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PURPOSE. The purpose of this study was to determine the minimum number of
orthonormal basis functions, applying Principal Component Analysis (PCA), to
represent the most wavefront aberrations at different accommodation stages. The study
also aims to generate synthetic wavefront data using these functions.

METHODS. Monocular wavefront data from 191 subjects (26.15 ± 5.56 years old)
were measured with a Hartmann-Shack aberrometer, simulating accommodation from
0 diopters (D) to 5 D in 1 D steps. The wavefronts for each accommodative demand
were rescaled for different pupil sizes: 4.66, 4.76, 4.40, 4.09, 4.07, and 3.68 mm. PCA
was applied to 150 wavefront parameters (25 Zernike coefficients × 6 accommodation
levels) to obtain eigenvectors for dimensional reduction. A total of 49 eigenvectors were
modeled as a sum of 2 multivariate Gaussians, from which 1000 synthetic data sets were
generated.

RESULTS. The first 49 eigenvectors preserved 99.97% of the original data variability. No
significant differences were observed between the mean values and standard deviation
of the generated and original 49 eigenvectors (two one-sided test [TOST], P > 0.05/49)
and (F-test, P > 0.05/49), both with Bonferroni correction. The mean values of the gener-
ated parameters (1000) were statistically equal to those of the original data (TOST, P >
0.05/150). The variability of the generated data was similar to the original data for the
most important Zernike coefficients (F-test, P > 0.05/150).

CONCLUSIONS. PCA significantly reduces the dimensionality of wavefront aberration data
across 6 accommodative demands, reducing the variable space by over 66%. The synthetic
data generated by the proposed wavefront model for accommodation closely resemble
the original clinical data.

Keywords: statistical model, wavefront aberrations, zernike coefficients, accommodation

P redicting visual performance and image quality through
optical corrections for myopia and presbyopia across

different accommodation levels is essential for optimizing
subject outcomes. Accurate predictions enable the develop-
ment of customized lenses and surgical techniques tailored
to individual visual needs, improving clarity and comfort.1

For instance, contact lenses specifically designed for myopia
control2 or presbyopia correction.3,4 Of particular impor-
tance is assessing the optical efficacy of bifocal and multi-
focal soft contact lenses intended for myopia correction in
young patients with active accommodation.5–8 Evaluating
their interaction with the natural focusing ability of young
eyes versus presbyopic eyes is also crucial,5,9,10 as it ensures

good optical quality under various accommodation condi-
tions and provides valuable insights for improving optical
devices.

Rigorous evaluation of these multifocal lenses involves
large-scale clinical trials enrolling a significant number of
participants. These trials are inherently time-consuming and
resource-intensive, requiring considerable financial invest-
ment.11,12

For these reasons, eye models offer a valuable alterna-
tive, providing researchers with a simplified and readily
available tool that mimics the human eye’s functionality.13

These models have been instrumental in the design of multi-
focal intraocular lenses (IOLs),13 the investigation of how
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optical aberrations impact retinal image quality,14–16 and the
exploration of the eye’s visual performance across viewing
distances following specific procedures.5

Scientific literature abounds with various schematic
models of the human eye with different levels of complex-
ity.17–20 Although some specific models like those proposed
by Navarro et al.,21 Popiolek-Masajada et al.,22,23 and Gull-
strand,17 among others, offer utility for certain applica-
tions, they are often limited by their focus on a single
accommodative state or by using average population data
across multiple accommodative states.21 Once the human
eye’s morphological and physiological parameters exhibit
significant individual variations around their average values,
which creates a single, “ideal” eye model that captures the
intricate details across a diverse population seems imprac-
tical. An alternative approach involves generative model-
ing, wherein synthetic wavefront datasets are generated
with statistical properties mirroring those of the original
data. Several such eye models have been proposed by
Sorsby et al.,24 Thibos et al.,25 Zhao,26 Porter et al.,27 and
Rozema et al.28–31 and allow, for example, analyzing the
ocular biometry, intraocular lens performance, wavefront
aberrations of well corrected and normal eyes, and kera-
toconus eyes. However, a crucial limitation remains – none
of these models currently account for the eye’s ability to
accommodate.

