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Abstract

In this paper we propose the Ray-Patch querying, a novel
model to efficiently query transformers to decode implicit
representations into target views. Our Ray-Patch decod-
ing reduces the computational footprint and increases in-
ference speed up to one order of magnitude compared to
previous models, without losing global attention, and hence
maintaining specific task metrics. The key idea of our novel
querying is to split the target image into a set of patches,
then querying the transformer for each patch to extract a
set of feature vectors, which are finally decoded into the
target image using convolutional layers. Our experimental
results, implementing Ray-Patch in 3 different architectures
and evaluating it in 2 different tasks and datasets, demon-
strate and quantify the effectiveness of our method, specif-
ically a notable boost in rendering speed for the same task
metrics.

1. Introduction
Autonomous agents rely typically on explicit representa-
tions of the environment for localization and navigation,
such as point clouds [5, 46], or voxels [3, 34]. However,
such approaches lack topological or semantic information,
struggle to generalize to changes to novel viewpoints, and
do not scale properly to tasks that require reasoning about
3D geometry and affordances. Autonomous agents require
semantic, meaningful, and informative representations to
properly understand and interact with their environment and
perform complex tasks [4, 39].

Implicit representations are better suited to reasoning
and are then relevant, as they capture in a continuous
space the main high-level features of the scene. Many ap-
proaches focus on 3D geometry without topological restric-
tions using learned occupancy or signed distance functions
[9, 15, 27, 28, 35, 36]. Nevertheless, the recent success
of neural fields to encode the tridimensional geometry and
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Figure 1. Light Field Networks sample a ray per pixel to render the
target image (left). Our Ray-Patch (right) groups pixels in k × k
patches and samples a ray per patch, reducing the querying cost by
a factor of k2 without loosing accuracy.

lighting of a scene has revolutionized the field [47]. Al-
though Neural Radiance Fields (NeRFs) focused initially on
learning colour and occupancy models in a 3D space [29],
they have demonstrated promise in a wide array of tasks
such as scene segmentation [6, 21, 57], depth estimation
[18], SLAM [1, 44, 58], scene editing [2, 17, 20, 23, 33, 43],
and many more [47].

The main limitations of neural rendering are 1) the ex-
haustive querying of the model that is required to recover
each pixel of a specific viewpoint, and 2) the need to fit
the NeRF model for each scene. Several approaches re-
duce the 3D querying cost using depth [13, 24, 37, 52],
geometry [8, 48, 51, 55], or changing the discretization
[25, 30, 54], and avoid per-scene optimization using latent
vectors [8, 18, 23, 25, 48, 51, 55]. Among them, the exten-
sions of Light Field Networks (LFNs) [42] with transform-
ers (Light Field Transformers or LFTs) [18, 40, 41] have
shown potential to solve both limitations, although they are
constrained by the quadratic scaling of attention. Despite
recent attempts to reduce it, these either modify the atten-
tion algorithm for a less expensive but less effective version
[45, 53, 56]; or are based on extensive optimization of last
generation hardware and software [11, 12]. Therefore, de-
spite significant advances in both qualitative performance
and efficiency, all these approaches are still far from being
scalable to real scenarios with real-time performance.



In this work we propose Ray-Patch, a novel decoding
method that reduces the computation and memory load of
LFTs up to one and two orders of magnitude respectively,
while keeping the quality of the output. We developed Ray-
Patch as a generic decoder that can be implemented on any
LFT architecture in the literature. Instead of the typical
per-pixel querying, we group all pixels in a square patch,
as shown in Fig. 1, and compute a set of feature vectors,
which are then grouped and decoded into the target view-
point. Specifically, it combines a transformer decoder with
convolutional neural networks to reduce the cost of the de-
coder processing. This results in a drastic reduction in the
number of queries, which impacts quadratically in the cost,
allowing to decode high-resolution images while keeping
and sometimes even improving the training convergence.

2. Related Work
A NeRF [29] is an implicit representation of a scene that
is learnt from a sparse set of multiple views of such scene,
annotated with their corresponding camera poses. NeRFs
encode a continuous volumetric model of a scene that can
be used to render photorealistic novel views from arbitrary
viewpoints. The rendering process involves projecting pix-
els into rays, sampling 3D positions along the rays, and
querying a Multilayer Perceptron (MLP) network that pre-
dicts the colour and occupancy of the sampled 3D points.
Despite its versatility and impressive results in various ap-
plications [47], NeRFs suffer from two major limitations:
exhaustive 3D sampling is required to decode each pixel,
and a new model must be trained for each new scene.

