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Deteccion automatica de objetos extrahos utilizando Rayos X

basados en interferometria por rejillas de difraccion. RESUMEN

Los controles de calidad en la industria alimenticia son esenciales tanto por seguridad
como de cara a la satisfaccion del cliente. Durante el proceso de fabricacién de
comida, objetos no deseados pueden introducirse en los productos, resultando
peligroso o poco apetitoso para el consumidor. Hoy en dia, los sistemas de rayos-X
incorporados a lineas de produccion pueden detectar materia no organica. Sin
embargo, encontrar objetos organicos en comida utilizando rayos-X convencionales

todavia supone un reto.

El objetivo de este proyecto es demostrar la mejora introducida por una nueva técnica
de rayos-X en la deteccion de objetos extrafos, cuando éstos pueden ser de origen
organico. Esta novedosa técnica estd basada en interferometria de rayos, creada a
base de anadir rejillas de difraccion a una fuente de rayos-X convencional. Asi,
obtenemos informacion sobre las propiedades de absorcion, refraccion y dispersion
de una muestra; mientras que los rayos-X convencionales solo proporcionan la

absorcion.

Los datos fueron tomados personalmente en Technische Universitat Mdnchen. Cada
imagen consta de tres modalidades (absorcion, contraste de fase y campo oscuro) y
contiene una muestra de comida contaminada por objetos de distintos tamafos,
organicos y no organicos. Se tomaron imagenes de varios productos que cuentan
con distintas propiedades y son de importancia para los colaboradores del proyecto
NEXIM (New X-ray Imaging Modalities for safe and high quality food) dentro del cual

se encuentra este PFC.

En esta memoria, se compara el rendimiento de dos métodos de clasificacion, uno
supervisado y otro no-supervisado. Se hara hincapié en la técnica no-supervisada,
comparando modelos de comida con distintos atributos y contrastando los resultados
de deteccién con aquellos que se obtendrian usando Unicamente la modalidad de

absorcion.

Palabras clave
Rayos-X, refraccion, dispersion, deteccion, GMM, SVM, estadistica, imagen,

aprendizaje de maquinas, objetos extrafos.
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Este proyecto fin de carrera ha sido desarrollado en el departamento de Matemati-
cas Aplicadas e Informatica de la Universidad Técnica de Dinamarca, Danmarks
Tekniske Universitet (DTU).

El proyecto ha sido supervisado por Line Clemmensen y Hildur Einarsdottir,
ambas del departamento DTU Compute, y desarrollado entre el 20 de Enero de
2014 y el 12 de Junio de 2014 a tiempo completo.

El proyecto trata la detecciéon de objetos extranos en comida, utilizando una
novedosa técnica de rayos-X.
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CAPITULO 1

Introduccién

El primer capitulo explica la necesidad de detectar objetos extranos y, posteri-
ormente, introduce el reto que supone detectar objetos compuestos por materia
orgénica. Después de hablar de los antecedentes de esta nueva técnica de es-
caneado por rayos-X, se tratard el "state of the art" en deteccién de objetos
extranos, es decir, cuéles son las dltimas técnicas que han sido investigadas
para detectar objetos extranos.

1.1 Motivacion

La deteccion de objetos extranos es de gran importancia en los procesos de
control de calidad de comida. Nunca es agradable ni higiénico encontrarse una
arana o una piedra en la comida. Hacerte dano mientras comes podria crear muy
mala propaganda para el productor de ese alimento en cuestién, lo cual incluso
podria acarrear serios problemas judiciales. Por ello, el control de calidad es
una tarea de alta prioridad en la industria alimenticia.



2 Introduccién

Este proyecto proporcionara respuesta a dos preguntas principales:

1. ;Cémo podemos inspeccionar los productos alimenticios de una manera
automatica y eficiente?

2. ;Podemos encontrar materiales organicos - como insectos, plastico o madera
- utilizando rayos-X?

1.2 Problematica

En numerosos campos existe la necesidad de obtener informacién sobre la es-
tructura interna de objetos complejos sin haber sido diseccionados. Gracias a
los rayos-X, podemos obtener esta informaciéon de forma no invasiva. Esta in-
formacioén estructural es util en una amplia gama de industrias para inspeccién,
ya sea para control de calidad de productos, para diagnéstico médico o para
controles de seguridad, entre otras aplicaciones.

Los sistemas de rayos-X convencionales han sido usados durante anos para la
deteccion en linea de objetos extranos en comida. El problema es que los rayos-
X por si solos no sirven para detectar diferencias entre materiales blandos. Por
tanto, la deteccién de objetos organicos en comida supone un reto.

Gracias a nuevos métodos de escaneo con rayos-X, podemos medir, no sélo la ab-
sorcion de una muestra, sino también sus propiedades de refraccion y dispersion.
Asi, aumentamos el contraste entre objetos blandos, pudiendo diferenciar co-
mida de objetos extranos por el mero hecho de contar con distintas propiedades
de refraccion y/o dispersion. Como consecuencia, aumenta enormemente el
numero de escenarios en los que la informacién estructural de los objetos puede
ser obtenida, incrementando el niimero de aplicaciones posibles.

El objetivo de este estudio es detectar objetos extranos - objetos que no deberian
estar en un lugar especifico (concretamente en comida) - utilizando una nueva
técnica de rayos-X conocida como interferometria basada en rejillas de difrac-
cion (GBI). Usando esta nueva técnica, se obtienen imégenes multi-modales de
comida contaminada con objetos extranos. Las tres modalidades de imagen
son transmision, contraste de fase y campo oscuro, que se corresponden con las
propiedades de absorcion, refraccion y dispersion, respectivamente.

Para investigar la aplicabilidad de esta técnica en la deteccién de objetos ex-
tranos en comida, varios productos alimenticios son elegidos junto con una se-
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leccion de objetos extranos que son encontrados tipicamente en la industria
alimentaria.

La Figura[I.I]es un resumen de las sugerencias proporcionadas por colaboradores
daneses sobre qué objetos contaminantes suelen encontrar y de qué dimensiones
en cada tipo de industria alimenticia.

Food Product Industrial Partner Contaminant Size distribution

Minced meat Danish Crown Bone 0.5 mm, 1 mm, 5 mm, 10
Plastic mm, 50 mm, 100 mm, 1
Cartilage cm, 5 cm, 10 cm

Bread Lantmannen Schulstad Stones ?

Kohberg

Milk products Arla ? ?

Chicken products Lantmannen Danpo Bone 0.5 mm, 1 mm, 5 mm, 10
Cartilage mm, 50 mm, 100 mm, 1
Plastic cm,5cm, 10 cm

Pet Food Arovit Petfood ? ?

Spring rolls Daloon String ?
Stones

Figura 1.1: Sugerencias sobre productos alimenticios, objetos extranos y su
tamano, proporcionadas por colaboradores industriales.

En la Figure podemos observar, dentro del pan de centeno, los distintos
materiales seleccionados como objetos extranos.

Figura 1.2: Verde: Madera, Azul: Vidrio, Rosa: Pléastico duro, Morado: Plas-
tico blando, Amarillo: Goma, Turquesa: Piedra, Naranja: Metal
y Rojo: Insecto.
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Esta novedosa técnica podria permitir que los objetos organicos destaquen frente
a la comida, también organica, gracias a la diferencia entre las propiedades de
refracciéon y/o dispersion de comida y objetos. Esto no era posible solo con
la absorcién, ya que los objetos organicos, al igual que la comida, tienen agua
como componente principal. Por ello, presentan una atenuacién muy similar
y, consiguientemente, no existe diferencia de contraste entre comida y objetos
extrafos en la modalidad tipica de los rayos-X (absorcion).

En la Figura podemos ver que distintos materiales destacan mejor en dis-
tintas modalidades. El vidrio, el metal y las piedras, pueden ser detectadas
facilmente por la diferencia en intensidad de absorcién con respecto a la co-
mida. Por el contrario, el plastico (duro y blando), la goma, los insectos y la
madera, destacan mas en las otras dos modalidades.