This study aims to investigate the de-correlation and
dimensionality reduction of Zernike coefficients obtained
under six accommodative states (0 diopters [D] to 5 D
in 1 D increments) using Principal Component Analy-
sis (PCA). The resulting reduced data is then used to
fit a Gaussian multivariate model. This model is subse-
quently used to generate synthetic wavefront data with
different accommodative demands. Finally, the generated
synthetic data are compared to the original data for model
validation.

METHODS

Participants

This study analyzed monocular (right or left eyes, randomly
selected) accommodative wavefront data from 191 healthy
white European subjects (62 men and 129 women).
Subjects were from three different institutions: the Univer-
sity of Minho, Braga (Portugal), the University of Zaragoza,
Zaragoza (Spain), and the University of Murcia, Murcia
(Spain). Their ages range from 18 to 40 years (mean ± stan-
dard deviation = 26.15 ± 5.56 years).

The average subjective refraction was –1.35 ± 2.22
D sphere and –0.53 ± 0.47 D cylinder. Exclusion crite-
ria include ocular pathologies, accommodative problems
(measured objectively), prior ocular surgery, refractive error
outside the range of ±10 D sphere or exceeding 1 D cylin-
der, and a corrected visual acuity (VA) lower than 20/20
(measured with Early Treatment Diabetic Retinopathy Study
[ETDRS] LogMAR chart).

The study adhered to the tenets of the Declaration of
Helsinki and received approval from the Ethics Subcommit-
tee for Life and Health Sciences of the University of Minho
(Ref. 081/2022), the Clinical Research Ethics Committee of
Aragón (CEICA; Ref. PI21-074), and the Ethics Committee of
the University of Murcia. All participants signed informed
consent forms after receiving a detailed explanation of the
study’s purpose.

To maintain near-physiological conditions and natu-
ral accommodation, cycloplegics and mydriatics32,33 agents
were not used.

Wavefront Data

Wavefront aberrations from the second to the sixth order
were measured at various target vergences using a commer-
cial aberrometer (irx3; Imagine Eyes, Orsay, France). The
irx3 incorporates a built-in fixation target, consisting of a
black 6/12 Snellen letter “E” on a retro-illuminated white
background. Subjects fixated on this target while an infrared
beam (780 nm wavelength) projected from the device
reached their retina. The aberrometer was programmed for
automated measurements at accommodative demands rang-
ing from 0 D to –5 D, in 1 D steps, using the internal Badal
system.

Due to the inclusion of right eye (RE) and left eye (LE) in
the dataset, Zernike coefficients with negative even merid-
ional index and positive odd meridional index were sign-
reversed for all LE data before analysis. This step accounts
for the inherent mirror symmetries across the vertical merid-
ian between RE and LE.

For accurate comparison, a fixed standard pupil diame-
ter was used for each accommodation level 4.66 mm (0 D),
4.76 mm (1 D), 4.4 mm (2 D), 4.09 mm (3 D), 4.07 mm
(4 D), and 3.68 mm (5 D). This standard size represents
the largest pupil diameter achievable by 95% of the eyes
under each accommodative state (fifth percentile), whereas
the 5% of eyes with smaller pupil sizes were excluded for
that particular vergence analysis to avoid extrapolation of
the wavefront data. Eyes that were excluded for three or
more vergences were excluded from the study altogether.
Wavefront aberration measurements were then scaled
down to this standard pupil diameter using the method
described by Schwiegerling34 and further corrected by Visser
et al.35

Principal Components Analysis

As the data consist of 6 levels of accommodation, each char-
acterized by 25 Zernike coefficients, there were originally
150 parameters to be included in the analysis. This number
was sufficient for statistical modeling given the available
sample size of 191 subjects.

The database consisted of 150 parameters, representing
the 6 levels of accommodation evaluated and 25 Zernike
coefficients (from the second to the sixth orders) for each
level. However, statistical modeling was performed on all
150 parameters, which was sufficiently large for the available
sample size of 191 subjects. The schematic process can be
seen in Figure 1.