Multi-scene implicit representations. One of the most
promising approaches to enable the generalization of neu-
ral fields across multiple scenes is conditioning the output
of the MLP to a latent vector that is optimized for each
scene at test time. NSVF [25] discretizes the 3D space
into a sparse voxel octree associating each voxel with a fea-
ture vector that guides the sampling of 3D points. Control-
NeRF [23] also utilizes voxel features, but employs a multi-
resolution incremental training of the full feature volume.
Nice-SLAM [58] leverages a multi-resolution feature grid
to encode the scene while simultaneously performing cam-
era tracking. InstantNGP [30] implements multi-resolution
voxelization as a hash encoding, where the MLP is respon-
sible for avoiding hash collisions, resulting in remarkable
improvements in reconstruction quality and convergence.

Other approaches involve using an encoder architecture
to compute latent vectors, and use these to condition the
NeRF decoder. GRF [48] projects sampled 3D points into
feature maps of the input views computed with a CNN
encoder-decoder. These are first processed by shared MLP
to condition on the sampled 3D point, and then aggregated
using an attention module. The final feature vector is fed

to a final MLP to estimate the 3D point colour and density.
PixelNeRF [55] extends this approach by adding the fea-
ture vector as a residual in each layer of the MLP and using
a simple average pooling instead of an attention module.
IBRNet [51] also projects 3D points into nearby views to
estimate the conditioning feature vectors, although it relies
on a differentiable rendering algorithm rather than a neural
representation to estimate the final colour and depth. MVS-
NeRF [8] proposes the use of a CNN and homography re-
projections to build a cost volume and compute the features.
ENeRF [24] builds on MVS approaches to build the cost
volume, guide the sampling, and condition the reconstruc-
tion. However, these methods that rely on homographies are
limited to a small range of views in front of the reference
camera, require accurate camera poses, and are not robust
to occlusions.

SRT [41] introduced a Transformer [49] to encode and
decode the scene, performing self-attention between the
features of different points of view. It generates a latent
representation of the scene, which is decoded using a light-
field cross-attention module. OSRT [40] improves SRT by
disentangling the object of the scene and improving its con-
trol. DeFiNe [18] replaces the basic Transformer for a Per-
ceiverIO [19] reducing the cost of self-attention and scal-
ing to bigger resolutions. Despite the low rendering time
achieved for new scenes and novel points of view, these
methods computation cost scales poorly due to the use of
attention. Consequently, they may not be suitable for large
scenes with high-resolution images.

Rendering from implicit neural representations. To
render a pixel, NeRF evaluates 3D coordinates sampled
along a ray combining both uniform and stratified distri-
bution. This random sampling results in a great number of
evaluation wasted on empty space. DONeRF [32] trains
an oracle network supervised on dense depth map on syn-
thetic data. Although it achieves outstanding results, the
setup is hard to generalize to real environments. Nerfin-
gMVS [52] trains a monocular depth estimation network,
supervised with sparse depth from Structure from Motion
(SfM), to guide the sampling and reduce empty queries both
at training and test. Roessle et al. [37] instead uses a depth
completion network to estimate depth and uncertainty from
the sparse SfM prior at training time, improving perfor-
mance while still requiring multiple sampling at test time.
In contrast, ENeRF [24] uses an estimated cost volume to
predict the depth and guide the sampling without any ex-
plicit depth supervision nor structure from motion. Other
alternative like Neural RGB-D [1] and Mip-NeRF RGB-D
[14], directly use RGB-D sensor as prior for the depth sam-
pling. Despite reducing the number of samples, most of
these approaches still perform multiple samples per pixel
due to the error range of depth data and estimation. Instead,
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Figure 2. (a) Peak GPU vRAM usage due to attention for decoding a single image. vRAM usage scales linearly with the number
of pixels (quadratically with resolution). Ray-Patch querying reduces ×10 required resources on standard resolutions. Note that x-axis
is in logarithmic scale. (b) Single image rendering speed scaling. The use of the Ray-Patch decoder increase rendering speed at high
resolutions up to real-time for DeFiNe. To keep a fixed rendering speed, the patch size should increase at the same pace as the number of
pixels.