(a) Absorcién (b) Contraste de fase (¢) Campo oscuro

Figura 1.3: Filete de ternera con objetos extranos para las tres modalidades.
Los objetos extranos se ven con distinto contraste dependiendo de
la modalidad.

. . ctraii . .
Resumiendo, para detectar objetos extranos en comida, se montara un caso de
prueba. Para la realizacién de este caso de prueba, son necesarios los siguientes
pasos.

1. Los datos tienen que ser recogidos, por lo que los productos alimenticios y
los objetos a investigar deben ser definidos, ademéas de limitados para que
la toma de datos sea razonable.

2. Para analizar los datos adquiridos, dos algoritmos distintos seran investi-
gados y sus pardmetros seran optimizados.

3. Se comparara la valia de estos algoritmos a través de los resultados obtenidos.
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4. Se mostrarad la mejora en eficiencia introducida por esta nueva técnica de
rayos-X en la detecciéon de objetos extranos en comida.

Antes de entrar en detalles del caso de prueba especifico, se trataran los an-
tecedentes y las técnicas méas recientes en cuanto a la detecciéon de objetos.

1.3 Estudio de la bibliografia

Las técnicas de escaneo han sido esenciales en numerosos campos. De hecho,
cada vez que se inventaba una nueva técnica, solia ir seguida de un desarrollo
cientifico. Después del descubrimiento de los rayos-X por Wilhelm Réntgen en
1895 [Rontgen, 1895], los rayos-X se utilizaron para medicina [Spiegel, 1995].
Similarmente, tras la invencién del primer microscopio 6ptico en el siglo XVII,
se investigaron muestras biologicas [Hooke, 1665].

Durante el siglo XX, aparecieron nuevas formas de escaneo, como el contraste de
fase y el campo oscuro |[Rost and Oldfield, 2000|, [Zernike, 1942|. Estas nuevas
modalidades miden la dispersion y la refraccion, respectivamente, en lugar de
basarse en la absorcion.

En la dltima década, ha habido una evolucién enorme en toma de imégenes
con rayos-X, apareciendo estas dos nuevas modalidades de imagen, que son més
sensibles que la absorcién a materiales de baja impedancia, como la materia
organica. La interferometria por rejillas de difraccién permite obtener estas tres
modalidades (absorcion, contraste de fase y campo oscuro) a la vez y con cor-
respondencia entre pixeles. De momento, puede ser implementada en laborato-
rios [Pfeiffer et al., 2006], pero parece prometedora de cara a ser implementada
industrialmente [Kottler et al., 2010].

Varios estudios han sido llevados a cabo sobre esta reciente técnica de imagen,
sus parametros y aplicaciones [Nielsen, 2012 [Bech, 2009]. Ademas de esta nueva
técnica, se han considerado otras estrategias para aumentar el contraste en
absorcién entre objetos blandos, como la utilizacién de energias en el rango de
10 a 25 keV para aprovechar la mayor atenuacién que presentan los elementos
ligeros en este espectro [Nielsen et al., 2012]. Finalmente, se decidié que merecia
la pena investigar la técnica basada en interferometria por rejillas de difraccién,
por no implicar una velocidad lenta de escaneo ni potencias tan altas de rayos-X.
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1.3.1 ;Coébmo encuentran los rayos-X objetos extranos?
1.3.1.1 ;Qué son los rayos-X?

Los rayos-X son una forma de radiacion electromagnética invisible, de la misma
naturaleza que las ondas de radio, las microondas, la luz infrarroja y visible,
y los rayos Gamma y ultravioleta. La diferencia principal entre los rayos-X y
los rayos Gamma reside en su origen: los primeros son producidos por eventos
extra-nucleares, mientras que los segundos provienen del ntcleo. La energia de
los rayos-X esté entre la de los rayos ultravioleta y los rayos Gamma, tal y como
podemos ver en la Figura

Wavelength . Ulfra . GClm ma
o [

a® 5,10°

oot sz of. /\/\//\/\/\/\/WWWUM
i For s e

Buildings Humans Hone\; Pinpoint Prorozoons Molecules Atoms  Afomic

Nuclei
Frequency
(Hz)
10 I 107 10° 108 10° 167

Figura 1.4: Espectro electromagnético |Toledo, 2014].

El hecho de que los rayos-X no pasen con la misma facilidad por todos los mate-
riales, es lo que produce la diferencia en intensidad observada en la modalidad
de transmisién. Esta habilidad para penetrar los materiales, también depende
de la densidad y el grosor del material en cuestién. Tal y como se puede ver
en la Figurdl.5 cuanto més espeso es el queso, es decir, cuantas mas lonchas
hay apiladas, més dificil es traspasarlo. Como consecuencia, se atentian mas los
rayos y menor cantidad de senal llega al detector, resultando en una intensidad
més oscura que la del queso. Por consiguiente, los objetos extranos que son mas
densos que el queso destacan en la modalidad de absorcién.
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Figura 1.5: Absorcién de lonchas de queso apiladas, conteniendo varios objetos
extranos.

1.3.1.2 Distintas estrategias para encontrar objetos extranos

La visiéon por computador y la vision humana son muy distintas, a pesar de
que ambas se basan en imégenes. Por ello es dificil, pero necesario, evitar que
nuestras ideas preconcebidas influencien el tipo de procesado de imagen que
debe ser aplicado cuando buscamos objetos extranos.

Algunos estudios han intentado encontrar cuerpos extranos en imagenes de ab-
sorcion [Batchelor et al., 2004]. Estas técnicas se apoyan en las diferencias de
intensidad en la imagen, creadas por la diferencia de densidad entre los objetos
extranos y el producto alimenticio. Estas intensidades pueden ser homogéneas
para todo el producto u objeto en cuestién, o pueden seguir un cierto patrén,
como la carne picada de la Figura[I.6] Por esta razon, también son importantes
los estudios que abarcan el anélisis de texturas. Mas atn, también se podrian
analizar las formas de los objetos, pero en este caso de prueba concreto no
es de utilidad, ya que los objetos fragmentados podrian tener infinitas formas
distintas.
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Figura 1.6: Absorcién de carne picada sin objetos extranos.

Este proyecto se centra en combinar la nueva técnica de interferometria de rayos-
X (GBI) con anélisis de datos basado en técnicas estadisticas, de analisis de
imagen y de aprendizaje de méaquinas; incluyendo informacién tanto espectral
(intensidad) como espacial (textura).

1.4 Organizacién de la memoria
En lineas generales, el resto de la memoria trata los siguientes aspectos:

1. El capitulo 2 se centra en el aspecto de diseno. Primero, se describe
rapidamente el montaje experimental de rayos-X utilizado para la toma
de datos. Segundo, se argumenta la eleccion de los materiales (comida
y objetos extranos). Y, tercero, se explican los métodos aplicados y se
analizan las razones que han llevado a su seleccion.

2. En el tercer capitulo, se presentan los resultados obtenidos. En primer
lugar, se comparan distintos modelos Gaussianos para un producto con-
creto. En segundo lugar, se evalia el rendimiento del modelo Gaussiano
frente al de las maquinas de vectores de soporte (SVM) para un conjunto
de atributos concreto. Por ultimo, se investigan varios productos alimen-
ticios.

3. En el ultimo capitulo, se extraen conclusiones relativas a los resultados y
se trata el trabajo futuro.



CAPITULO 2

Diseno

El siguiente capitulo examina la faceta de disenio de la tarea de deteccidén,
tratando la técnica de escaneado basada en rejillas de difraccién y los méto-
dos de deteccion.

