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ABSTRACT The second life use of lithium-ion batteries has gained significant attention in recent years,
driven by the potential to repurpose cells from electric vehicles for less demanding applications. A critical
aspect of this repurposing is accurately estimating the Remaining Useful Life (RUL) of the batteries.
Traditional techniques often rely on data from the battery’s first life, which may not be available in practical
scenarios. To address this issue, we propose a data-driven method for RUL estimation that does not depend
on first-life information. Our approach considers a realistic scenario where an aged battery cell, lacking
previous usage data, is evaluated for second life use through a limited number of test cycles. We compute
features such as incremental capacity curves, and other health indicators from the measured voltage and
current waveforms of the used cell. These features are automatically processed by deep learning algorithms,
including Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. This
methodology achieves an average error of only 62 cycles for cells with a lifespan of up to 1200 cycles
and a RUL error of less than 10% for deeply aged batteries. These results outperform state-of-the-art
algorithms that utilize data from the cell’s entire lifespan, demonstrating the efficacy and robustness of this
approach.

INDEX TERMS Remaining useful life, second life battery, LFP, incremental capacity, deep learning, CNN,
LSTM.

I. INTRODUCTION
Energy Storage Systems (ESS) based on lithium-ion batteries
have become the standard for many different applications,
mainly due to their high efficiency, energy and power density,
and their declining manufacturing cost [1], [2]. Lithium-
ion technologies such as LFP, NMC, LTO, or NCA provide
longer service lives than other traditional alternatives, such
as lead-acid, and are less contaminating than nickel related
chemistries, such as NiCd [3], [4]. Thus, these lithium-ion
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technologies are the main option for Electric Vehicle (EV)
applications [5], [6], [7], [8].

However, the expansion of the EV is generating a huge
second-hand batterymarket, and reusing lithium-ion batteries
in other applications, after their first life has expired, is a
promising concept that has been studied from an economic,
technical and environmental point of view [9], [10]. In this
regard, low-demand applications in terms of instant power
requirements and depth of discharge (DoD), are suitable
second-life applications, as is the case with on-grid sys-
tems [9], [10], [11], [12]. In this field, the accurate estimation
of the Remaining Useful Life (RUL) of the used cells remains
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a key challenge to provide security and reliability to these
systems.

The aging of lithium-ion batteries has been extensively
studied, being a challenging problem [13], [14], [15], [16],
[17], [18]. Traditionally, State of Health (SoH) has been
the focus of these studies, although RUL is becoming more
relevant in Energy Management System (EMS) strategies.
These works are usually focused on real time applications,
i.e., predict ESS failures [19], [20], [21], [22], [23], [24].
Furthermore, determining RUL for a second life appli-
cation usually requires knowledge (data) on its first life
use [25], [26].
Regarding the techniques used for RUL estimation, there

are two traditional approaches to the problem: model-based
and data-driven techniques. Model-based techniques are suit-
able for battery behavioral models (such as State of Charge
estimators), but they have also been used for aging estima-
tion [27], [28], [29]. However, due to the large number of
factors involved in battery aging, highly accurate models are
often difficult to develop.

For this reason, data-driven approaches can be an alter-
native [30], [31], [32], [33]. These methods present two
main challenges. One of these challenges is the need for
large datasets, which are difficult to obtain due to labo-
ratory requirements. There are well-known publicly avail-
able datasets for certain chemistries [19], [34], [35], and
even though they are small data-wise for the most recent
deep learning techniques (hundreds of cells, thousands of
cycles), some authors have used them successfully [36], [37].
As an alternative, some studies propose the use of synthetic
datasets for training complex networks structures based on
transformers [38].
The second challenge is the feature extraction and pro-

cessing stages. Most studies rely on features that need to
be tracked over cell life [36], [37] (e.g., capacity, inter-
nal resistance (IR)) to estimate the behavior of the cell
in future use. In principle, this invalidates the use of
data-driven techniques for applications where these variables
cannot be obtained in-situ, or applications where the first
life of the battery is unknown or there is no logged data
from it.