Therefore, PCA36,37 a well-established dimensionality
reduction technique, was used. PCA transforms the orig-
inal Zernike coefficients into a new set of uncorrelated
variables (eigenvectors) ordered by their contribution to
the data’s variance. By choosing an appropriate cutoff,
this method can be used for data reduction by select-
ing a subset of eigenvectors that captures most of the
variability.

Here, a 99.97% variance cutoff was chosen across all
accommodation levels to account for the large difference
in amplitude between the defocus and spherical aberration
terms. As illustrated in Figure 1 and Table 1 (see Supple-
mentary Table S1 for details), this resulted in retaining
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FIGURE 1. Diagram of the schematic process for obtaining the 49 eigenvectors. The intersection of the horizontal and vertical straight lines
in the last graph indicates the point where 99.97% of the cumulative variance was found.

TABLE 1. Cumulative Variance (%) and Limits of the First 12 Eigen-
vectors

% of Variance Max, µm Min, µm

EV 1 90.30 0.488 −0.011
EV 2 93.61 0.398 −0.294
EV 3 96.20 0.346 −0.445
EV 4 97.41 0.245 −0.472
EV 5 98.08 0.666 −0.424
EV 6 98.53 0.481 −0.483
EV 7 98.91 0.580 −0.571
EV 8 99.10 0.379 −0.242
EV 9 99.26 0.389 −0.643
EV 10 99.38 0.309 −0.324
EV 11 99.47 0.354 −0.235
EV 12 99.56 0.421 −0.295

49 eigenvectors, which preserved 99.97% of the original
data’s variability. The remaining 0.03%, primarily associated
with higher-order aberrations with minimal practical impact
on the model, was discarded. These retained eigenvectors
formed an orthogonal and near-complete basis set for the
data.

Gaussian Multivariate Model

The first 49 eigenvectors obtained by PCA were then used to
construct the generative model. This model utilizes a linear
combination of two multivariate Gaussian functions fitted
using the Expectation-Maximization (EM) algorithm imple-
mented in MATLAB 2022b (The MathWorks, Natick, MA,
USA).31,38

This robust fitting procedure allows the model to gener-
ate a limitless number of random data points with a distri-
bution that is statistically indistinguishable from that of the
original data set.

In this study, 1000 such random data points were
generated representing the coefficients of the 49 eigenvec-
tors. These were subsequently transformed into Zernike
coefficients, yielding a collection of 1000 synthetic wave-
fronts encompassing the 6 accommodative levels (0 D to
5 D in 1 D steps). Finally, these synthetic wavefronts
can be directly compared with the original wavefront
cohort.39

Statistics

The statistical analysis aimed to establish equivalence
between the original and synthetic datasets. Two one-sided
tests (TOST)40,41 were used to define equivalence thresh-
olds for the means of both sets. This approach ensures that
any observed mean differences are likely due to chance, not
systematic bias. Before TOST, the normality of the distribu-
tion was confirmed using Kolmogorov-Smirnov tests. Addi-
tionally, F-tests were conducted to compare the variability
(variances) between original and generated data. All statisti-
cal tests were performed at a significance level of α = 0.05
and adjusted using Bonferroni correction for multiple simul-
taneous comparisons.

RESULTS

Principal Components

The resulting base functions derived from the initial wave-
front data using PCA are shown in Figure 2 for the first
7 eigenvectors, each representing linear combinations of
all 150 Zernike parameters across the 6 accommodative
demands. Additional components up to the 49 eigenvec-
tors are provided in Supplementary Figure S1. Only the
first 49 orthonormal eigenvectors of the covariance matrix
are considered, ordered by decreasing eigenvalues. Table 1
details the minimum and maximum limits for each eigenvec-
tor’s colormap (represented by blue and red in Fig. 2) and
the cumulative variance explained by the first 12 compo-
nents. The remaining details for components 13 to 49 can be
found in Supplementary Table S1. The color maps (see Fig. 2,
Supplementary Fig. S1) reveal that the first few eigenvec-
tors, resemble rotated and distorted Zernike polynomials.
For instance, eigenvector 1 appears similar to defocus, eigen-
vectors 2, 3, and 4 resemble astigmatism, eigenvectors 6 and
7 resemble spherical aberration, and eigenvector 8 resem-
bles to coma. However, the patterns become more complex,
exhibiting a higher-order mixing of Zernike coefficients with
decreasing prominence of any single eigenvector.