2.1 Montaje experimental

En los rayos-X convencionales, para calcular las propiedades de absorcién de
una muestra se mide el cambio de amplitud en el haz de rayos, lo cual esta
representado en la Figura donde el perfil del haz verde muestra una dismi-
nucién en amplitud tras atravesar un material absorbente. Cuando se amplia el
montaje, anadiendo las rejillas de difraccién, se crea un patrén de interferencias.
Analizando este patron de interferencias, se obtiene la refraccion y dispersion
de la muestra, ademas de la absorcion. Estas propiedades de refraccion y dis-
persion se corresponden en el detector con un desplazamiento o ensanchamiento
del haz, respectivamente. Esto es ilustrado en la Figura por los perfiles de
haz azul y rojo.
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X-rays l X-rays l X-rays

Figura 2.1: Interacciones: Cambio que sufre un haz incidente, tras insertar
un material en color Verde: absorbente Azul: refractivo Rojo:

posee una microestructura ordenada |[Nielsen, 2012].

En la Figura se muestra el montaje experimental del GBI. La rejilla G1
produce un patrén de interferencias periédico y transversal a la direccion de
los rayos. El cambio en amplitud o posicién de este patrén es investigado con
una segunda rejilla G2 parte por parte (moviendo una de las rejillas, G1 en
este montaje especifico), obteniendo medidas simulténeas de las propiedades de
absorcion, refraccion y dispersion de la muestra a estudiar. La tercera rejilla GO

anade coherencia espacial al haz de rayos-X [Nielsen, 2012, [Bech, 2009].

G2 detector

X-ray
source

e

Figura 2.2: Esquema de un interferémetro Talbot-Lau [Bech, 2009]
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El sistema de rayos-X basado en rejillas de difraccion (GBI) que ha sido uti-
lizado para adquirir las imagenes de las muestras de comida, esta situado en el
departamento de Fisica Biomédica de Technische Universitat Minchen (TUM).
Es un interferémetro Talbot-Lau, el cual combina un tubo de rayos-X conven-
cional y tres rejillas de difraccion (fuente, de fase y analizadora), fabricadas por
Microworks (Karlsruhe, Germany) con periodos entre rendijas de 10 um, 3.24
pm y 4.8 pm respectivamente. La distancia entre la rejilla fuente y de fase es
106 cm, mientras que la distancia entre la rejilla de fase y la analizadora es de
51 cm. Para maés informaciéin ver |Scherer et al., 2014]. En la Figura se

puede ver la foto del montaje experimental utilizado.

Figura 2.3: Foto del montaje experimental de Technische Universitit
Miinchen (TUM). Rojo: Fuente de rayos-X, Azul: Rejilla GO,
Verde: Recipiente para la muestra, Morado: Rejilla G1, Rosa:
Rejilla G2 y Amarillo: Sensor/detector.

El montaje habia sido optimizado para tejidos mamarios, los cuales son simi-
lares en atenuacién a los productos alimenticios, por su contenido en agua. La
configuracion del montaje no fue cambiada para evitar un extenso estudio de
optimizacion. Idealmente, deberia haber sido optimizado para cada uno de los
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siete productos de los que se tomaron imagenes. La energia efectiva fue fijada a
25 keV y cada imagen fue tomada desde un s6lo angulo (una tunica proyeccion)
y la rejilla movible fue desplazada 9 veces.

El tiempo de integracion, ¢;,, fue el inico parametro que se cambid mientras se
tomaban las imdgenes. La mayor parte del tiempo estaba fijado a dos segundos,
pero para dos de los productos (pavo y bistec con objetos de 4x4x4 mm) fue
cambiado a un segundo. En la Figura podemos observar que cuando el
tiempo de exposicién o integracién es demasiado pequeno, 0.2 segundos, hay
mucho ruido presente en la imagen. En contraposicién, cuanto mayor es t;n¢,
més artefactos aparecen en la imagen como, por ejemplo, fase envuelta, la cual
se aprecia cuando t;,; es dos segundos. Por tanto, es necesario encontrar un
compromiso entre ruido y artefactos, por ello se elige el tiempo de exposicién
igual a un segundo para estos dos productos. No obstante, en general, dos
segundos parecia ser un valor adecuado para el tiempo de exposiciéon, es decir,
un buen compromiso de cara a que las imégenes no incluyesen demasiado ruido
o artefactos.

(a) tint = 0.2 (b) tint = 1 (C) tint = 2

Figura 2.4: Imagenes de absorciéon de pavo para distintos tiempos de inte-
gracion.

2.2 Materiales

Los datos constan de tres modalidades de imagen de comida con objetos extranos
presentes en ella. Estos datos fueron adquiridos personalmente en Technische
Universitdt Minchen.

La adquisicion de datos es un proceso lento, debido tanto al hecho de que las
muestras tienen que ser preparadas manualmente en el recipiente como a que,
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durante la toma de la imagen, el movimiento fisico de la rejilla que analiza el
patron de interferencia es lento. Por esta razon, la opciéon de sintetizar datos
fue considerada, pero desgraciadamente no es posible debido a que no se puede
predecir la dispersion de los distintos materiales. Es decir, el tamano de los
objetos extranos en la modalidad de campo oscuro no puede ser pronosticado,
ya que depende de como esté posicionado el objeto o incluso del tipo de madera,
por ejemplo.

2.2.1 Comida

Para reproducir la variaciéon de productos dentro de la industria alimenticia,
ha sido elegida una gama de productos de homogeneidad variada para la toma
de imégenes. El queso en lonchas representa un producto completamente ho-
mogéneo, mientras que el pan de centeno con semillas simboliza un producto
no homogéneo. Se espera que los modelos para los productos homogéneos sean
mas sencillos.

Ademaés, hay que elegir productos con distintas propiedades de dispersion, para
cubrir diversas diferencias de contraste entre comida y objetos. El pan de trigo
contiene harina, la cual es altamente dispersiva debido a su micro estructura
refinada. Consecuentemente, se espera que los objetos extranos no resalten
muy bien en la modalidad de campo oscuro para el pan de trigo, mientras que
seran apreciados con mayor claridad en el pan de centeno, tal y como se puede
ver en la Figura2.5] Dicho de otra manera, cuanto mas difieran las propiedades
de dispersiéon de comida y objetos extranos, mas ficil de identificar seran los
objetos.

(a) Pan de centeno. (b) Pan de trigo.

Figura 2.5: Diferentes contrastes de intensidad en campo oscuro.
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Asimismo, como este proyecto forma parte de un proyecto més amplio, el
proyecto NEXIM E algunos de los productos alimenticios escogidos son aquellos
producidos por las empresas colaboradoras en este estudio. La carne picada, el
pan, el pollo y los productos lacteos son de interés para nuestros colaboradores
industriales.

Finalmente, los productos seleccionados para escanear fueron carne picada, pan
de trigo y de centeno, pavo (similar al pollo), queso, filete de ternera y salami.
Todos los productos han sido modelados, pero sélo algunos van a ser tratados en
esta memoria. El pavo y el filete son similares, por lo que solamente se tratara
en profundidad el pavo. Salami y carne picada también son parecidos, ambos
contienen tanto carne como grasa, entonces el producto que seré tratado sera el
salami. El pan de centeno es elegido en lugar del pan de trigo, por ser mucho
més importante para la industria danesa. De hecho, no merece la pena utilizar
esta nueva técnica de escaneado para el pan de trigo, debido a la alta dispersién
que éste presenta. También es méas interesante el pan de centeno por ser el
producto menos homogéneo en textura.

2.2.2 Objetos extranos

Los objetos ajenos son seleccionados para cubrir distintas propiedades de ab-
sorcion, refraccion y dispersion. Ademads, se tienen en cuenta tanto los objetos
sugeridos por los colaboradores industriales de NEXIM (véase la seccion
como los resultados de un estudio japonés [Takashi, 2009].