Light Field Network [42] directly evaluate the unprojected
pixels, parameterized as a ray, reducing the model query to
the number of pixels. Although, this approach is able to
perform real-time rendering of novel views without requir-
ing heavy optimizations, it does not generalize yet to high
resolution scenes.

3. Preliminaries: Light Field Transformers
While NeRFs learn a scene representation associated to
a continuous space of 3D points, Light Field Networks
(LFNs) [42] rely on 3D rays parametrized with Plücker co-
ordinates to learn similar representations. This subtle differ-
ence reduces significantly the cost to decode a view of the
scene, from several samples to a single sample per pixel.
Despite this, LFNs are limited to simple settings, do not en-
force geometric consistency and their ray parameterization
is not robust to occlusions.

Light Field Transformers (LFTs) are an extension
of LFNs which use a transformer architecture, a ray
parametrization robust to occlusions, enforce geometric
consistency through the training procedure, and encode and
decode points of view of a scene without per-scene opti-
mization [18, 40, 41].

3.1. Transformers

Transformers [49] are deep encoder-decoder neural models
that incorporate attention mechanisms in their architecture.

The encoder first performs self-attention on a set of tokens
to extract common features. The decoder then uses cross-
attention between the extracted features and a set of queries
to generate an output per query. The attention block con-
sists of a Multi-Head Attention (MHA) layer, followed by a
Feed-Forward (FF) layer, with a skip-connection and layer
normalization after each of them. In each head h, MHA
operates in parallel a Scaled Dot-Product attention

Attentionh(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (1)

over a set of the three inputs: keys (K), values (V ), and
queries (Q). Each head linearly projects the inputs to re-
duced dimensions, dk for Q and K and dv for V , per-
forms the attention operation, and then projects the output
back to its original dimension. To perform self-attention
Q = K = V are the tokens to encode. Instead for cross-
attention K = V are the extracted features, while Q is the
queries to decode.

Computational complexity. Linear projections have a
complexity of O(nd0dp) with n the length of the sequence
and d0 and dp the dimensions before and after the pro-
jection. Instead, the scaled-dot product has O(nqnkvdk)
complexity, being nq and nkv the number of queries and
keys/values respectively. For self-attention, nq = nkv and
then the complexity is O(n2

qdk).



Figure 3. Ray-Patch querying. Given a latent representation of a scene Z , in order to render an image It of shape h × w, a query is
performed for each patch p. Each patch is parametrized with a ray rtp that passes through it and the the camera position ot. The queries
are encoded with multiple Fourier frequencies, and fed to the attention decoder to compute a feature vector per query. The feature vectors
of the image are re-shaped as a rectangle and forward-passed through the convolutional decoder to obtain the target image render Ît

3.2. Scene Representation Transformer

The Scene Representation Transformer (SRT) [41] is an
encoder-decoder LFT, which parametrizes rays with its 3D
coordinates and their origin position. Given a set of N in-
put views {In}1, and their relative camera poses {Pn} with
camera Instrinsic parameters {Kn}, the encoder E gener-
ates a set-latent scene representation (SLSR)

Z = E ({In, Pn}) , (2)

To decode a view of the scene, the light-field based decoder
is queried. Each query refers to the ray direction and camera
center for a given pixel, and recovers its RGB values. To
decode a full view, as many queries as pixels are needed.

The encoder is made of two parts. First, a convolutional
network extracts features from the scene images. Then a set
self-attention blocks computes common features between
the multiple views of the scene to generate a SLSR. The de-
coder is a two-blocks cross-attention module. It performs
attention between the ray queries and the SLSR to generate
the RGB pixel values. SRT has been extended by OSRT
[40] to disentangle its latent representation by integrating it
with Slot-Attention [26] and designing the Slot Mixer De-
coder. Using Slot Mixer attention weights, OSRT is able to
generate unsupervised segmentation masks.