In the well-known paper [35], Severson et al. intro-
duce a dataset which contains information on 124 cells
cycled under different charging conditions until their End
of Life (EoL), defined as their capacity dropping below
80% of their nominal capacity. This dataset provides more
than 90,000 full discharge cycles, with different measured
features, such as voltage, capacity, or internal resistance.
In the original paper, the authors use this dataset for
RUL prediction, introducing some novel health indica-
tors (HI). Their focus is the early RUL estimation of a
monitored cell, before it shows capacity-fade. For this pur-
pose, they explore several discrete features, obtained by
pre-processing the data corresponding to the first 100 cycles
of life.

In this work, the authors also hint at a different analysis
that could be performed on the derivative of the discharge
waveforms, also known as Incremental Capacity (IC) curves,
which contain information on degradation. These curves have
been previously described in [31], [39], [40], [41], [42],
and their peaks have been proven to be a useful source
of information to diagnose battery aging and the causes of
degradation [38], [43], [44], [45].

However, in our opinion, there is still potential for applying
an automatic data-driven analysis to these raw waveforms for
RUL estimation, hence our approach will present two main
constraints as novelties. On the one hand, the methodology
introduced in this paper uses raw IC curves, without (man-
ual) pre-processing, and deep learning models for automatic
feature extraction. On the other hand, the main novelty of the
proposed methodology is that it does not require data from
the cell’s first life. This generalization capability allows for
its application in situations where historical data on the cell’s
first life is not available.

Thus, in the methodology proposed in this paper, a single
cell is evaluated at an unspecified moment in its lifecycle to
determine its potential for second-life applications. A limited
number of test cycles are conducted to extract raw IC curves
from the measured voltage and current waveforms of the cell,
and additional features, such as capacity or internal resis-
tance, are calculated. These features are then used by deep
learning algorithms to estimate the cell’s RUL, expressed as
a function of its remaining Full Equivalent Cycles (FEC).
In the scope of this paper, Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) are used as
data-driven techniques to this end (notice that, although more
recent sequence-processing techniques, such as transformers,
could be used, they require huge datasets). Finally, multiple
error metrics are calculated and compared to those achieved
by current state-of-the-art algorithms applied to the same
dataset. Unlike these traditional methods that rely on first
life data of the cell, the presented methodology demonstrates
better performance without requiring such information.

The paper is organized as follows. In Section II, the dataset
is presented and our approach to RUL estimation is described.
In Section III, the deep learning architectures used, and the
methods to avoid overfitting applied, are shown. Section IV
presents the results obtained with our methodology, including
comparisons with other techniques. Finally, the conclusions
are summarized in Section V.

II. METHODOLOGY
Conventional approaches to battery health estimation
are model-based or make use of machine-learning tech-
niques [23]. In this second approach, different features are
manually extracted from the battery test cycles, and then they
are used to train a machine learning algorithm that provides
SoH or RUL estimation.

By using this second approach as a starting point, our study
proposes the two main novelties indicated in Section I. First,
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instead of selecting some features as inputs, raw IC wave-
forms are used as the main input to our algorithms (carrying
out onlyminimal data preprocessing), thus providing asmuch
information from each test cycle as possible (feature extrac-
tion used in other works often involves some information
loss). Hence, the required machine learning model should be
complex enough to handle whole waveforms. For comparison
purposes, the algorithms developed in this studywill be tested
against other techniques that do involve feature extraction.

Second, when the RUL of a used cell is estimated for its
possible use in the second life market, first life cell data
is usually not available, but conventional techniques require
tracking the evolution of the whole cell lifespan, thus they are
not suitable in a realistic scenario. In this work, we develop a
methodology that uses only local information corresponding
to only a few test cycles, rather than the whole cell lifespan.
In a real test scenario, when a used cell must be analyzed, first
some test cycles are carried out and then these measurements
are processed by a model trained for RUL estimation, pro-
viding the remaining FEC of the cell. With this information,
it can be decided whether the cell is suitable for a second life
application or not.