La Figura muestra los resultados del estudio japonés, donde se presenta la
frecuencia con la que los consumidores encontraban un contaminante concreto
en comida contaminada, y la dificultad de deteccién de cada contaminante con
rayos-X convencionales. Tal y como se ha dicho anteriormente, las técnicas de
rayos-X convencionales miden las propiedades de absorcion de los materiales, en
otras palabras, los objetos seran mas dificil de encontrar cuanto mas parecida
sea su densidad a la de la comida, la cual es cercana a la del agua (1,000.00
kg/m3). Por ello, el papel y otros materiales organicos son particularmente
dificiles de encontrar.

Thttp://nexim.nbi.ku.dk/
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Contaminant

Percentage Difficulty

[%]

detecting by
X-ray

Contaminant

Percentage Difficulty

[%]

detecting by
X-ray

Insects 245
Bone (calcified 15.2
only)

Unclear 14.1
Metal piece 7.3
Hairs 6.6
Needles, wires 6.5
etc.

Plastic and rubber 5.3
Glass fragments 3.9
Cockroach 3.1

Difficult

Medium

N/A
Easy
Difficult
Easy

Medium
Medium
Difficult

Stone and sand

Paper, threads
etc.

Vinyl

Fly

Wood chips
Blade chips

Staples
Rat excrement

3.0
2.1

2.0
1.8
1.5
1.2

1.0
0.9

Easy
Difficult

Difficult
Difficult
Difficult
Medium

Easy
Difficult

Figura 2.6: Resultados de un estudio japonés sobre quejas de clientes rela-

cionadas con contaminantes [Takashi, 2009).

Finalmente, se eligen dos tipos principales de objetos:

1. Aquellos que son féciles de encontrar en la modalidad de absorcion, como
metal, piedra o cristal.

2. Aquellos que no son visibles en la modalida de absorcién, como los que
estan compuestos por materia organica. En concreto, insectos, madera,

goma y dos tipos de pléastico (blando y duro).

En la Figura [2.7) se muestran los objetos extrafios seleccionados. Los tamafios

elegidos varian entre 2x2x2 y 4x4x4 mm aproximadamente, ya que se considera

que objetos mas pequefios no son peligrosos. En la Tabla[2.1]se muestra el espe-

sor aproximado de los objetos, medido en la direccién en la cual son atravesados
por los rayos-X.
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Espesor (mm)

Tipo 2 3 1
1.Vidrio 2 |3 5
2.Metal 05 |1 2

3.Madera 2 4 6
4.Insectos 2 3 5
5.Plastico duro 2 3 6
6.Plastico blando | 2 | 3 5
7.Goma 2 |3 4
8.Piedras 3 |4 6

Tabla 2.1: Espesor de los objetos en la direccién en que son atravesados por
los rayos-X.

Size Group
1 2 3
Wood 3 @ ‘

Glass -
Hard plastic “‘ ‘

Soft plastic W, ‘ ‘

Stones (@ ‘
Metal W (%
Insects &y . 2

Figura 2.7: Objetos extranos seleccionados, con tamafios aproximados de
2x2x2, 3x3x3 y 4x4x4 mm, de izquierda a derecha.
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Resumiendo, contamos con tres imagenes para cada uno de los siete productos
alimenticios, cada imagen contiene ocho objetos extranos del mismo tamano
aproximado, ver Figura |2.8] como ejemplo.

(a) Tamafo 4x4x4 mm (b) Tamanio 3x3x3 mm (¢) Tamafio 2x2x2 mm

Figura 2.8: Pavo con objetos extranos de distintos tamanos.

2.3 Meétodos

En esta seccion, se tratardn los métodos usados para el preprocesamiento y la
adquisicion de atributos a partir de las imagenes. Ademés, se hablara de las
técnicas utilizadas para el entrenamiento de los clasificadores.

2.3.1 Preprocesado

En montajes reales en la industria, el fondo de la imagen debe ser eliminado
previamente. Adicionalmente, las caracteristicas del envase y el tamafio y forma
de los productos cortados deberé ser modelado para cada industria y producto
especifico.

Este proyecto no se centra inicamente en un producto concreto, por lo que los
productos seleccionados son escaneados sin incluir fondo y, en el caso del queso
en lonchas, éstas son apiladas una encima de otra. Asi, no es necesario este tipo
de preprocesado.

De todas formas, si que se necesita algo de preprocesado, pero el preprocesado
realizado en las imagenes de este proyecto no seria necesario en una imple-
mentaciéon en una cinta transportadora. Algunos pixeles necesitan ser elimi-
nados, como aquellos pertenecientes a la cinta usada para fijar las muestras al
recipiente y que no se escurrieran. Esto es resuelto con simple enmascaramiento.

Debido a las restricciones temporales de escaneo, no se pudieron obtener datos
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de comida sin objetos extranos. Por tanto, es necesario etiquetar cada imagen en
regiones pertenecientes a comida o a objetos extranos. Esto es usado tanto para
el entrenamiento como para los resultados de detecciéon para ambos conjuntos,
validacion y test.

2.3.2 Atributos

Para cada observacion/pixel de la imagen, existen tres atributos espectrales
directamente disponibles, correspondientes a las intensidades de cada pixel en
cada una de las tres modalidades. No obstante, puede que sea mas facil discernir
comida de objetos extranos si anadimos més atributos. Por ello, también se toma
en consideracion informacién espacial, en concreto, atributos de textura.

2.3.2.1 Atributos de textura

Existen diversas maneras de analizar la textura de una imagen. Algunas téc-
nicas se centran en estadisticas de primer, segundo o incluso mayor grado
[Cartensen, 1992|, mientras que también se pueden utilizar otras técnicas més
complejas, como los atributos wavelet [Arivazhagan and Ganesan, 2003, los tex-
tons [Leung and Malik, 1999] o los atributos basicos de imagen (BIF)

[Crosier and Griffin, 2008].

Una de las razones que hace que los atributos béasicos de imagen, Basic Image
Features, sea un método popular, es el hecho de que permite la clasificacion por
texturas sin necesidad de optimizar parametros para cada conjunto especifico de
datos [Crosier and Griffin, 2010]. Por esta razon, BIF es la técnica usada para
realizar anélisis de texturas durante este proyecto.

Basic Image Features (BIF) proporcionan un vector de respuesta a siete
tipos de estructura local cualitativamente distintos. Esto se consigue aplicando
a la imagen un conjunto de seis filtros derivativos Gaussianos, para un valor
de escala de imagen concreto o. Ademés, se tiene que fijar el parametro de
alisado ¢, el cual determina el punto a partir del cual una superficie puede ser
considerada uniforme (primer tipo de estructura local, a la izquierda de la Figura
. En la Figura se observan las distintas estructuras de imagen que son
capturadas por esta técnica [Crosier and Griffin, 2010].
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O =M

Figura 2.9: Estereotipos de area capturados por Basic Image Features (BIF)
(Adaptada de [Crosier and Griffin, 2010]).

2.3.2.2 Regresion/Seleccion de atributos (FS)

En este caso de prueba concreto, los atributos bésicos de imagen son calculados
para tres escalas distintas (o = 1,5, 10), por lo que el namero total de atributos
disponibles sera

1. Tres atributos de intensidad, correspondientes a cada una de las tres
modalidades (absorciéon, campo oscuro y contraste de fase).

2. Siete atributos de textura por modalidad y escala, es decir, un total de 63
atributos de textura (7 estructuras x 3 escalas x 3 modalidades).

Existen numerosos métodos para realizar regresion o seleccién de atributos

1. Lasso selecciona los atributos mas relevantes imponiendo restricciones a
la norma |L|; de los parametros.

2. Ridge o regularizacion de Tijonov regulariza los atributos imponiendo
restricciones a la norma |L|y de los pardmetros.

3. Elastic net combina regularizacién con seleccién de atributos, permi-
tiendo estimaciones robustas cuando el ntmero de observaciones en el
conjunto de datos es escaso.