Attention cost. With a convolutional encoder which
halves the resolution (divides by four the number of queries)
three times, nq = nkv = N h×w

64 for the encoder self-
attention block. Therefore the complexity is

O

((
Nhw

64

)2

dk

)
. (3)

Instead, for the decoder cross-attention block to decode an
image, nq = h × w and nkv = N h×w

64 , therefore the com-

1We abuse notation here for simplicity, {◦n} ≡ {◦1, . . . , ◦N}

plexity is

O

(
N (hw)

2

64
dk

)
. (4)

Doubling the resolution will increase by a factor of 4 the
total number of pixels h × w, and by 16 the computational
complexity. As a consequence, both SRT and OSRT are
limited due to the quartic scaling of the attention cost with
respect to the resolution of the images, and to the quadratic
cost with respect to the number of input images N .

3.3. Depth Field Network

The Depth Field Network (DeFiNe) [18] can be considered
as an extension of SRT. As its main novelties, the convolu-
tional encoder is a pretrained ResNet-18, the cross-attention
decoder is reduced from two blocks to one, and a set of
geometric data augmentations are proposed for stereo and
video depth training. The main contribution is the use of a
PerceiverIO [19] instead of the self-attention encoder to use
a SLSR with a fixed size nl.

Attention cost. With nkv = nl in both the encoder and
decoder, the quadratic scaling with respect to the resolution
of the images is reduced to

O
(
Nhw

64
nldk

)
(5)

for the encoder attention process, and to

O (hwnldk) , (6)

for decoding an image. These improvements reduce the
cost considerably for hw >> nl, although there is still a
quadratic dependence with the number of pixels (quartic
with resolution) that limit the model’s use.



4. Our Method: The Ray-Patch Decoding
We propose the Ray-Patch querying to attenuate the quar-
tic complexity of Light Field Transformers with respect to
image resolution. Instead of using a ray to query the cross-
attention decoder and generate a pixel value, we use a ray
to compute a feature vector of a square patch of pixels.
Then a transposed convolutional decoder unifies the dif-
ferent patches’ feature vectors and recovers the full image.
Our approach reduces the number of queries to hw

k2 and the
cross-attention cost by the same factor.

Parametrization. To decode a target view It ∈ Rh×w×c

of the scene, the view is split into hw
k2 square patches of

size [k, k], being the split image now defined as {Itp ∈
Rh

k×w
k ×3}. Each patch p is parametrized by the location of

the camera ot, and the ray rtp that passes both by the cam-
era position and the center of the patch. Given the camera
intrinsic Kt and extrinsic parameters WTCt = [Rt|ot] ∈
SE(3), the ray rtp is computed as the unprojection of the
center of patch p in the 2D camera plane. For each patch
center in homogeneous coordinates xtp = (utp, vtp, 1)

T , it
is first unprojected in the the camera reference frame Ct,

rCt
tp = K−1

n · xtp = [xtp/ztp, ytp/ztp, 1, 1]
T
, (7)

and after that it is translated to the world reference W ,

rWtp = WTCt · rCt
tp . (8)

Using Fourier positional encoding [29], the parametrization
of each patch is mapped to a higher frequency, to generate
a set of queries for the decoder.

{Qtp} = {γ (ot)⊕ γ (rtp)} (9)

Decoder. The decoder D is a composition

D = (DCNN ◦ DA) (10)

of an attention decoder DA, followed by a convolutional
decoder block DCNN. The attention decoder performs cross-
attention between the queries {Qtp} and the SLSR Z , to
compute a set of feature vectors

{Ztp} = DA ({Qtp},Z) (11)

with dimension f . These vectors ensemble a feature map
Zt ∈ Rh

k×w
k ×f , which is decoded by the convolutional de-

coder into the target image

Ît = DCNN (Zt) , (12)

as shown in Fig. 3. We use a vanilla convolutional decoder
DCNN based on GIRAFFE’s decoder [33]. It is a combi-
nation of upsampling blocks with convolutions and prelim-
inary outputs. The number of channels of the output, c, will
vary depending on the desired task, e.g. c = 3 for RGB
colour image, or c = 1 for depth estimation.
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Figure 4. Training time on one V100 comparison. For both
60× 80 (△) and 120× 160 (◦) resolution, Ray-Patch (blue) con-
figurations, k = {2, 4} and k = {4, 8} respectively, achieve simi-
lar or better rendering performance than SRT (red), with 60−70%
cost reduction.