A. DATASET
The Toyota Research Institute provides the dataset used in
this study. It was initially introduced in [35], and it has been
used previously in other studies such as [46], [47]. It con-
tains approximately 96,700 charge/discharge cycles from
124 commercial LFP/graphite cells, which allow us to extract
thousands of training examples for training machine learning
models. The specific model of the cell is APR18650M1A
from A123 Systems, and its nominal capacity is 1.1Ah. The
cells have been tested with high-current charge and discharge
cycles, from the beginning of their life until the end. The life
of the cells varies greatly in the dataset, ranging from a few
hundred FEC to more than one thousand in some cases.

The charging current waveforms are not constant from
cell to cell since their original purpose was to test different
charging conditions. However, the discharge current for all
cycles across all cells was indeed constant, at a 4C rate
(4.4A). During the cycles, the ambient temperature was set to
30◦C, although it increased along with the test duration due
to self-heating. Voltage, current, and temperature waveforms
were measured for each discharge. Additionally, the original
authors provide a capacity and an internal resistance (IR)
measurement for each cycle. Capacity is measured by inte-
grating the charge obtained during the full-discharge process.
IR is obtained by processing current pulses and their voltage
response while charging.

The dataset is provided by the original authors in three
different batches, with differences among them. For example,
the second batch consists almost exclusively of cells with
poor life performance, whereas the other batches are better
in this sense.

As an initial hypothesis, each discharge waveform in the
database has been considered as a single, independent test,

uncorrelated to each other. Thus, the training, validation, and
test subsets were randomly created by selecting cycles across
the whole dataset. This will have further implications, which
we will expand on in the next sections.

B. INPUT DATA AND FEATURE SELECTION
Traditional machine learning approaches usually need a pre-
vious feature extraction stage to extract key features from
the data. In the case of battery aging estimation, common
examples of such features are capacity or internal resistance.
A health indicator that is gaining traction in recent years
is Incremental Capacity (IC) [31], [39], [40], [41], [42].
IC curves are defined as the partial derivative curve of the
charge q against the voltage v of the cell (1), for a specific
cycle, with constant current.

IC (υ) =
δq(υ)
δυ

(1)

Thus, the IC curve can be obtained directly from the
voltage waveforms contained in the dataset. The IC curves
show different capacitance peaks at different voltage values,
depending on each chemistry and aging process. These peaks
are the regions of voltage where the cell stores energy, and
vary slightly along the cell’s life. The peaks and their vari-
ation have been proven to be good indicators of battery life
and different degradation mechanisms, and they show great
potential for SoH and RUL prognosis [37], [41].

One of the novelties in our study is to consider as much
information as possible provided by the IC curves in the
dataset, with minimal pre-processing. Since the discharge
process in every cycle was made with the same nominal
current, we opted for using the discharge IC waveforms as
the inputs. An example of these cycles and their associated
IC waveforms is shown in Fig. 1, where multiple cycles from
the same cell are depicted, belonging to different moments of
its life. Each plot in Fig. 1 represents a different test cycle,
dark blue being the least aged cycle and cyan being the most
aged cycle.

It must be observed that genuine IC waveforms are
obtained with low charge and discharge rates on the cells
(around 0.05C). This is not strictly the case in this dataset
since the cells are discharged at 4C, but we will consider
these curves as an approximation of the original IC curves.
As it may be appreciated in Fig 1. (b), as the cell ages (cyan),
a secondary IC peak appears in the range of 2.4V. This peak
is a clear indicator of aging, and it is one of the target features
for the deep-learning algorithm. When processing genuine
IC curves, better results would be expected. Nevertheless,
using high-rate curves in a real test scenario could be more
convenient from an application perspective due to the reduced
testing time, since testing at 4C is 80 times faster than at
0.05C.

