Resumen: In this paper, we present a novel approach to state estimation in dynamic systems by combining Physics-Informed Neural Networks (PINNs) with an adaptive Unscented Kalman Filter (UKF). Recognizing the limitations of traditional state estimation methods, we refine the PINN architecture with hybrid loss functions and Monte Carlo Dropout for enhanced uncertainty estimation. The Unscented Kalman Filter is augmented with an adaptive noise covariance mechanism and incorporates model parameters into the state vector to improve adaptability. We further validate this hybrid framework by integrating the enhanced PINN with the UKF for a seamless state prediction pipeline, demonstrating significant improvements in accuracy and robustness. Our experimental results show a marked enhancement in state estimation fidelity for both position and velocity tracking, supported by uncertainty quantification via Bayesian inference and Monte Carlo Dropout. We further extend the simulation and present evaluations on a double pendulum system and state estimation on a quadcopter drone. This comprehensive solution is poised to advance the state-of-the-art in dynamic system estimation, providing unparalleled performance across control theory, machine learning, and numerical optimization domains. Idioma: Inglés DOI: 10.3390/electronics13112208 Año: 2024 Publicado en: Electronics 13, 11 (2024), 2208 [23 pp.] ISSN: 2079-9292 Financiación: info:eu-repo/grantAgreement/EC/H2020/101103983/EU/Next generation technologies for battery systems in transport electrification based on novel design approach to increase performance and reduce carbon footprint/NEXTBAT Tipo y forma: Artículo (Versión definitiva) Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)