El nimero de observaciones (pixeles) es muy alto comparado con el nimero de
atributos, por lo que no se necesita realizar una selecciéon de atributos. Para
Lasso y Ridge sélo hay que optimizar un parametro, mientras que para Elastic
net hay que optimizar dos. Por simplicidad y adecuacién al conjunto de datos,
se elige la regresion Ridge.

Ridge minimiza la norma euclidea entre los datos y la linea de regresién ajustada
a éstos, |L|q; simultdneamente disminuye el impacto negativo de la colinealidad
entre atributos. Por tanto, evita la cancelacién entre atributos correlados que
son importantes a la hora de predecir el valor de salida, mientras realiza la
estimacién de minimos cuadrados en el contexto de regresiéon [McDonald, 2009].
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2.3.3 Meétodos de entrenamiento y clasificaciéon

La tarea de clasificar cada pixel como comida u objeto requiere haber entrenado
con anterioridad un modelo. Un gran nimero de métodos pueden ser utiliza-
dos para entrenamiento y clasificacion, en esta seccion se describen dos de los
métodos mas simples, pero més adecuados para este caso de prueba.

2.3.3.1 GMM

Un modelo de mezcla es un modelo probabilistico que representa la presencia de
una o mas poblaciones dentro de una poblacién total. En particular, un modelo
mezcla de Gaussianas (GMM) ajusta un namero de Gaussianas preespecificado
al conjunto de datos. A pesar de que el numero de poblaciones si que tiene
que ser especificado, no hay necesidad de aportar méas informaciéon sobre estas
poblaciones, s6lo las observaciones con sus atributos. En otras palabras, el mo-
delo de aprendizaje es no supervisado. Ademas, puede haber cualquier nimero
de atributos/dimensiones.

La distribucion Gaussiana multidimensional (k = n dimensiones/atributos) puede
ser formulada de la siguiente manera

1 _ )T (o
o(x|p, E):WGXP VR ) (2.1)

donde p es el vector media y ¥ es la matriz de covarianzas de la distribucién
Gaussiana. Con una probabilidad ¢, la distribucién tomara como valor el vector
n-dimensional x.

La distribucién mezcla de L Gaussianas es

L
p(x) = pid(a|m, i) (2.2)

=1

donde p; es la probabilidad a priori de cada Gaussiana perteneciente a la mezcla.

Para ajustar estas Gaussianas a los datos multidimensionales, se utiliza el al-
goritmo esperanza-maximizacion (EM) [Dempster et al., 1977]. Las Gaussianas
son inicializadas con media aleatoria y con la matriz identidad como matriz
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de covarianzas. Los pasos esperanza (E), que asigna un peso a cada grupo,
y maximizacién (M), que calcula la nueva media y matriz de covarianzas de
cada grupo, son alternados hasta que se encuentran los paradmetros de maxima
verosimilitud, el mejor ajuste posible.

Ventajas de GMM

1. El ruido presente en imagenes es tipicamente Gaussiano en intensidad, es
decir, es ruido blanco.

2. La intensidad de la comida puede ser considerada Gaussiana con la media
fijada por el agua, el componente principal de la comida.

3. Soélo la comida tiene que ser representada en el conjunto de entrenamiento,
por lo que cualquier tipo de objeto extrano podria ser encontrado, incluso
objetos desconocidos.

Desventajas de GMM

1. El nimero de grupos o subpoblaciones tiene que ser supuesto, preespeci-
ficado. Esta tarea no es nada facil, ya que los datos no pueden ser visua-
lizados cuando hay mas de tres atributos. Ademas, si este niimero no es
correcto, el modelo serd altamente inadecuado.

2. Es asumido que la distribucién de probabilidad es normal. Probablemente
la distribucién de la comida sea parecida a, pero no exactamente, una
Gaussiana, por lo que los resultados no seran perfectos.

La distancia de Mahalanobis, D/(z) eslamedida que ha sido seleccionada
en este proyecto para calcular el parecido entre los pixeles a clasificar y el modelo
Gaussiano ajustado a los pixeles de comida.

Dus(a) = /(@ = Sz — p) (23)

donde = = (21,29, 3,...2,)7 es el vector de atributos para cada una de las N

observaciones/pixeles y 1 y ¥ son, respectivamente, el vector media y la matriz
de covarianzas del modelo de comida.
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Las ventajas de la distancia de Mahalanobis sobre la distancia Euclidea son la
invarianza de escala y el hecho de que la distancia de Mahalanobis considera las
correlaciones entre el conjunto de datos [Bose, 1993].

Tras calcular la distancia de Mahalanobis, se aplicara un valor umbral fijo (pre-
viamente optimizado) para segmentar la imagen, es decir, clasificar cada pixel
como perteneciente a una categoria, comida u objeto extrano.

2.3.3.2 SVM

La méquina de vectores de soporte (SVM) es un modelo de aprendizaje super-
visado. Un conjunto de entrenamiento, previamente etiquetado, es introducido
al algoritmo de entrenamiento de SVM, el cual encuentra una separaciéon entre
las clases etiquetadas. En algunos casos, no es posible encontrar una solucién
perfecta o, si ésta existe, puede que no interese porque el modelo se haya sobrea-
justado a los datos de entrenamiento y, por tanto, no sea capaz de generalizar.
Por consiguiente, SVM permite que algunas observaciones sean clasificadas erro-
neamente, a cambio de obtener un modelo més simple. Esto es ilustrado en la
Figura donde se encuentra una separacién entre clases, aunque algunas
observaciones no han sido clasificadas correctamente en la Figura, La
frontera que divide las clases (comida y objetos extranos) puede ser elegida
para que sea tan simple como una funcién lineal o tan compleja como decida el
usuario, ya que existe la posibilidad de introducir manualmente una funcién no
preespecificada [Hastie et al., 2008].
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(a) Caso separable. (b) No separable con una frontera lineal.

Figura 2.10: Clasificadores de vectores de soporte.

El problema es cuadratico con restricciones de desigualdad lineales. En otras
palabras, es un problema de optimizacién convexo, esto es, de minimizacion.

1 n
argming||B* +C ) &
8o 2 ;

subject to & > 0,y;(z] B+ Bo) > 1 —&Vi

donde el parametro de penalizaciéon C' es anadido para el caso no separable; el
caso separable se corresponde C' = oo [Hastie et al., 2008|. Cuanto mayor es C,
mayor es la penalizacion para los errores y puede que exista sobreajuste hacia
los datos de entrenamiento. Mientras que si es demasiado pequeno, tendremos

subajuste [Khan, 2008].

Para este caso de prueba concreto, se utilizara una frontera lineal por simplici-
dad, y se permitira el solapamiento entre clases hasta cierto punto.

Al igual que en GMM, SVM también puede manejar cualquier nimero de atri-
butos/dimensiones. De hecho, conforme crece el namero de atributos, aumenta
la probabilidad de una correcta separacién entre clases.



24 Disefio

Ventajas de SVM

1. No se hace ninguna suposicién sobre el tipo de distribucién de probabi-
lidad. Aunque la comida puede ser aproximada por una mezcla de Gau-
ssianas, la clasificacién podria ser méas precisa sin una suposiciéon previa
sobre el tipo exacto de distribucion.

Desventajas de SVM

1. Para este caso concreto, el tiempo de calculo es extremadamente alto, de-
bido a que el nimero de observaciones es elevado. En otros casos, SVM
presenta la ventaja, frente a otros métodos, de poder manejar muchos atri-
butos, atin cuando el niimero de observaciones disponibles no es demasiado
grande.

2. Es necesario que el conjunto de datos de entrenamiento contenga pixeles
de todas las clases posibles. Como consecuencia, los objetos extrafios
que estén compuestos de materiales con propiedades diferentes a aquellos
representados en el conjunto de entrenamiento, probablemente no sean
encontrados. En contraposicion, GMM podia encontrar cualquier tipo de
objeto extrano.