Machine learning methods often benefit from (or some-
times even require) normalized input data; usually, every
input is normalized to mean 0 and standard deviation 1. How-
ever, when normalizing IC curves, some absolute information
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FIGURE 1. Time-domain voltage waveforms from a single cell along its
lifespan (a). Incremental capacity waveforms belonging to the
time-domain waveforms (b). Each plot represents a different test cycle of
the same cell, with the cyan one being the latest cycle corresponding with
the most aged situation and the dark blue one with the least aged
situation. These colors can be easily distinguished at the tails of the
discharge waveforms in (a).

may be lost, such as the area below the IC curve, which
represents cell capacity. For this reason, some discrete fea-
tures have also been considered as input data: capacity, IR,
and Time Interval of Equal Discharging Voltage Difference
(TIEDVD). As already introduced, capacity and IR obtention
is detailed in [35]. TIEDVD is the time interval between
two voltage thresholds (Vmax , Vmin). It can be obtained with
minimal pre-processing from the discharge waveforms, and
has proven to be a good health indicator in other studies [19],
[22], [48], [49], [50]. In our previous work [48], it was found
that the thresholds 3.3V and 3.15V show good estimation
capabilities for this chemistry. These additional features and
their evolution for one specific cell are shown in Fig. 2.
As stated before, one main novelty of our work is that the

estimation approach does not rely on past information about
the usage of the cell. By only performing a limited set of
test cycles to the cell under study, the algorithm will esti-
mate its RUL. Nevertheless, more than one test cycle will be

performed to extract more information. In [48], it was estab-
lished that ten test cycles provide a good trade-off between
accuracy andmodel complexity.We use deep learningmodels
capable of processing ten IC waveforms plus ten groups of
additional input variables, which can handle temporal corre-
lation between different test cycles.

FIGURE 2. Capacity evolution for a sample cell (top). IR evolution for a
sample cell (center). TIEDVD evolution for a sample cell (bottom).

III. DEEP LEARNING ALGORITHMS
A. DEEP LEARNING MODELS USED
As specified in the previous section, it is required a machine
learning model capable of analyzing a set of raw IC
waveforms (ten curves). Our dataset includes about 96,700
charge/discharge cycles, which has allowed us to arrange a
set of 84,762 training examples. Thus, we have selected two
well-known deep learningmodels that have high performance
and can be trained by using a moderate sized dataset (thou-
sands of examples): Convolutional Neural Networks and
Long-Short Term Memory [51]. The performance achieved
by both deep learning models will be compared with other
machine learning models (Section IV). It is important to note
that we have discarded state-of-the art deep learning mod-
els, such as transformers [52], because transformers include
millions of parameters, requiring huge datasets (millions of
examples).

1) CONVOLUTIONAL NEURAL NETWORKS (CNN)
CNNs are deep learning algorithms originally introduced for
image processing [51]. CNNs are based on 2D convolutional
filter layers that scan the input image for feature detection,
interleaved with pooling layers for dimensionality reduction.
Finally, some fully connected layers provide the output.
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Although CNNs were introduced for image process-
ing [51], CNNs can also process waveform signals. For
instance, in [53] a CNN is applied to EEG (electroencephalo-
graphic) signals, constructing a ‘virtual image’ by grouping
some EEG waveforms of the same length (vector data)
forming a data matrix (a virtual image), where the X axis rep-
resents time and the Y axis, the signal values of several EEG
waveforms. This allows the application of image processing
techniques, such as convolutional networks, to a set of signal
waveforms.

Thus, in our approach, the IC curves from tenmeasurement
tests constitute a virtual image, which will be the input to a
CNN that automatically extracts features from them. As the
cycles in the dataset have a different length (and so do the
IC curves), they have been re-sampled to 100 samples each.
Thus, the virtual images formed with ten IC curves have a
dimension of 10× 100 (Fig. 3). In this case, the virtual images
have voltage in the X axis and time in the Y axis, whereas IC
values are in the Z axis, represented as blue levels in Fig. 3.

FIGURE 3. Ten incremental capacity waveforms grouped in a virtual
image.

The CNN architecture proposed (Fig. 4) processes these
10 × 100 inputs by a set of four layers that automatically
extract some key features: convolutional layer, average pool-
ing layer, convolutional layer and average pooling layer.
Then, two fully connected layers (Fig. 4) process the
extracted features. Finally, an output neuron provides the
RUL estimation in terms of remaining FEC. Other hyperpa-
rameters to be adjusted are the number of input and output
channels, the shape of the convolutional and pooling kernels,
and the stride hyperparameter. After several hyparameter
searches, the best configuration found is shown in Table 1.

TABLE 1. Convolutional neural network configuration.