Integration. The simplicity of the Ray-Patch querying al-
lows to easily integrate it in LFTs like SRT, OSRT, or De-
FiNe. Changing the number of channels of the output of
their decoders to f , they can be used as DA to decode the
final image as

Ît = Dcnn (DA ({Qtp},Z)) . (13)

The optimization process does not change. The model’s
parameters θ are optimized on a collection of images from
different scenes minimizing the Mean Squared Error (MSE)
of the generated novel-views for RGB images

Lrgb =
1

hw

∑
ij

(
Ît − It

)2
, (14)

and minimizing the absolute log difference for depth maps

Ld =
1

ntp

∑
tp

| log D̂tp − logDtp|, (15)

Depth optimization is performed only over the subset
{tp} ⊂ {ij} of target pixels with depth info, giving free-
dom to the model to generalize to unseen parts.

Attention cost. The proposed Ray-Patch querying re-
duces the complexity of the decoders to

O

(
N (hw)

2

64k2
dk

)
, (16)
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Figure 5. Novel view synthesis results on MSN-Easy. Given an input image, the models are queried to decode target images at 120º
(first row) and 240º (second row). Both SRT and Ray-Patch models (RP-SRT k = {4, 8}) encode a coherent representation, with slight
differences on colour and edges. For RP-SRT it can be seen how the bigger the patch size the more diffuse the image looks.

for models with the basic Transformer, like SRT and OSRT;
and to

O
(
hw

k2
nldk

)
, (17)

for PerceiverIO based models, like DeFiNe. Although there
is still a quadratic dependency on the resolution, the attenu-
ation introduced by the Ray-Patch querying can reduce the
number of queries in up to two orders of magnitudes for
high resolutions.

5. Experimental Results
We evaluate Ray-Patch using two setups of different com-
plexity. Firstly, we integrate Ray-Patch into both SRT and
OSRT for novel view synthesis on the MultiShapeNet-Easy
(MSN-Easy) dataset. Given input images, the model en-
codes a representation of the scene, and its goal is decoding
the other two viewpoints. In this dataset we asses the im-
pact of different patch sizes at different resolutions on SRT
implementation, and its integration on OSRT. After that, we
evaluate its ability to generalize to more challenging scenes
and textures in a stereo depth task.

Secondly, we also implemented Ray-Patch into DeFiNe
and evaluated on ScanNet. Given two images, the model
encodes a representation, and the goal is recovering RGB
and depth from the same point of view. Following Sajjadi
et al. [40, 41], rendered views are benchmarked with PSNR,
SSIM, and LPIPS; and segmentation masks with FG-ARI.
Following Guizilini et al. [18], depths are benchmarked
with Absolute Relative Error (Abs.Rel), Square Relative Er-
ror (Sq.Rel) and Root Mean Square Error (RMSE). Compu-
tational aspects are evaluated measuring peak RAM usage,
image rendering speed as in Sajjadi et al. [41], training time,
and Float Point Operations (FLOPs) needed to encode and
render an image. We assume the use of float-32 data, and

report time metrics from a GPU NVIDIA Tesla V100. Fur-
ther design and implementation details are provided on the
supplementary material.

5.1. Datasets

MultiShapeNet-Easy [43] has 70K training scenes and
10K test scenes with resolution 240× 320. Due to the high
cost of training both SRT and OSRT, we work at 60×80 and
120× 160. In each scene there are between 2 and 4 objects
of 3 different classes: chair, table, or cabinet. The object
shapes are sampled from the ShapeNetV2 dataset [7]. Each
scene has 3 views sampled at 120◦ steps on a circle around
the center of the scene, with extrinsics and intrinsics camera
annotations. For each training step, one image is used as in-
put and the other two are used as target to be reconstructed.

ScanNet [10] is a collection of real indoor scenes with
RGB-D and camera pose information. It has 1.2K different
scenes with a total of 90K views. We follow DeFiNe’s [18]
stereo setup: RGB input images are downscaled to a reso-
lution of 128 × 192; and a custom stereo split is used [22],
resulting in 94212 training and 7517 test samples.

