000145382 001__ 145382
000145382 005__ 20241024135331.0
000145382 0247_ $$2doi$$a10.1016/j.fuel.2024.133253
000145382 0248_ $$2sideral$$a140264
000145382 037__ $$aART-2024-140264
000145382 041__ $$aeng
000145382 100__ $$aRuiz-Gutiérrez, A.$$uUniversidad de Zaragoza
000145382 245__ $$aCombustion of NH3/DME and NH3/DME/NO mixtures
000145382 260__ $$c2024
000145382 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145382 5203_ $$aThe objective of this work is to study the oxidation of ammonia and dimethyl ether mixtures (NH3/DME) both in the absence and the presence of monoxide of nitrogen (NO). For this purpose, laboratory experiments have been conducted in a quartz flow reactor setup in the 875–1425 K temperature range at atmospheric pressure, modifying the oxygen excess ratio (λ), and the NH3/DME mixture ratio with and without NO. The experimental results have been simulated with a literature-based kinetic mechanism. The results show that the presence of DME and an oxygen excess ratio affect the conversion of NH3, shifting its oxidation to lower temperatures, which decrease as the DME concentration in the mixture and λ increase. Interactions between ammonia and DME seem to be important under the studied conditions, presumably involving the formation and thermal decomposition of methyl nitrite (CH3ONO). These interactions affect the oxidation of ammonia at low temperatures, consume and produce NO, which would determine the final NO emission. When there is NO in the NH3/DME mixtures, NO is reduced up to 60 %, also favouring the oxidation of ammonia, but with an almost imperceptible effect of NO in the case of DME. The addition of different concentrations of DME also affects the oxidation behaviour of ammonia in NH3/DME/NO mixtures. In general, the conversion of both NH3 and DME is highly determined by the concentration of OH radicals, although thermal decomposition is also relevant for DME.
000145382 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T22-23R$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-12432OB-I00$$9info:eu-repo/grantAgreement/ES/MICINN PRE2022-104181$$9info:eu-repo/grantAgreement/EUR/MICINN/TED2021-129557B-I00
000145382 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000145382 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145382 700__ $$aRebollo, P.
000145382 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, M.U.$$uUniversidad de Zaragoza
000145382 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000145382 773__ $$g381, Part A (2024), 133253 [14 pp.]$$pFuel$$tFuel$$x0016-2361
000145382 8564_ $$s1232677$$uhttps://zaguan.unizar.es/record/145382/files/texto_completo.pdf$$yVersión publicada
000145382 8564_ $$s2583608$$uhttps://zaguan.unizar.es/record/145382/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145382 909CO $$ooai:zaguan.unizar.es:145382$$particulos$$pdriver
000145382 951__ $$a2024-10-24-12:11:44
000145382 980__ $$aARTICLE