After the convolutional and pooling layers stages (pre-
processing network from now on), the algorithm reduces the
input from 10 × 100 = 1000 values to four channels with

shape 1 × 12 (Fig. 4). These extracted features are then
unwrapped into a single array of 48 features, which needs
to be post-processed to finally obtain the cell RUL. Several
linear and nonlinear final layers with different number of neu-
rons per layer were tried. The best results were obtained with
two fully connected layers, with the number of neurons equal
to the features to be processed, configuring a preliminary
48-48-48-1 feedforward network.

For the reasons explained in Section II-B, we also
include as inputs some additional features, capacity, IR,
and TIEDVD. These are introduced to the model after the
pre-processing layer (Fig. 4), to be post-processed together
with the 48 features that the convolutional layers extracted.

Thus, the complete deep network is shown in Fig. 4, where
the neurons of the final fully connected layers have been
adjusted to 78-78-78-1 to accommodate ten measurements
of the three additional features, along with the 48 features
extracted from the IC curves by the convolutional layers.

2) LONG SHORT-TERM MEMORY (LSTM)
Recurrent neural networks (RNN) are commonly used for
processing temporal series [51]. Conventional RNN detect
short-term features in a data series, but suffer from vanishing
gradient problems, which leads them to forget long-term
relationships. LSTM were proposed as a solution for detect-
ing both short-term and long-term correlations [54] and are
widely used for temporal data [51].
The structure of an LSTM cell is shown in Fig. 5. At any

instant n, each cell has an input xn, an output hn, and a
memory term cn, which change over time. Although indicated
as scalar values, they can be vectors with p components. The
LSTM cell controls information through three subnetworks,
or ‘‘gates’’ (Fig. 5): forget gate f, input gate i, and output
gate o. The forget gate controls how much old information
is removed from the memory term. The input gate controls
how much new information in ĉ (main layer output) passes to
the memory term. Finally, the output gate controls the impact
the memory term has on the output h. In Fig. 5, the σ and tanh
blocks represent fully connected neural layers with sigmoid
or hyperbolic tangent as activation functions, respectively.

Several LSTM cells can be concatenated so that the outputs
of the previous serve as input to the following one, thus form-
ing complex LSTM networks. Therefore, when designing
these networks, two main hyperparameters must be adjusted:
the dimensionality of the memory term p, and the number of
LSTM cells concatenated.

In the case of our LSTM network for RUL estimation,
the input x will be a sequence of ten IC waveforms. The
same re-sampling indicated for the CNN has been applied
to the waveforms, so each waveform will have 100 samples.
When including the three additional features (capacity, IR,
and TIEDVD), each element xn in the sequence will include
103 features (100 samples belonging to the ICwaveform, plus
the three additional features). By executing several attempts,
the best configuration found for the LSTM network for this
problem is shown in Table 2.
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FIGURE 4. CNN architecture proposed: input virtual image (1 × 10×100), first and second convolutional and average pooling layers (AvgPool), and
output fully connected layers (78-78-78-1).

FIGURE 5. LSTM cell architecture.

TABLE 2. LSTM network configuration.

B. OVERFITTING AVOIDANCE
Neural network models are prone to overfitting, especially
with limited datasets, as is the case with battery datasets.
To avoid this problem and ensure good generalization [51],
[52], multiple regularization techniques have been used.

Early-stopping [51] is a classical regularization technique.
It consists of dividing the dataset in three subsets: a training
set (60%), for model learning; a validation set (20%), for
monitoring the generalization error and stopping the training
at the point of minimum validation error (maximizing gener-
alization); and a test set (20%) used for the final evaluation
of the model performance.

As explained in Section II-A, each training sample (com-
prised by data of 10 consecutive cell cycles) was initially
considered as an individual sample, uncorrelated with the rest

of the samples that originated from the same battery cell.
The division into training, validation and test sets was done
accordingly by randomly assigning each example to one of
the three subsets (Fig. 6, a).