5.2. Computational performance

While our Ray-Patch querying still has quadratic scaling
with nq , the reduction we achieve in the number of queries
results in a notable boost in rendering speed, as can be seen
in Tab. 1 and Fig. 2b. Furthermore, when increasing the
resolution the patch can also be increased, keeping an ap-
propriate rendering speed at higher resolutions. Compar-
ing rendering speeds for different patches and resolutions
in Fig. 2b, it can be observed how the improvement tends to
saturate for big patch sizes. As a consequence of reducing
the number of queries, its impact on the scaled-dot product
complexity will be out-weighted by nkv . For nq << nkv ,
nkv will set a minimum cost and increasing the patch size



MSN-Easy
60× 80 120× 160 120× 160

SRT RP-SRT SRT RP-SRT OSRT RP-OSRT
k = 2 k = 4 k = 4 k = 8 k = 8

↑ PSNR 30.98 31.16 30.92 32.842 32.818 32.306 30.95 31.03
↑ SSIM 0.903 0.906 0.901 0.934 0.935 0.929 0.916 0.915
↓ LPIPS 0.173 0.163 0.175 0.250 0.254 0.274 0.287 0.303
↑ FG-ARI - - - - - - 0.958 0.914
↓ Training time 5.6 days 1.7 day 0.7 days 7.4 days 1.7 days 1 day 25 days 3.7 days
↓ Giga FLOPs 48.2 15.8 7.3 192.1 28.5 19.7 278.6 24.7
↑ Rendering speed 117 fps 288 fps 341 fps 30 fps 275 fps 305 fps 21 fps 278 fps

Table 1. Quantitative results on MSN-Easy. Evaluation of new scene novel view synthesis and computational performance on a simple
dataset. While SRT’s performance is surpassed only by the configuration with patch size k = 2, Ray-Patch increases ×3 and ×10 the
rendering speed with minimum impact.

over this limit will not be reflected on the rendering speed.
It is also worth of attention that the biggest patch does not
have the lower rendering time. When nq << nkv , in-
creasing the patch size also adds more convolutions and in-
terpolations to the convolutional decoder, hence increasing
the deconvolutional overhead without reducing the cost of
the attention decoder. Finally, the decrease in nq implies
a smaller memory peak in the softmax of the decoder at-
tention, see Fig. 2a. This matrix is nq × nkv . As an illus-
trative example, for DeFiNe, decoding a single 960× 1280
image, with nkv = 2048, requires 75 GBytes of GPU mem-
ory, almost two full A100 GPUs. Instead, for the Ray-Patch
querying with k = 16, it is reduced to only 0.3 GBytes. This
notable reduction allows to increase parallelization, improv-
ing even more the rendering speed for scene reconstruction
tasks.

5.3. Novel view synthesis

On MSN-Easy, for SRT we evaluate two different patch
sizes for each resolution: k = {2, 4} for 60 × 80; and
k = {4, 8} for 120 × 160. Instead for OSRT we only eval-
uate at 120× 160 with a patch size k = 8.

As reported in Tab. 1 and Fig. 5, the experiment met-
rics for RP-SRT shows that the size of the patch impacts
on the model, with smaller patches having better rendering
quality on both resolutions. For smaller patches, the first de-
coder focus attention on less pixels than for a bigger patch,
each feature vector is up-sampled less, and more informa-
tion is recovered from the same amount of data. There-
fore, excessively increasing the patch reduces the quality
of reconstructed views, as shown by RP-SRT with k = 8
for 120×160, which slightly underperforms the baselines’s
PSNR (32.3 vs 32.8). Nevertheless, Ray-Patch querying is
still able to match rendering quality of both SRT and OSRT
at 120 × 160, with k = 4 and k = 8 respectively; and out-
perform at 60 × 80, with k = 2. Furthermore, for similar
performance our approach improves rendering speed ×10
for the highest resolution (275 vs 30 fps, and 278 vs 21 fps),

and reduces training time almost ×4 (see Fig. 4 and Tab. 1).
This is thanks to scaling the attenuation factor k together
with resolution, compensating for the increasing number
of queries. Regarding RP-OSRT’s unsupervised segmen-
tation, we up-sample the 120

8 × 160
8 attention weights of

the Slot Mixer Decoder to generate a 120× 160 segmenta-
tion map, achieving only slightly worse metrics than OSRT
(0.914 vs 0.958 FG-ARI). Finally, note in Tab. 1 that even
if increasing resolution improves rendering quality (higher
PSNR and SSIM) for all models, the perceptual similarity
metric gets worse (higher LPIPS). This implies that when
working at low resolution, LPIPS is not able to appropri-
ately evaluate the model representation as perceptual incon-
sistencies from the 3D representation are hard to distinguish
due to the poor quality. Therefore the usefulness of Ray-
Patch querying increases. Reducing the computational cost
of LFTs not only speeds-up training and inference, it also
opens the possibility to work with more expensive loss func-
tions rather than simple L1 or L2 losses, e.g. using percep-
tual losses or adversarial discriminators, following current
state of the art in image generation [16, 38].