CAPITULO 3

Resultados

Esta seccién se centra en crear y comparar distintos modelos. Para ello, se uti-
lizara un solo producto, pavo. Varios modelos Gaussianos, con diferente niimero
de atributos, seran ajustados a los pixeles de comida. Luego, estos modelos seran
optimizados, y se compararén los resultados de la clasificacién basada en pixeles
para determinar el conjunto 6ptimo de modalidades de imagen para este caso
de prueba, ademaés se examinara si merece la pena utilizar atributos de textura.
Mas tarde, el modelo que mejores resultados proporcione se comparara con el
mejor modelo de los dos que han sido creados tnicamente con la modalidad de
absorcién, uno de estos dos modelos contendra analisis de textura y el otro no.
Por ultimo, se compararé el funcionamiento de SVM y GMM para un modelo
concreto.

Para determinar la robustez del modelo 6ptimo, se analizaran tres productos
més. ¢ Variara el conjunto 6ptimo de atributos de un producto a otro, depen-
diendo de las propiedades de absorcién, refraccién y dispersién del producto
alimenticio en cuestiéon? ;Cuénto mejor es el modelo 6ptimo, creado con es-
tas nuevas modalidades de imagen, en comparaciéon con el modelo éptimo que
obtendriamos utilizando so6lo la absorcion?
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3.1 Conjunto de datos principal: Pavo

Para detectar objetos extranos, es necesario entrenar un modelo. A continua-
cion, los parametros del modelo necesitan ser optimizados y, finalmente, se
necesita evaluar la efectividad del modelo. Por tanto, el nimero total de ob-
servaciones/pixeles contenido en las tres imagenes, correspondientes a los tres
tamanos de objetos, es dividido en tres conjuntos: entrenamiento, validacion
y test. Los pixeles de comida pertenecientes al conjunto de entrenamiento son
utilizados para el ajuste de los modelos de comida, mientras que los pixeles
que forman parte del conjunto de validaciéon son utilizados para optimizar los
parametros de los modelos. Para comparar el rendimiento de los distintos mo-
delos se utiliza el conjunto de test.

3.1.1 Modelos Gaussianos

Los siguientes modelos Gaussianos, de distintas dimensiones, son ajustados al
producto alimenticio.

Modelo | N° Atrib. | Absorcion | Cont. de fase | Campo oscuro | BIF
1 1 Si No No No
2 1 No Si No No
3 1 No No Si No
4 2 Si Si No No
5 2 Si No Si No
6 2 No Si Si No
7 3 Si Si Si No
8 22 Si No No Si
9 22 No Si No Si
10 22 No No Si Si
11 44 Si Si No Si
12 44 Si No Si Si
13 44 No Si Si Si
14 66 Si Si Si Si

Tabla 3.1: Diferentes modelos Gaussianos, incluyendo un nimero variable de
atributos y de modalidades.
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Los parametros que tienen que ser optimizados cuando se emplean modelos
Gaussianos son los siguientes:

1. D, el nimero de Gaussianas a ajustar a los datos de comida de entre-
namiento.

2. Th, el umbral que va a ser aplicado a la distancia de Mahalanobis para
decidir a qué categoria pertenece cada pixel.

Para los siete modelos que incorporan los atributos de textura, también tendra
que ser ajustado el pardmetro de la regresién Ridge, £,iqge-

Las estadisticas de primer grado, como los histogramas de la Figura son
utiles para determinar cuintas Gaussianas han de ser ajustadas a cada tipo
de producto alimenticio. Simples diagramas de dispersion, como los represen-
tados en la Figura también proporcionan informacién sobre el nimero de
Gaussianas que deberia ser ajustado a los datos de comida.
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4510 ; ; :
—=o histogram
4} —fitted Gaussian pdf
3.5¢ 1

(c) Campo oscuro

Figura 3.1: Histogramas y Gaussianas ajustadas a las intensidades del pavo
en las distintas modalidades.
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dark-field intensity

dark-field intensity

Figura 3.2: Diagramas de dispersion 2D para las intensidades del pavo.
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Observando las Figuras [3.1] y [3:2] se decide ajustar una tnica Gaussiana mul-
tidimensional a los datos de entrenamiento de comida, es decir, el parametro
D sera uno. Por simplicidad, se utilizarda D = 1 para los catorce modelos, a
pesar de que algunos modelos incluyen mas atributos, no sélo los espectrales.
Adicionalmente, en las Figuras [3.1] y [3:2] se puede ver que los datos de comida
se aproximan a una distribucién normal, ya que existe una mayor densidad de
observaciones en el centro de la distribucién y una menor densidad conforme
nos alejamos del interior de la distribucion.

El parametro k,;qqc €s optimizado utilizando el conjunto de validacién, se elige
como Kkr;jqge Optimo aquel kr;jqgc que minimiza el error de validacién, definido
como

~ [(FN\? L (FP 2 (3.)
error = 7N 7P .
donde

1. FN es el numero de falsos negativos en el conjunto de entrenamiento,
esto es el namero de pixeles clasificados como comida, pero que realmente
pertenecen a la clase positiva (objetos extrafnos).

2. FP es el numero de falsos positivos, es decir, el namero de pixeles clasifica-
dos como positivos, pero que en realidad forman parte de la clase negativa
(comida).

3. N es el numero de pixeles que pertenecen a la clase negativa, es decir, el
nimero de pixeles de comida que hay en el conjunto de validacion.

4. P es el namero de pixeles que forman parte de la clase positiva, es decir,
el nimero de pixeles en los datos de validacién que se corresponden con
objetos extranos.
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En la Figura [3.3] se muestran los errores de validacion y entrenamiento para
uno de los modelos, aquel que incluye todos los atributos posibles.

0.44 . . . :

042+ —training error |
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0.4F 1
2 0.38f 1
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0.34¢
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Figura 3.3: Errores de entrenamiento y validaciéon para el modelo de pavo
numero 14.

Tal y como se puede ver en la Figura[3.3] el error de validacion no es muy sensible
a los cambios del pardmetro ky;qq. Esto se puede evaluar mejor mediante la
observacion de las curvas ROC. La caracteristica operativa de un receptor (curva
ROCQ) ilustra el rendimiento de un clasificador binario y se crea dibujando la
sensibilidad o razon de verdaderos positivos (TPR) frente a la razon de falsos
positivos (FPR), equivalente a 1-especificidad, para varios umbrales o puntos de
corte (valor desde el cual se decide que un pixel concreto pertenece a la clase
positiva, es decir, es un objeto extrano).

En la Figura se ilustran las curvas ROC para el mejor y el peor caso de
kridge, aquellos valores que proporcionan el menor y el mayor error de vali-
dacién, respectivamente. El punto 6ptimo de la curva ROC, correspondiente
con el umbral 6ptimo que debe ser aplicado a la distancia de Mahalanobis, es
aquel que se encuentra méas cerca del clasificador perfecto (TPR=1, FPR=0)
en distancia euclidea d. Ademas, la distancia euclidea se puede utilizar para
evaluar y comparar la efectividad o el rendimiento de los modelos.
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a) Mejor caso, optimizado (k,;qge = 10721), TPR = 0.9437, FPR =
0.0337 y d = 0.0656.
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(b) Peor caso (kpjqge = 10712), TPR = 0.9447, FPR = 0.0468 y
d = 0.0725.

Figura 3.4: Curva ROC para el modelo 14 de pavo con regresiéon Ridge.



3.1 Conjunto de datos principal: Pavo 33

La diferencia entre el modelo con k.44 optimizado y el modelo para el peor caso
de ky;q4e €5 tan pequetia que no merece la pena optimizar este pardmetro porque
es costoso en lo que se refiere al tiempo. Puede que no merezca la pena utilizar
la regresion Ridge en absoluto. Para evaluar esto, se muestra en la Figura (3.5
la curva ROC para el modelo 14 de pavo, pero sin incluir la regresiéon Ridge.
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Figura 3.5: Curva ROC para el modelo 14 de pavo sin regresion Ridge.
TPR =0.9448, FPR = 0.0393 y d = 0.0678.

