LLM Multimodal Traffic Accident Forecasting
Resumen: With the rise in traffic congestion in urban centers, predicting accidents has become paramount for city planning and public safety. This work comprehensively studied the efficacy of modern deep learning (DL) methods in forecasting traffic accidents and enhancing Level-4 and Level-5 (L-4 and L-5) driving assistants with actionable visual and language cues. Using a rich dataset detailing accident occurrences, we juxtaposed the Transformer model against traditional time series models like ARIMA and the more recent Prophet model. Additionally, through detailed analysis, we delved deep into feature importance using principal component analysis (PCA) loadings, uncovering key factors contributing to accidents. We introduce the idea of using real-time interventions with large language models (LLMs) in autonomous driving with the use of lightweight compact LLMs like LLaMA-2 and Zephyr-7b-α. Our exploration extends to the realm of multimodality, through the use of Large Language-and-Vision Assistant (LLaVA)—a bridge between visual and linguistic cues by means of a Visual Language Model (VLM)—in conjunction with deep probabilistic reasoning, enhancing the real-time responsiveness of autonomous driving systems. In this study, we elucidate the advantages of employing large multimodal models within DL and deep probabilistic programming for enhancing the performance and usability of time series forecasting and feature weight importance, particularly in a self-driving scenario. This work paves the way for safer, smarter cities, underpinned by data-driven decision making.
Idioma: Inglés
DOI: 10.3390/s23229225
Año: 2023
Publicado en: Sensors 23, 22 (2023), 9225 [27 pp.]
ISSN: 1424-8220

Factor impacto JCR: 3.4 (2023)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 34 / 106 = 0.321 (2023) - Q2 - T1
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 24 / 76 = 0.316 (2023) - Q2 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 122 / 353 = 0.346 (2023) - Q2 - T2

Factor impacto CITESCORE: 7.3 - Instrumentation (Q1) - Information Systems (Q1) - Electrical and Electronic Engineering (Q1) - Analytical Chemistry (Q1) - Atomic and Molecular Physics, and Optics (Q1) - Biochemistry (Q2)

Factor impacto SCIMAGO: 0.786 - Instrumentation (Q1) - Analytical Chemistry (Q1) - Atomic and Molecular Physics, and Optics (Q1) - Information Systems (Q2) - Medicine (miscellaneous) (Q2) - Biochemistry (Q2) - Electrical and Electronic Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MCIN/AEI/PID2021-122580NB-I00
Tipo y forma: Artículo (Versión definitiva)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-11-22-12:12:45)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2024-10-24, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)