5.4. Stereo depth

Based on the results of the previous section, the integra-
tion with DeFiNe to render at 480 × 640 has be done with
k = 16. This value is chosen to have nq close to nkv ,
improving the computation efficiency without compressing
too much the information. Our results shows that Ray-
Patch improves the convergence of the model. This con-
figuration not only reduces the computational cost, but also
improves the view reconstruction and depth stereo estima-
tion in all metrics reported in Tab. 2. Despite taking as in-
put a 128 × 192 image, reconstructions are closer to the
480 × 640 target output recovering a similar quality while
DeFiNe’s look diffused and blurred (see Fig. 6). It can also
be observed how the estimated depth is smoother, with less
abrupt changes, while still preserving clear depth disconti-
nuities. Regarding the computation, the evaluated configu-



Input DeFiNe RP-DeFiNe Target DeFiNe RP-DeFiNe

Figure 6. Stereo depth results on ScanNet. Given two input images, models decode both input images and an estimation of corresponding
depth maps. Note how our k = 16 Ray-Patch querying (RP-DeFiNe) generates sharper edges in both RGB and depth images.

DeFiNe RP-DeFiNe
k=16

↑ PSNR 23.46 24.54
↑ SSIM 0.783 0.801
↓ LPIPS 0.495 0.453
↓RMSE 0.275 0.263
↓Abs.Rel 0.108 0.103
↓Sq.Rel 0.053 0.050
↓ Giga FLOPs 801 81
↑ Rendering speed 7 fps 208 fps

Table 2. Quantitative results on ScanNet. Evaluation of stereo
depth and RGB rendering on a realistic dataset. The integration
of a Ray-Patch decoder with patch size k = 16 increases ren-
dering speed by 2 orders of magnitude, while also outperforming
DeFiNe’s rendering and depth metrics.

ration reduces FLOPs ×10, and increases rendering predic-
tion of novel depth maps from 7 frames per second to 208.

6. Limitations

Our proposed decoder reduces the complexity problem of
decoding images with Transformers. Despite that, we can-
not decode single pixels and performance may depend on
choosing an appropriate patch size. As a simple heuristic
to choose the patch, we propose to keep nq ∼ nkv , as it
has been shown that 1) rendering speed saturates for big-
ger patches, and 2) too much compression reduces decoding
performance. Nevertheless, hyper-parameter tuning may be
needed to find the best patch size for each model. Regard-
ing unsupervised segmentation, we observed that RP-OSRT

has fallen into a tessellation failure mode, already observed
by Sajjadi [40] et al. This failure is dependent on archi-
tectural choices, and further experimentation would be re-
quired to address it. Also note that we have only evalu-
ated square patches. Nevertheless, our method could also
be used with rectangular patches to obtain an intermediate
number of queries. Finally, notice that the Ray-Patch does
not attempt to solve the base attention’s quadratic cost scal-
ing. Rather, its focus on reducing the number of queries
makes it compatible with other less expensive alternatives
to vanilla attention [11, 12, 45, 53, 56].

7. Conclusion

In this paper we propose Ray-Patch querying, which
reduces significantly the cost associated to Light Field
Transformer’s decoder. Our Ray-Patch does not only
reduce significantly the training time and improve con-
vergence, but could also be generalized to different tasks
using transformers to decode scenes. We validate exper-
imentally our approach and its benefits by integrating it
into three recent LFT models for two different tasks and
in two different datasets. The models with our Ray-Patch
querying match or even outperform the baseline models
in photometric and depth metrics, while at the same
time reducing the computation and memory load in one
and two orders of magnitude respectively. In addition,
this is achieved with a minimum modification to the
implementation of given baselines. Reducing the compu-
tational footprint of LFTs is essential for to continue its
development and for deployment in constrained platforms
such as mobile devices or robots, in the same line than
works such as [31, 50] did for other architectures and tasks.
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