The Zernike’s decomposition of the eigenvectors is repre-
sented by bar charts in Supplementary Figure S2, whereas
Supplementary Table S2, from the supplements, gives a
quantitative description of the base functions for the sepa-
rate PCA by accommodative demands.
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FIGURE 2. Base functions (eigenvectors) were obtained for the second to sixth order Zernike coefficients (columns) for six accommodative
demands (rows). The wavefront of the first seven eigenvectors is ordered according to decreasing eigenvalues.

TABLE 2. Comparison of the Eigenvectors of the Original Data (191) Versus the Generated Data (1000)

Parameter KS*
Average (SD)

Original Data, µm
Average (SD)

Generated Data, µm TOST F-Test*

EV 1 0.075 0.000 (3.907) −0.283 (3.692) 0.337 0.294
EV 2 0.330 0.000 (0.749) 0.004 (0.696) 0.946 0.176
EV 3 0.165 0.000 (0.661) −0.005 (0.651) 0.922 0.765
EV 4 0.008 0.000 (0.453) 0.029 (0.450) 0.418 0.868
EV 5 0.000 0.000 (0.335) 0.003 (0.336) 0.916 0.999
EV 6 0.061 0.000 (0.276) 0.004 (0.284) 0.860 0.636
EV 7 0.541 0.000 (0.255) −0.007 (0.250) 0.715 0.722
EV 8 0.668 0.000 (0.179) 0.003 (0.176) 0.826 0.764
EV 9 0.454 0.000 (0.164) 0.003 (0.162) 0.816 0.750
EV 10 0.382 0.000 (0.141) −0.004 (0.137) 0.709 0.546
EV 11 0.485 0.000 (0.125) 0.001 (0.125) 0.905 0.982
EV 12 0.593 0.000 (0.121) <0.001 (0.126) 0.990 0.467

KS, Kolmogorov-Smirnov test for normality; SD, standard deviation.
* P < 0.05/49 = 4.17·10-3 (Bonferroni correction) indicates a significant difference.

The first representing the most prominent component,
is primarily composed of a C(2,0) Zernike term (parabolic
revolution term). To analyze the following more complex
eigenvectors, the indices n and m (Z n,m) were used as
radial and angular frequencies, respectively. The one with
the highest magnitude will be referred to as the fundamen-
tal eigenvector. The relative intensities percentage contribu-
tion to the root-mean-square (RMS) value of the eigenvector
of the fundamental components are listed in Supplementary
Table S2. Notably, the first 4 eigenvectors exhibit a domi-
nant fundamental component exceeding 40% contribution.
Conversely, eigenvectors from the fifth onward have rela-
tive intensities (< 40%) indicating a more complex compo-
sition with contributions from various Zernike terms. This
implies that these later eigenvectors do not encode infor-

mation solely from a single Zernike coefficient (please note
that the relative contribution is given by the corresponding
eigenvalue so that most of the variance is explained by the
first eigenvectors).

Validation

Statistical analysis confirmed that the distributions of all 49
eigenvectors in both the original and synthetic data sets were
normally distributed (Kolmogorov-Smirnov test with Bonfer-
roni correction, P> 0.001; Table 2, Supplementary Table S3).
This indicates a good match between the statistical proper-
ties of the original data and the model’s output. Furthermore,
using the model to generate 1000 wavefronts across different
accommodative demands and comparing the mean values
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FIGURE 3. Distribution of Zernike coefficients up to the fourth order across subjects, illustrating the percentage of subjects exhibiting each
coefficient value for each Zernike mode, for each accommodative state, 0 D (black), 1 D (blue), 2 D (green), 3 D (red), 4 D (orange), and 5
D (brown), for the original data (191 eyes, solid line) and generated data (1000 eyes, dashed line).

of the eigenvectors with those of the original data, both are
significantly equal (TOST with Bonferroni correction, P >

0.05/49; see Table 2, Supplementary Table S3). Finally, no
significant differences were observed between the standard
deviation of the 49 eigenvectors used to generate the model
and the original data (F-test, with Bonferroni correction, P
> 0.05/49; see Table 2, Supplementary Table S3).