In our first test, the results of deep learning algorithms
when applying early-stopping were impressive, achieving a
root mean squared error (RMSE) when estimating RUL as
low as 10 FEC.We suspected that these results were very opti-
mistic, and we verified that the model was overfitting, which
was unexpected, since early-stopping was being used. In this
case, overfitting was occurring at a higher level, overfitting
battery cells instead of data cycles. Even though information
from different cycles was separated between the different
subsets, the network learned how specific battery cells in the
database behave and provided very good estimations for other
examples belonging to the same battery cell. To solve this
issue, we changed the initial way of dividing the three subsets
(Fig. 6, a), and implemented a battery cell-based division
(Fig. 6, b).

The cycles belonging to each individual cell are all
assigned to one of the subsets. By dividing the data this
way, no examples from the same battery cell are used across
training, validation, and testing. This is also a more real-
istic approach considering the final application, since in a
real case the cell under test will be unrelated to the train-
ing process, i.e., it will be a cell not used for building the
model. After making this change in the subset creation, the
model was trained again. By using early stopping with this
subset division, the optimal network size and the rest of
the hyperparameters (number of epochs, learning rate) were
determined.

However, even though the dataset is comprised of many
cycles, it only includes 124 battery cells. Dividing this dataset
into three subsets ends up with a small number of battery cells
in each subset. Thus, cross-validation techniques [51] have
been applied for obtaining more realistic and comparable
error estimation.
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FIGURE 6. Old subset division, with overfitting at battery cell
level (a). New subset division (b).

First, k-fold cross-validation (k-CV) was used [51]. It con-
sists of dividing the initial dataset evenly into k sub-groups.
In this application, k = 10 groups were selected, since it has
been seen that this number provides a good trade-off between
computing time and accuracy [55]. Then, the model is trained
with 9 groups and validated with the 10th group. This process
is repeated 10 times, in such a way that every group is used
as validation set on one occasion. Numerical results achieved
will be shown and discussed below.

Finally, as it is usual with small datasets, Leave-One-Out
(LOO) cross-validation has also been used [51]. LOO is a
special case of cross-validation in which k = N (being N
the number of examples). In this case, the net is trained N
times by using N -1 battery cells for training and one cell
for validating (on each training, a different cell is ‘left out’).
As shown in Sect. IV, standard tenfold cross-validation and
LOO provide comparable results, although errors estimated
by LOO are slightly better. The results obtained with this
technique are the closest we could expect in a real application
environment in which the whole dataset would be used for
training.

Additionally, to avoid overfitting to a higher degree,
different regularization methods were tried. These regular-
ization methods include [51] Ridge regularization, Lasso

regularization, and other techniques, such as dropout layers
or adversarial training [56], [57].

Ridge (2) and Lasso (3) regularization include the weights
of the network wj into the loss function J , to penalize large
weights and achieve smoother output functions:

J =
1
N

N−1∑
i=0

(y− f (xi))2 + λ

P−1∑
j=0

w2
j (2)

J =
1
N

N−1∑
i=0

(y− f (xi))2 + λ

P−1∑
j=0

∣∣wj∣∣ (3)

where J is the cost function (loss), N is the number of exam-
ples in the dataset, xi is the i-th example in the dataset, y is
the net output for that example, P is the number of weights
in the network, wj is the j-th weight and λ is a hyperparam-
eter. The optimal λ value for both regularization techniques
was found at 0.003 via a parametric sweep.

Dropout is another common methodology used to avoid
overfitting [51]. Dropout layers are included after the hidden
network layers and, in every training epoch, they randomly
disconnect some neurons in these layers with a certain prob-
ability p. The dropout rate selected for this application is 5%,
determined as the optimal value after conducting a parametric
sweep. This makes the architecture less dependent on specific
neurons and less prone to overfitting [51].

