in mapless regions, we removed an entire
road from the prior model (∼ 0.4 km); the SLAM-estimated
trajectory is shown in orange in Figure 6a. The built model
was fed into G-Loc while running two different evaluation
sequences2. Figure 6a also depicts the raw GNSS data (green)

2Ref. seq. ID: 2018-07-19. Eval. seq. ID: 2018-07-16 and 2018-07-17.
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Dataset Length (per sequence) ∆ Elevation LiDAR IMU GNSS
EULT (ref. & eval.) ∼ 5 km ∼ 50 m 2x Velodyne HDL-32E XSens MTi-28A53G25 Magellan ProFlex 500
NCE (ref. & eval.) ∼ 0.3 km ∼ 0 m Ouster OS0-128 −
CUZ (ref.) ∼ 2.7 km ∼ 1 m Ouster OS1-128

Ardusimple RTK2B
CUZ (eval.) ∼ 1.5 km ∼ 1 m Livox HAP
Bus ∼ 8 km ∼ 70 m 2x RS Helios 32-5515 XSens MTI-680-G

TABLE I: Summary of the sensor configurations and environmental characteristics in the experiments performed.

(c) (d)(a) (b)

Fig. 6: Evaluation results in EULT (a)-(b) and CUZ (c)-(d) datasets. (a), (c): georeferenced SLAM trajectories in the reference sequences
(orange) and raw GNSS data in the evaluation sequences (green). (b), (d): Trajectories estimated by G-Loc in the evaluation sequences; the
color map indicates 2D ATE (in meters, darker is smaller).

for one of them to facilitate comparison with the reference
trajectory. The middle right section contains the cropped
region, where there is GNSS signal but no prior information.
When the robot traverses a mapped region, the prior model is
exploited to improve localization and correct for potential drift
in LIO. Conversely, in unmapped regions, the sliding graph
disconnects from the reference graph, accumulating a larger
error that is eventually corrected after re-localization. Global
measurements in this large mapless region kept the absolute
error bounded, enabling the system to re-localize with the map
as it traversed previously mapped areas. Figure 6b contains the
2D Absolute Trajectory Error (ATE) for translation along the
trajectory for one of the sequences3, showing that the highest
errors occur on the unmapped road and that even under these
conditions they are within reasonable limits (see colormap).
Table II contains the numerical results (mean and standard
deviation) for the cropped sequences, namely Root Mean
Squared Error (RMSE) of 3D ATE for translation and rotation,
and lateral and longitudinal error. Furthermore, we report the
results of using a complete prior map (i.e., uncropped); in this
case, the errors were similar but exhibited a smaller deviation.
We also evaluated the use of NDTOmp, which is of particular
interest for resource-constrained platforms. In this case, the
overhead slightly increased the localization errors.

Finally, to benchmark G-Loc, we conducted the same exper-
iments using Autoware [8], a popular localization system for
autonomous vehicles. For a fair comparison, we fed velocity
measurements from our LIO module and used NDTOmp.
Autoware failed to localize in the mapless region, leading to
an unrecoverable state. Using the complete prior model, the
translation errors were comparable to G-Loc but the rotation
error was nearly doubled (see Table II). In addition, Autoware

3Due to the lack of ground-truth in this dataset and the noise levels of GNSS
in certain regions, errors were calculated w.r.t. SLAM. This algorithm fuses
GNSS with LIO to mitigate the effects of noisy measurements and GNSS-
denied areas (see zoomed region of Figure 6a). The error between GNSS and
SLAM is negligible when the former is reliable.

required the use of an Intel® CoreTM i9 CPU to work properly.
The CUZ dataset was captured using a sensor-equipped car.