The distribution of Zernike coefficients up to the sixth
order in each accommodative target vergence of the gener-
ated data is well-aligned with that of the original data, as
depicted in Figure 3 and Supplementary Figure S3.

The 150 parameters (Zernike coefficients) are normally
distributed within both the original 191 eyes and the 1000
synthetic eyes (Kolmogorov-Smirnov test with Bonferroni
correction, P > 0.05/150; Table 3, Supplementary Table S4).
The wavefronts generated for each of the accommodative
vergences are significantly equal to the mean values of the
original data (TOST, P > 0.05/150; see Table 3, Supplemen-
tary Table S4). Although no statistically significant differ-
ences were observed between the standard deviations of
the original data and generated data for coefficients up to
fourth order (F-test, P > 0.05/150; see Table 3, Supple-
mentary Table S4), some of the high-order Zernike coeffi-
cients (beyond the fifth order) showed statistically significant
differences, mainly for higher accommodative demands (F-
test, P< 0.05/150; see Table 3, Supplementary Table S4). The
agreement with the original data versus the generated data
can also be seen in the distributions presented in Figure 3 up

to the fourth order. The figure shows the calculated Zernike
coefficients up to the sixth order for 1000 generated wave-
fronts (dashed lines, color-coded for each accommodative
demand) compared to the measured coefficients from the
original data (solid lines), Supplementary Figure S3 provides
details on the contents of the fifth and sixth order Zernike
coefficients.

DISCUSSION

The statistical wavefront model with accommodation
successfully allowed to generate an unlimited number of
synthetic wavefronts encompassing six different accom-
modative demands. These synthetic wavefronts exhibit
statistically indistinguishable from the original data used
for model development (see Tables 2, 3), falling within the
established tolerance levels. Notably, the model effectively
preserves the variability of key accommodative Zernike coef-
ficients, such as defocus and primary spherical aberration
coefficients, closely resembling those observed in the origi-
nal data (see Fig. 3).

This study introduces a novel compact and accurate
generative model for accommodative wavefront errors in
a large young adult population aged 18 to 40 years. The
model stands out by realistically representing intersub-
ject variability through a series of Zernike coefficients,
reflecting the dynamic nature of accommodation, without
the biological variability presented before.17,18,20,21,42–44 By
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TABLE 3. Comparison of the Zernike Coefficients for Each Accommodative Demand From the Original Data (191) Versus the Generated
Data (1000)

Parameters KS
Average (SD)

Original Data, µM
Average (SD)

Generated Data, µM TOST F-Test

C (2,-2) 0 D 0.034 0.017 (0.213) 0.011 (0.213) 0.547 0.818
1 D 0.051 0.021 (0.226) 0.010 (0.227) 0.341 0.797
2 D 0.009 0.015 (0.192) 0.006 (0.194) 0.877 0.846
3 D 0.089 0.014 (0.157) 0.002 (0.156) 0.933 0.722
4 D 0.069 0.007 (0.158) −0.003 (0.158) 0.915 0.709
5 D 0.019 0.005 (0.135) −0.005 (0.134) 0.954 0.649

C (2,0) 0 D 0.095 1.249 (1.747) 1.143 (1.674) 0.341 0.327
1 D 0.056 1.544 (1.902) 1.418 (1.818) 0.877 0.282
2 D 0.064 1.826 (1.757) 1.736 (1.669) 0.933 0.258
3 D 0.173 1.948 (1.390) 1.890 (1.367) 0.915 0.500
4 D 0.220 2.335 (1.493) 2.284 (1.415) 0.954 0.259
5 D 0.146 2.278 (1.312) 2.227 (1.235) 0.849 0.231