Adversarial training [57] has been used as another regular-
ization technique. It consists of two networks, RUL regressor,
and a cell classifier or Adversarial Network (AN). The AN
is a classification network that has been connected to the
outputs of the CNN (it has the same inputs as the feed-
forward network), and as many outputs as battery cells in
the dataset. During training, the CNN pre-processes the data
and the feed-forward network obtains an estimate for RUL,
while the AN classifies the specific cell the data comes
from, to try to differentiate specific cell behaviours. The
loss function for the RUL regressor is obtained as the mean
squared error (MSE) between the estimate and the target
RUL, while the loss function for the AN network is obtained
as the cross-entropy loss between its output and the target
cell. The overall loss function is composed as the loss func-
tion for the regressor minus the loss function of the classifier,
multiplied by a certain factor λ, as in (4)

J = JMSE − λJCEL (4)

where J is the overall loss function value, JMSE is the loss
function for the RUL regressor, and JCEL is the loss function
for the AN. By training with this loss function, the regression
network estimates RUL while, at the same time, the AN sub-
network avoids learning specific individual cell behaviours,
thus limiting the overfitting capabilities.

All regularization-related hyperparameters and model
design hyperparameters have been selected with the objec-
tive of optimizing performance, specifically targeting lower
RUL prediction error. Throughout the model design process,
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several parametric sweeps were conducted to find the better
value for each hyperparameter for every model.

Regarding the final implementation of the RUL estima-
tion model, the neural networks should be retrained with
the whole dataset [58]. This way, all cells will be used for
building the model. Notice that since there are only 124 cells
available, any of them could provide meaningful information
that would be omitted by using the standard cross-validation.

IV. RESULTS
The results achieved by using CNN and LSTM with the
different approaches explained in Section II and Section III
are collected in Table 3, including the details for each of
the variations. In addition, results achieved by using other
machine learning models found in the literature, are included.
The Root Mean Square Error (RMSE) is used as evaluation
metric:

RMSE =

√√√√ n∑
i=1

(
ŷi − yi

)2
n

(5)

where n is the number of examples in the test set, ŷi is the
predicted RUL for the i-th example, and yi is the actual RUL
value for the i-th example, measured in FEC.

TABLE 3. RMSE error metrics.

By analysing the first section of the table, it is worth noting
that the version of the algorithm that includes normalized IC
waveforms performs much better than the non-normalized
version. By normalizing, the original shape of the waveforms
is not preserved, and therefore some information is lost (the
information of capacity is contained as the integral of the
IC curve, and thus it is lost when normalizing these curves).
However, it seems that the training process is easier due to the
normalized data, and the algorithms perform better.

These results have been comparedwith those from a simple
feed-forward network [51], that it is only trained with the
additional features (capacity, IR, and TIEDVD). The error
metrics achieved are comparable to those of more sophisti-
cated algorithms which process IC curves. This suggests that

both the IC waveforms and the additional variables provide
relevant information for RUL estimation.

The next error metrics included in Table 3 belong to
the CNN and LSTM algorithms, when information from
IC waveforms and the additional variables are combined.
As can be observed, when including the additional features,
both algorithms perform much better, and the CNN provides
clearly better results. At this point, we select the CNN as the
winning architecture to apply the regularization techniques
explained in Section III-B.
Among the different regularization techniques imple-

mented, the best results were obtained when using Ridge
regularization with λ = 0,003. When all these parameters
are configured, the 10-fold cross-validation and LOO are
performed, and the results in Table 3 show errors as low as
71.7 FECs and 62.4 FECs respectively.

Explainability is an important issue, but difficult to achieve
in deep learning models. To provide more insight on how
the CNN processes data and its automatic feature extraction
capability, Fig. 7 show intermediate IC images (feature maps)
produced by each CNN layer, for a new cell and for an aged
cell. In the case of the new cell, only a single main peak is
observed in the curves, that it is emphasized and propagated
across the subsequent layers. In the case of the aged cell,
it can be appreciated a secondary peak, and how the network
amplifies and emphasizes it, to finally use both peaks as input
for the post-processing network.

To compare our results with those of other state-of-the-art
models, for instance, in [35] the authors use deep learning
methods, such as auto-encoders, and classical methods, such
as Bayesian Regression or SVM, resulting in a better perfor-
mance of auto-encoders, but with a considerable error.