Al observar la Figura[3.5|se deduce que la regresion Ridge no produce una mejora
significativa, ya que la distancia desde el punto 6ptimo al clasificador ideal es
0.0656 cuando se utiliza Ridge, comparando con 0.0678 cuando no se utiliza la
regresion Ridge. Estas distancias son muy parecidas, por lo que la regresiéon
Ridge no serd usada de aqui en adelante para evitar un costoso estudio de
optimizacién que no aporta beneficios significativos.

En la Figura|3.6[ se han optimizado los umbrales para cada uno de los 14 modelos
de comida. Los puntos 6ptimos son los puntos mas cercanos de cada curva ROC
al clasificador ideal (TPR=1, FPR=0), y estdn marcados en las graficas.
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Mirando las curvas ROC, se puede comparar cualitativamente la efectividad de
cada uno de los modelos. No obstante, la efectividad también se puede evaluar
cuantitativamente, observando las distancias euclideas entre cada uno de los 14
modelos 6ptimos y el clasificador ideal. Estas distancias se muestran en la Tabla
empezando por el modelo que proporciona el mejor rendimiento para una
clasificacion basada en pixeles.

Distance d | Model Nr.
0.0664 13
0.0720 10
0.0739 14
0.0811 12
0.1113 6
0.1135 7
0.1205 5
0.1260 3
0.1976 9
0.2003 11
0.3437 4
0.3741 2
0.4116 8
0.5723 1

Tabla 3.2: Distancias desde los modelos optimizados al clasificador ideal.

Tal y como se puede ver en la Tabla y en la Figura el rendimiento de
los clasificadores mejora en gran medida tras anadir un anélisis de textura, por
lo que si es beneficioso afiadir estos atributos espaciales adicionales. Asimismo,
el modelo 6ptimo para el pavo es el que incluye las modalidades de contraste
de fase y campo oscuro y el peor modelo es aquel que incluye solamente la
intensidad de la modalidad de absorcién.

Lo mas correcto es comparar el funcionamiento de los modelos sobre el conjunto
de observaciones/pixeles de test. En la Tabla se muestra la matriz de con-
fusion (CM) para el modelo nimero 13 y para el mejor modelo de absorcion
de los dos disponibles (1 y 8, sin y con andlisis de textura respectivamente).
Ademas, se muestra la exactitud y la precision en recuperacion de informacién.
Estas medidas estan definidas a continuacién.

TP+ TN
titud = ———— 3.2
exactitu PN (3.2)
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precision = TP/ P (3.3)

Modelo | N° Atrib. | TP FP TN FN | Exac. | Prec.
13 44 3569 | 1211 | 38806 | 225 | 0.9407 | 0.9672
8 22 2624 | 10183 | 29834 | 1170 | 0.6916 | 0.7409

Tabla 3.3: Rendimiento de los modelos de pavo sobre el conjunto de test.

En la Figura|3.7] se oberva la matriz de distancias para los dos modelos de la
Tabla El primer modelo es el modelo de pavo que clasifica mejor de entre
los dos modelos que incluyen tnica y exclusivamente la modalidad de absorcién,
es decir, el mejor modelo de entre los modelos 1 y 8. El segundo modelo es el
modelo de pavo que proporciona la mejor clasificacion, de entre los 14 modelos
disponibles. Ademas, en la Figura [3.8] se muestra la asignacion final de clases
(pixel a pixel) correspondiente a estos modelos.

(b) Mejor modelo para el pavo, modelo ntimero 13.

Figura 3.7: Mapas de distancias.
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(b) Mejor modelo para el pavo, modelo namero 13.

Figura 3.8: Clasificacion resultante tras aplicar el umbral 6ptimo a la distancia
de Mahalanobis.

3.1.2 Modelo Gaussiano VS MAaquina de Vectores de So-
porte

Al igual que para GMM, el conjunto de datos es dividido en tres conjuntos: en-
trenamiento, validacion y test. Pero a diferencia de GMM, el conjunto de entre-
namiento no sélo contiene pixeles correspondientes a comida, sino que también
cuenta con observaciones de los objetos extranos.

Se va a comparar el funcionamiento del modelo Gaussiano frente a SVM para
el modelo numero 10, el cual incluye la modalidad de campo oscuro, con sus
atributos tanto espectrales como espaciales.
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(b) Modelo GMM de pavo, d = 0.0712.

Figura 3.9: Curvas ROC para los modelos de campo oscuro de pavo, in-
cluyendo atributos de textura.
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Mirando la Figura SVM [B.9] se puede ver de forma cualitativa que el modelo
SVM es un mejor clasificador. Ademéas, también se puede ver la eficacia de
SVM cuantitativamente a través de los valores de distancia euclidea al clasifi-
cador ideal d (d = 0.0468 para SVM y d = 0.0712 para GMM). Sin embargo,
se tiene que tener en cuenta el hecho de que el rendimiento del modelo SVM
disminuira rapidamente si se introducen objetos extranos en el conjunto de test,
diferentes de aquellos contenidos en el conjunto de entrenamiento. Ademas de
que GMM puede detectar objetos sin que tengan que formar parte del conjunto
de entrenamiento, también es un modelo mucho mas rapido de entrenar.

3.2 Conjunto de datos ampliado: Queso, Salami
y Pan de centeno.

Los tres productos seran analizados a continuacion utilizando modelos Gaussia-
nos sin regresiéon Ridge, por las razones mencionadas en el apartado anterior.

Se obtienen los siguientes resultados para queso (Figura [3.10), salami (Figura
3.11) y pan de centeno (Figura [3.12). Gracias a las curvas ROC, se pueden
comparar los distintos modelos de forma visual.
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(b) Modelos de queso con atributos BIF.
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Figura 3.11: Curvas ROC para los modelos de salami.
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(b) Modelos de salami con atributos BIF.
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(b) Modelos de pan de centeno con atributos BIF.

Figura 3.12: Curvas ROC para los modelos de pan de centeno.
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El funcionamiento de los distintos modelos puede ser evaluado cuantitativamente
comparando la distancia euclidea d desde el punto 6ptimo al clasificador ideal.
Estas distancias se muestran en la Tabla[3.4]para queso, salami y pan de centeno.

Queso Salami Pan de centeno

N° Modelo d N° Modelo d N° Modelo d
13 0.0563 13 0.0814 5 0.1936
14 0.0576 14 0.0820 7 0.2081
7 0.0632 12 0.0915 12 0.2146
12 0.0668 10 0.1054 14 0.2215
5 0.0678 7 0.1083 11 0.2353
6 0.0854 5 0.1119 13 0.2747
10 0.0892 6 0.1286 9 0.3026
9 0.0978 3 0.1362 4 0.3037
11 0.1021 11 0.1801 10 0.3143
3 0.1271 9 0.2078 3 0.3282
4 0.1381 4 0.2551 6 0.3388
1 0.1794 8 0.3335 8 0.3969
8 0.1882 1 0.3445 1 0.4011
2 0.2694 2 0.4209 2 0.5304

Tabla 3.4: Distancias desde los modelos optimizados al clasificador ideal.

Tal y como se puede ver en la Tabla anterior, distintos modelos funcionan de
manera distinta dependiendo del producto en cuestién. El modelo 13 es el mejor
para queso y salami, pero no para el pan de centeno, siendo mejor el modelo 5
para este producto.

Igualmente, se oberva una mejoria de detecciéon cuando se anaden los atributos
BIF a los modelos de queso y salami, pero parece que los atributos BIF no
mejoran los modelos de pan de centeno.