C (2,2) 0 D 0.427 −0.159 (0.362) −0.153 (0.331) 0.877 0.455
1 D 0.298 −0.129 (0.366) −0.120 (0.342) 0.868 0.481
2 D 0.409 −0.090 (0.318) −0.083 (0.294) 0.835 0.452
3 D 0.128 −0.066 (0.271) −0.046 (0.309) 0.995 0.885
4 D 0.119 −0.035 (0.271) −0.030 (0.293) 0.964 0.768
5 D 0.561 −0.020 (0.227) −0.017 (0.229) 0.796 0.822

C (3,-1) 0 D 0.674 0.024 (0.082) 0.024 (0.081) 0.915 0.792
1 D 0.803 0.026 (0.091) 0.024 (0.093) 0.872 0.806
2 D 0.848 0.026 (0.074) 0.026 (0.076) 0.909 0.886
3 D 0.158 0.023 (0.063) 0.025 (0.076) 0.887 0.578
4 D 0.297 0.025 (0.067) 0.029 (0.071) 0.981 0.594
5 D 0.453 0.022 (0.052) 0.024 (0.052) 0.985 0.796

C (3,1) 0 D 0.465 <0.001 (0.060) 0.002 (0.059) 0.954 0.721
1 D 0.803 −0.005 (0.067) −0.002 (0.065) 0.906 0.656
2 D 0.694 0.002 (0.059) 0.004 (0.057) 0.740 0.712
3 D 0.554 0.007 (0.057) 0.008 (0.060) 0.887 0.980
4 D 0.573 0.011 (0.066) 0.012 (0.067) 0.960 0.892
5 D 0.267 0.011 (0.060) 0.011 (0.061) 0.863 0.647

C (4,0) 0 D 0.718 0.039 (0.050) 0.036 (0.050) 0.407 0.549
1 D 0.753 0.036 (0.056) 0.033 (0.054) 0.437 0.661
2 D 0.382 0.016 (0.049) 0.014 (0.049) 0.550 0.746
3 D 0.808 0.002 (0.041) <0.001 (0.040) 0.660 0.499
4 D 0.968 −0.004 (0.048) −0.007 (0.046) 0.614 0.492
5 D 0.858 −0.008 (0.041) −0.010 (0.038) 0.880 0.300

C (6,0) 0 D 0.831 −0.001 (0.013) −0.002 (0.010) 0.580 0.010
1 D 0.166 −0.001 (0.014) −0.002 (0.011) 0.419 0.001
2 D 0.112 −0.001 (0.013) −0.002 (0.010) 0.480 <0.001*

3 D 0.231 −0.001 (0.009) −0.002 (0.007) 0.651 0.036
4 D 0.134 −0.002 (0.009) −0.002 (0.008) 0.766 0.016
5 D 0.749 −0.001 (0.006) −0.001 (0.005) 0.883 0.002

F-test, compare variances; KS, Kolmogorov-Smirnov test for normality; SD, standard deviation; TOST, two one-sided tests.
* P < 0.05/150 = 3.33·10-4 (Bonferroni correction) indicates a significant difference.

using an EM algorithm,31,38 it became possible to effec-
tively fit the multivariate distribution of the 49 eigenvec-
tors, representing 99.97% of the population variance. This
provides researchers in physiological optics and simula-
tion design with a powerful tool. The generated wavefronts
offer a multitude of applications, including simulating retinal
image quality, determining tolerances for accommodation-
related wavefront errors, designing multifocal contact lenses
that account for accommodation-induced changes in optical
quality, and guiding wavefront-based contact lenses design.
They can also facilitate virtual clinical trials for multifo-
cal contact lenses and the evaluation of optical quality in
subjects with different accommodative states using various
multifocal contact lens designs.

Similar to our study, Porter et al.27 applied PCA to analyze
wavefront aberrations. They tried to reduce the dimensions

of 18 Zernike coefficients across 109 subjects and identified
6 eigenvectors. The first of the eigenvectors captured 90%
of the variance, primarily contained defocus information,
which is consistent with our findings. Spherical aberration
information was primarily captured in the sixth eigenvector
in the Porter et al.27 study, as in our study, the more signif-
icant information related to spherical aberration is found in
the sixth and seventh eigenvector.