We recorded two sequences, which partially overlap, but with
two different LiDAR sensors. See Table I. To evaluate this
dataset, we followed a similar procedure as in EULT. First,
we built the prior model with a reference sequence using a
high-performance sensor with 360° Field of View (FoV) and
128 planes. Then, we evaluated G-Loc with an evaluation se-
quence, exploiting the prior topo-metric knowledge and using
a LiDAR with 120° FoV and a completely different sensing
pattern. Figure 6c displays the trajectory of the sequence
(orange) and the raw GNSS data for the evaluation one (green).
Both trajectories overlap for most of the route, and when
they do not, they are close enough so that the prior map can
be used (unlike in EULT). ATE error along the trajectory is
shown in Figure 6d and numerical results are reported in the
bottom of Table II. As in EULT, the use of FastGICP gave
the best results, except for the lateral error (however, these
lower mean values are accompanied by higher variance). This
experiment demonstrates the adaptability of our method to
the use of different sensors for building the prior map and
localization. The submaps played a fundamental role here,
mitigating the effects of the different sensing patterns and
feeding the registration algorithms with sufficient overlapping
regions. In contrast, Autoware accumulated much higher errors
and had difficulty finding correspondences in many regions
(which explains the large deviations), eventually leading to an
unrecoverable state. The results reported in Table II for this
experiment (marked with †) are only before this divergence.

The NCE dataset contains several sequences recorded using
a handheld device in Oxford. This dataset allows us to test
G-Loc under different conditions than the previous ones. It
includes aggressive motion, where IMU integration is crucial
for undistorting the point cloud and predicting the motion
between successive LiDAR frames. We have used Quad, Math,
and Underground collections of NCE, each of which contains
three sequences of increasing difficulty and slightly different
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Dataset Method ATE (trans., m) Long. Error (m) Lat. Error (m) ATE (rot., deg) Time per frame (ms)

EULT
(cropped)

G-Loc (FastGICP) 0.209 (0.395) 0.087 (0.280) 0.048 (0.228) 0.423 (0.445) 25.13 (7.82)

G-Loc (NDTOmp) 0.240 (0.300) 0.086 (0.304) 0.021 (0.208) 1.008 (1.160) 38.01 (14.86)

Autoware × × × × ×

EULT
(complete)

G-Loc (FastGICP) 0.194 (0.201) 0.101 (0.240) 0.014 (0.197) 0.440 (0.576) 26.47 (4.31)

G-Loc (NDTOmp) 0.218 (0.196) 0.119 (0.245) 0.009 (0.203) 0.953 (0.836) 40.13 (12.99)

Autoware 0.212 (0.194) 0.123 (0.232) 0.006 (0.203) 0.784 (1.380)
‡37.31 (14.52)

CUZ
G-Loc (FastGICP) 0.154 (0.102) 0.071 (0.132) 0.019 (0.126) 0.473 (0.537) 34.62 (9.14)

G-Loc (NDTOmp) 0.214 (0.151) 0.131 (0.179) 0.014 (0.158) 0.650 (0.878) 72.15 (31.54)

Autoware †0.308 (1.251)
†0.400 (0.655)

†0.086 (1.353)
†2.146 (0.850)

‡59.74 (71.47)

TABLE II: Localization errors (mean and std. dev.) and time consumed per frame for G-Loc (FastGICP and NDTOmp) and Autoware in
EULT and CUZ datasets. Best results are bold, and × indicates an unrecoverable failure in localization.

Method / Seq. Quad-m Quad-h Math-m Math-h Und-m Und-h Avg.
LIO-SAM [30] 0.067 0.13 0.13 0.085 0.065 0.42 0.15

NV-LIO [38] 0.076 0.18 0.095 0.094 0.072 0.078 0.10
LiDAR-Loc [39] 0.11 × 0.10 × 0.11 × 0.11

HDL-Loc [40] 0.10 × 0.11 × 0.11 0.12 0.11
G-Loc (ours) 0.067 0.087 0.090 0.093 0.074 0.075 0.081

TABLE III: ATE RMSE (m) in NCE dataset. Best results are bold
and second best are underlined. × indicates an unrecoverable failure.

trajectories. First, we used [29] to build a prior model with the
easy sequences and then ran our system in the medium and
hard ones. Figure 1 shows the resulting prior model for the
Math collection. We compared the performance of G-Loc with
two SLAM (LIO-SAM [30], NV-LIO [38]) and two map-based
localization methods (LiDAR-Loc [39], HDL-Loc [40]). For a
fair comparison, all localization methods used the same prior
map. Table III contains ATE RMSE, with the values for the
SLAM methods extracted from [38]. The results showcase the
robustness and accuracy of our system, which outperformed
the localization methods and succeeded in every sequence. The
failures of [39], [40] were caused by the lack of prior maps in
certain regions (Quad-h) and aggressive motion (Math-h). G-
Loc maintained accurate localization in these regions thanks to
LIO, allowing for re-localization. G-Loc also outperformed the
SLAM methods in most sequences, achieving an average error
of 8 cm (note that the localization errors ultimately depend on
the error of the prior model, see [29] for detailed values).