De hecho, la razén de deteccién es bastante pobre para pan de centeno, esto
podria ser debido al hecho de que las semillas son detectadas como objetos
extranos. Para captar correctamente la textura del pan de centeno con sus
semillas, se deberia realizar un estudio de optimizacién extenso sobre las escalas
y los pardmetros de alisado. Puede que se obtengan mejores resultados una vez
se hayan optimizado estos parametros. Aun asi, el hecho de incluir las modali-
dades de contraste de fase y campo oscuro proporciona una mejor deteccion de
objetos extranos en el pan de centeno, que usando tnicamente la modalidad de
absorcién.
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En la Tabla [3.5] se pueden comparar el rendimiento de los modelos sobre el

conjunto de test.

Producto Modelo | N° At. | TP FP TN FN | Exact. | Prec.
Queso 13 44 7984 | 1268 | 32604 | 352 | 0.9578 | 0.9616

1 1 7129 | 3494 | 30379 | 1189 | 0.8571 | 0.8890

Salami 13 44 6834 | 2125 | 37484 | 449 | 0.9383 | 0.9451

8 22 5491 | 8682 | 30917 | 1803 | 0.7528 | 0.7764

Pan de centeno 12 44 2319 | 4582 | 43245 | 541 0.8108 | 0.8989
8 22 1787 | 6934 | 40910 | 1056 | 0.6286 | 0.8424

Tabla 3.5: Efectividad de los modelos sobre el conjunto de test.

Finalmente, se compara la clasificacién pixel a pixel para el mejor de los dos
modelos que contienen sélo la modalidad de absorcién frente al modelo que
clasifica mejor de los 14. Esto proporciona una representacién visual de la
mejora obtenida tras anadir estas nuevas modalidades de imagen: contraste de
fase y campo oscuro.

En las Figuras B-15]y [3-17] se pueden observar los mapas de distancias para
el modelo que proporciona la mejor clasificacién frente al mejor modelo de los
dos modelos que incluyen la modalidad de absorcion solamente (modelos 1 y 8).
En la Figura [3.14] 316 y [3.18] se muestran las decisiones finales de clasificacion

para cada pixel.
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0

(a) Mejor modelo de absorcion para el queso, modelo nimero 1.

(b) Mejor modelo para el queso, modelo ntimero 13.

Figura 3.13: Mapa de distancias.

(b) Mejor modelo para el queso, modelo nimero 13.

Figura 3.14: Clasificacién resultante tras aplicar el umbral éptimo a la distan-
cia de Mahalanobis.
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(a) Mejor modelo de absorcion para el salami, modelo nimero 8.

(b) Mejor modelo para el salami, modelo numero 13.

Figura 3.15: Mapa de distancias.

(a) Mejor modelo de absorcion para el salami, modelo nimero 8.

(b) Mejor modelo para el salami, modelo namero 13.

Figura 3.16: Clasificacién resultante tras aplicar el umbral éptimo a la distan-
cia de Mahalanobis.
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(a) Mejor modelo de absorcién para pan de centeno, modelo nimero 8.
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(b) Mejor modelo para pan de centeno, modelo nmero 12.

Figura 3.17: Mapa de distancias.

(b) Mejor modelo para pan de centeno, modelo ntimero 12.

Figura 3.18: Clasificacién resultante tras aplicar el umbral éptimo a la distan-

cia de Mahalanobis.
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CAPITULO 4

Conclusiones y trabajo
futuro

El resultado mas importante de este proyecto es la evidencia sobre una deteccién
automaética de objetos mas eficiente tras anadir, a la modalidad de contraste de
absorcion, dos modalidades de imagen adicionales (contraste de fase y campo
oscuro). Gracias a estas dos nuevas modalidades, podemos encontrar objetos
organicos, lo cual era dificil utilizando rayos-X convencionales.

Los objetos organicos destacan mejor en la modalidad de campo oscuro, ademas
en esta modalidad también se pueden ver los objetos no organicos. De hecho, la
modalidad de absorcion no anade mucha mas informacién que la que ya contiene
la modalidad de campo oscuro. No obstante, las modalidades de contraste de
fase y de absorcién pueden anadir algo de informacién extra a la modalidad de
campo oscuro. Para el queso, la modalidad de absorciéon anade mas informacién
que la de fase, mientras que para los otros tres productos anade mas informacién
el contraste de fase. Si no han sido anadidos atributos de textura, los modelos
que solo incluyen la modalidad de absorcion, suelen funcionar mejor que los que
sblo incluyen contraste de fase. En lo que se refiere al anélisis de textura, el cal-
culo de los atributos BIF merece la pena porque se obtiene una mejor deteccién
tras anadir estos atributos espaciales. No obstante, si la textura del producto es
compleja, como la del pan de centeno, se debe realizar previamente un extenso
estudio para seleccionar los parametros de escala y alisado que aportan mayor
cantidad de informacién.
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Se debe tener en cuenta que, aunque se tarda en construir los modelos, la clasifi-
cacién de los datos es rapida, ya que soélo es necesario calcular los atributos BIF
y la distancia de Mahalanobis (o el resultado SVM). Estos calculos son rapidos y
principalmente son operaciones entre pixeles (excepto el calculo de los atributos
basicos de imagen). Por tanto, las tareas pueden ser paralelizadas facilmente
e implementadas para funcionar rapidamente, por ejemplo, en una unidad de
procesamiento grafico (GPU). La rapidez es muy importante cuando se quiere
implantar el control de calidad en una linea de produccion.

SVM no funcionard adecuadamente si aparecen en la comida objetos extranos
'nuevos’ (distintos de aquellos que han sido utilizados en el entrenamiento).
Como no es posible crear un conjunto de entrenamiento perfecto, que represente
todos los objetos extranos posibles, trabajos futuros deberian centrarse en el
estudio de GMM.

El nimero de Gaussianas, D, se ha elegido mirando exclusivamente los valores
de los atributos de intensidad, pero realmente se han anadido muchos més atri-
butos, ademas de los correspondientes a la intensidad de las modalidades. Por
ello, este parametro deberia ser optimizado dividiendo los datos de manera que
haya més de un conjunto de datos para validaciéon. Asimismo, se deberia realizar
una deteccién basada en objetos para una clasificaciéon mas robusta, ademés de
para proporcionar una estimacion de los tamanos de objetos que podrian ser
detectados.

Adicionalmente, los modelos se podrian testear con datos 'nuevos’, es decir,
datos de comida que contengan huesos u otros objetos extranos que no han
sido incluidos en el desarrollo de los modelos. De hecho, también se tomaron
en Munich datos para tests de esta naturaleza, los cuales contienen cuerpos
extranos que no han sido utilizados para el entrenamiento ni para la optimizacion
de los parametros de los modelos.

En este caso de prueba, Ridge no merece la pena. Si quisieramos crear mo-
delos mas complejos, con mayor niimero de atributos espaciales, que captasen
mejor las texturas complejas, como la del pan de centeno, entonces si que se
deberia plantear la selecciéon de atributos. Esto es debido a que, al anadir méas
escalas y pardmetros de alisado al andlisis de texturas, la dimensionalidad crece
rapidamente. Entonces, una red elastica podria tratar de eliminar escalas y
parametros de alisado que no aportasen informacion. Asi, se reduciria el tiempo
de calculo de los atributos BIF, y podria implementarse el sistema en una linea
de produccion.
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Resumiendo, la interferometria basada en rejillas de difraccion (GBI) permite
detectar materia orgéanica y proporciona resultados de deteccién mucho mejores
que un sistema de deteccion basado en rayos-X convencionales cuando se pueden
encontrar como objetos extranos tanto objetos organicos como no orgénicos.
Como consecuencia, una solucién de control de calidad implementada con GBI
en una linea de produccién seria mucho més eficiente que una solucion basada
en rayos-X convencionales, para industrias donde es posible encontrar objetos
extranos organicos.
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Conclusiones y trabajo futuro
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