Although directly using all Zernike coefficients for model-
ing is possible, the high number of parameters involved
can lead to instability. Using PCA instead offers a power-
ful alternative because it has the advantage of parameter
reduction based on desired accuracy.29,36,37 In this study, 49
eigenvectors capture explain 99.97% of the data variability
of the data. This enables constructing a model with varying
complexity and accuracy, ranging from a basic mean-only
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model precisely tailored to the specific application. Addi-
tionally, PCA eliminates existing correlations among Zernike
coefficients, establishing a comprehensive and fully inde-
pendent framework for the multivariate distribution. The
resulting eigenvectors’ coefficients are statistically indepen-
dent, allowing for improved analysis. Finally, eigenvectors
can be physically interpreted as combinations of aberration
terms contributing to the population’s increased variability.
As shown in Supplementary Figure S1, the first eigenvec-
tors closely resemble Zernike polynomials, albeit increas-
ingly distorted as the expansion progresses. It is important
to center the data (subtract the average) before applying PCA
to avoid introducing bias. The average value (bias) is then
added back after generating random data to obtain the final
wavefront values, see Table 2.

However, the model has several inherent limitations to
consider. First, the model derives its features from the orig-
inal data, which means that it cannot improve the infor-
mation content beyond that initial data set. Second, eigen-
vector compression reduces the variability, which affects
the higher-order wavefront aberrations (F-test in Supple-
mentary Table S4). However, reassuringly, Table 3 demon-
strates that the variability of key accommodation-dependent
Zernike coefficients45–53 exhibit variability comparable to
that observed in the original data (see Table 3). This suggests
that the reduced higher-order variability likely has mini-
mal impact on the model’s performance. Third, the model
accounts for the decrease in pupil size with accommoda-
tive demand and calculates wavefront accordingly. However,
it uses a fixed pupil size for each level of accommodative
demand. This means the pupil size at the maximum 5 D
accommodation demand is always set to 3.68 mm, which
may not perfectly reflect reality. Finally, due to the measure-
ment method the study is limited to monochromatic aberra-
tions. Therefore, the results cannot be directly extrapolated
to aberrations at different wavelengths.

The previously used Thibos et al.25 wavefront model
addressed this challenge by using a stochastic algorithm
designed to generate a wide range of synthetic wavefronts
from a database of 200 eyes, although valuable for many
years, the model had notable limitations including that it
did not account for the inherent correlation between wave-
fronts from both eyes, which could introduce bias. These
concerns were addressed in the models proposed by Rozema
et al.28,30,31 which involved including only one of the eyes
per individual, eliminating the bias from the inter-eye corre-
lations. Additionally, they use a Bigaussian model and eyes
with uncorrected ametropia, overcoming further shortcom-
ings identified in previous studies.

The wide variability in wavefront characteristics observed
in the general population, especially when accommodation
is involved, cannot be accurately captured by a fixed set of
parameters, typical of classical eye models. Whereas useful
for first-order approximations for optical calculations in eyes
with average dimensions, these models may yield less real-
istic results for eyes deviating from this average. Introduc-
ing a stochastic model addresses this limitation by consider-
ing the entire population wavefront data rather than solely
relying on the population mean. This approach allows to
generate a vast number of synthetic wavefronts, forming a
diverse cohort that closely mirrors the original dataset. These
synthetic eyes hold the potential to become a valuable alter-
native for researchers lacking access to real wavefront data,
particularly for evaluating optical quality metrics in myopia
control treatments.

CONCLUSIONS

This study introduces a novel statistical wavefront model that
incorporates accommodation, overcoming the limitations of
traditional fixed-parameter models. The model effectively
captures the wavefront variability associated with accom-
modation, enabling the generation of a vast number of
synthetic wavefronts with realistic accommodative states.
These synthetic wavefronts closely resemble the original
data and hold immense value for researchers in several ways
such as: performing optometry calculations with greater
accuracy; testing, and evaluating the impact of various opti-
cal devices on retinal image quality across different accom-
modation stages; and facilitating research for those lacking
access to real wavefront data.
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