B. On the Time Consumption

While the above section aimed to demonstrate the ro-
bustness and precision of our approach, we now seek to
demonstrate its real-time performance. The processing times
per frame consumed by each algorithm in the conducted
experiments are listed in Table II. G-Loc required, on average,
25 ms in EULT and 34 ms in CUZ —this is much faster than
the typical LiDAR frame rate (10 Hz) and therefore meets real-
time requirements. In both cases, LIO accounts for 60% of that
time, and the localization module for the rest (visualization and
dynamic load are excluded as they operate in the background).
G-Loc with NDTOmp took considerably longer, but the frame
rate was generally not exceeded. We also report the time
consumed by Autoware (marked with ‡, as it used a better
CPU), which is similar to G-Loc using NDTOmp.

Finally, we compared the use of G-Loc to running a full
SLAM system to reveal the benefits of exploiting the known
prior topo-metric map instead of building a new map. We used
the EULT dataset because it is the largest and therefore where
a new map would be more costly to generate and maintain.

The time required to process a frame is similar to G-Loc (the
LIO update), but the graph optimization and loop closing took
190.4 ± 101.4 ms. These demanding processes slowed down
the entire pipeline and caused interruptions in the localization.

C. Real-world Deployment

G-Loc has been deployed on an autonomous bus (see
Figure 7a) on an urban bus line in the city of Zaragoza
(Aragón, Spain) as part of the pioneering Spanish project on
urban driving, DIGIZITY. The sensors installed on the vehicle
and the route specifics appear in Table I. Our system requires
coordination with other navigation systems to provide a robust
and reliable localization, ensuring safe navigation even in areas
with poor GNSS coverage. The prior model of the entire route
is shown in Figure 7b. In addition, localization starts as soon
as the bus is turned on. This means that the localization has
to work without a prior model from the departure point until
the route is reached (∼ 2 km). The system localizes in the
unmapped region using LIO and GNSS in a sliding-graph
optimization fashion until re-localization with the prior model
occurs. Figure 7c depicts the trajectory estimated by G-Loc
for a single trip, and Figure 7d shows the improvement of
these estimates (blue) over the raw GNSS data (green) in
one of the many low coverage areas. During the deployment,
the bus operated seamlessly for about 100 hours over a span
of 20 days, covering about 800 km. Notably, there were no
localization failures and the errors remained within bounds
comparable to previous results (i.e., at the cm level), further
showcasing the robustness and accuracy of G-Loc.

VI. CONCLUSION

In this work we have presented G-Loc, a localization system
that seamlessly integrates GNSS data, LIO and cloud-to-
map registration into a graph optimization framework. We
have proposed a novel method for map-based localization
that leverages the results of a previous graph-SLAM process,
utilizing both the geometric map and the underlying pose-
graph representation. We have tested G-Loc in several datasets
and in a real-world automotive application, demonstrating
its accuracy, robustness, and adaptability to different sensor
configurations and environmental conditions (e.g., the lack of
prior knowledge in some parts of the environment). Long-
term autonomy requires the sporadic execution of mapping to
update the robot’s knowledge of the environment. This work
sets the stage for developing a long-term approach where the
prior model is updated and refined with online information.
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(a) (b)

(d)(c)

Fig. 7: Results of the real-world experiment. (a) Platform and sensor
setup. (b) Prior topo-metric model (colored by height, darker is
lower). (c) Complete trajectory estimated by G-Loc. (d) Comparison
between the raw GNSS (green) and the localization estimates (blue).
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