000145369 001__ 145369
000145369 005__ 20241024135330.0
000145369 0247_ $$2doi$$a10.1016/j.seppur.2024.130006
000145369 0248_ $$2sideral$$a140252
000145369 037__ $$aART-2024-140252
000145369 041__ $$aeng
000145369 100__ $$aLiu, Zhang
000145369 245__ $$aInsight into the molecular mechanism of organic pollutants’ adsorption on magnetic ZIF-8 synthesized via a transformational route
000145369 260__ $$c2024
000145369 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145369 5203_ $$aThis study presents the synthesis of Fe3O4@Zeolite Imidazolate Framework-8 (Fe3O4@ZIF-8), a novel magnetic core–shell adsorbent engineered for enhance adsorption of organic pollutants. The process begins with the formation of spherical magnetite aggregates (i.e., Fe3O4) via a solvothermal method, using polyacrylic acid for stabilization and capping. A ZIF-8 shell is then grown through a sol gel process followed by reaction with 2-methylimidazole, resulting in a crystalline shell approximately 60 nm thick. Characterization techniques, including energy dispersive X-ray analysis and X-ray diffraction, confirm the successful preparation of Fe3O4@ZIF-8. The adsorption capabilities were evaluated using methylene blue (MB) and diclofenac sodium (DCF) as model pollutants. Fe3O4@ZIF-8 demonstrated rapid removal efficiencies, with 98 % removal of MB (6.01 × 10-4 mg·g−1·min−1) and DCF (4.43 × 10-4 g·mg−1.min−1) within 15 and 30 min, respectively, significantly outperforming conventional activated carbon. Thermodynamic studies indicate that the adsorption processes are spontaneous; enthalpic changes drive MB adsorption, while DCF is influenced by entropic factors. Molecular modeling reveals preferential adsorption behaviors on different ZIF-8 facets, with stronger interactions for MB due to π-π stacking and hydrogen bonding. These findings underscore the potential of Fe3O4@ZIF-8 as an effective adsorbent for water purification, highlighting its substantial adsorption capacity (73.2 mg·g−1 for MB and 53.8 mg·g−1 for DCF), stability, and reusability.
000145369 536__ $$9info:eu-repo/grantAgreement/EC/H2020/760928/EU/BIOmaterial RIsk MAnagement/BIORIMA$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 760928-BIORIMA$$9info:eu-repo/grantAgreement/ES/MCIU/RTC-2017-6620-1$$9info:eu-repo/grantAgreement/ES/MICIU/PID2019-106947RB-C21
000145369 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000145369 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000145369 700__ $$0(orcid)0000-0003-0602-492X$$aMarquina, C.
000145369 700__ $$aHan, Wei
000145369 700__ $$aKwan, Joseph K.C.
000145369 700__ $$0(orcid)0000-0003-0681-8260$$aIbarra, M. Ricardo$$uUniversidad de Zaragoza
000145369 700__ $$aYeung, King Lun
000145369 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000145369 773__ $$g356, Part B (2024), 130006 [10 pp.]$$pSep. Purif. Technol.$$tSeparation and Purification Technology$$x1383-5866
000145369 8564_ $$s4361235$$uhttps://zaguan.unizar.es/record/145369/files/texto_completo.pdf$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-10-06
000145369 8564_ $$s2170211$$uhttps://zaguan.unizar.es/record/145369/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint$$zinfo:eu-repo/date/embargoEnd/2026-10-06
000145369 909CO $$ooai:zaguan.unizar.es:145369$$particulos$$pdriver
000145369 951__ $$a2024-10-24-12:11:26
000145369 980__ $$aARTICLE