On the other hand, in [47] a similar estimation objective
is pursued using a combination of Broad Learning (BL) and
Extreme Learning Machine (ELM) applied to this dataset
to predict RUL, by using the first test cycles of the cell.
These results are collected in the last part of Table 3 for
comparison. However, their approach differs from ours, since
they use information from the first life of the cell, which is
less suitable for a real second life application, where data
from the previous life may not be available. As stated before,
themain novelty of ourmethodology is that it does not require
data from the cell’s first life, and that only data from the ten
laboratory cycles specifically performed to estimate RUL are
used as inputs. The main conclusion is that the CNN shows
similar error ranges in both cases, albeit ultimately lower,
without using information from the past life of the battery
in our case.

Finally, Table 4 shows the distribution of the output errors
depending on the actual RUL region, corresponding to new,
slightly used, heavily used, and aged cells. As expected,
when predicting the remaining life of newer cells (higher
RUL regions), the error is higher. In a realistic second life
application scenario, cells under study will be aged cells and
they will not be in these RUL ranges, so the lower accuracy of
the algorithms in this region is not relevant. As cells approach
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FIGURE 7. Intermediate IC images (feature maps) produced by each CNN
layer, for a new cell and for an aged cell, are shown. In the case of the
aged cell, the secondary peak is detected, and the network amplifies and
emphasizes it, until reaching the post processing net.

their end of life (heavily used and aged cells), the predictions
become more accurate, with consistent RMSE of 71.2 FECs
for cells with actual RUL between 400 and 800 cycles, and
down to 31.2 RMSE cycles for aged cells, with less than
400 remaining FEC.

TABLE 4. RMSE in different RUL regions.

V. CONCLUSION
This work addresses the estimation of RUL of lithium-ion
batteries from a second life application point of view. Due to
the complexity of the aging process of these cells, data-driven
techniques are appropriate. These methods require datasets
to be trained, they use knowledge (data) of the past usage
of the cell to predict its behaviour. In this work, a publicly
available dataset of 124 cells has been used, including 96,700
charge/discharge cycles, which has allowed us to arrange a set
of 84,762 training examples.

One of the main novelties of our work is the estimation
approach. In a real scenario, when a battery cell candidate for

the second life market must be evaluated to estimate its RUL,
information (data) on the first life of the cell is not available.
Thus, in our work, data from only a few (ten) battery test
cycles have been used to RUL prediction, contrary to most
approaches in the literature, which require data of the whole
battery lifespan.

The second main novelty of our work is the use of raw IC
curves, to avoid the information loss associated with conven-
tional manual feature extraction techniques. For processing
the IC curves, several deep learning architectures, adequate
formoderately sized datasets, have been trained and analysed,
performing automatic feature extraction. The best results
have been obtained with CNN models, processing a virtual
image consisting of ten IC curves.

As indicated in Section III, we have been careful to obtain
robust RUL estimation models, with good generalization
capabilities despite the limited number of training examples,
by using a broad set of regularization techniques. The best
results have been achieved by using Ridge regularization and
a LOO training process. An RMSE of only about 62 cycles on
average for cells that live up to 1,200 cycles is achieved, lower
than the error provided by state-of-the-art algorithms, which
even make use of information on the first-life use. The results
are especially good for deeply aged batteries (with less than
400 remaining FECs), where the RMSE goes down to about
31 cycles, an error of approximately 10%.

To provide more insight into the model operation, the evo-
lution of the data through the CNN has been analysed. It has
been observed how the CNN is able to detect and amplify
the secondary IC peaks, which are key health indicators that
provide useful information for RUL estimation.

As a final contribution, it has been made explicit the two
levels of overfitting that can appear when working with this
kind of datasets, where data is correlated on a cycle-level
basis and a cell-level basis. Realizing that these two levels of
overfitting is taking place is key to obtaining reliable results
from data-driven algorithms, especially when using high-
variance networks, which are prone to overfitting data.

As a future research line, the methodology presented in
this paper is meant to be applied to more realistic datasets,
with real application waveforms and with cells aged under
different effects and mechanisms. This could be done by
collecting data from realistic applications, or by using com-
plex cell models to generate virtual datasets with different
aging conditions. This virtualization could also evolve into an
interesting research line by allowing the simulation of whole
cell modules, thus creating module-level datasets aiming to
expand the RUL estimation capabilities to more complex
systems.
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