000145440 001__ 145440
000145440 005__ 20241030091919.0
000145440 0247_ $$2doi$$a10.1080/00221686.2024.2401905
000145440 0248_ $$2sideral$$a140314
000145440 037__ $$aART-2024-140314
000145440 041__ $$aeng
000145440 100__ $$aOuro, Pablo
000145440 245__ $$aBenchmark of computational hydraulics models for open-channel flow with lateral cavities
000145440 260__ $$c2024
000145440 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145440 5203_ $$aComputational models in hydro-environmental engineering are diverse in their background formulation and span from two-dimensional depth-averaged shallow water models, to complex fully three-dimensional turbulence models resolving large-eddy simulation with surface capturing techniques, and to Lagrangian particle-based methods. This paper presents a first-of-its-kind comparison of six different computational hydraulics fluid dynamics models, namely Iber+, HO-SWM, GBVC, OpenFOAM (RANS), Hydro3D (LES) and DualSPHysics (SPH), in the prediction of mean velocities and free-surface dynamics in two benchmarks involving open-channel flows with symmetric lateral cavities. Results show that shallow-water models capture relatively well the main large-scale coherent structures of the in-cavity flow, with wider shear layers compared to three-dimensional models, and higher velocities in the main channel. Three-dimensional RANS, LES and SPH yield improved predictions of mean velocities compared with experimental data. Computational cost has been quantified for all models with a logarithmic growth when increasing model complexity. The transverse standing wave is captured by most models, with the shallow-water ones matching the theoretical value, while the three-dimensional models overestimate it slightly.
000145440 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E02-23R$$9info:eu-repo/grantAgreement/ES/DGA-FEDER/T32-20R$$9info:eu-repo/grantAgreement/EC/HORIZON EUROPE/101039181 /EU/Dynamic river catchments in a Global Change context: assessing the present, preparing for the future/SEDAHEAD$$9info:eu-repo/grantAgreement/ES/MCIN/AEI/10.13039/501100011033$$9info:eu-repo/grantAgreement/ES/MICINN/JDC2022-048667-I
000145440 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000145440 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145440 700__ $$aCea, Luis
000145440 700__ $$aCroquer, Sergio
000145440 700__ $$aDong, Wenhao
000145440 700__ $$aGarcia-Feal, Orlando
000145440 700__ $$0(orcid)0000-0002-3465-6898$$aNavas-Montilla, Adrián$$uUniversidad de Zaragoza
000145440 700__ $$aRogers, Benedict D.
000145440 700__ $$aUchida, Tatsuhiko
000145440 700__ $$0(orcid)0000-0002-2985-1023$$aJuez, Carmelo
000145440 7102_ $$15001$$2600$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Mecánica de Fluidos
000145440 773__ $$g62, 5 (2024), 441-460$$pJ. hydraul. res.$$tJOURNAL OF HYDRAULIC RESEARCH$$x0022-1686
000145440 8564_ $$s4006200$$uhttps://zaguan.unizar.es/record/145440/files/texto_completo.pdf$$yVersión publicada
000145440 8564_ $$s1166179$$uhttps://zaguan.unizar.es/record/145440/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145440 909CO $$ooai:zaguan.unizar.es:145440$$particulos$$pdriver
000145440 951__ $$a2024-10-30-08:48:31
000145440 980__ $$aARTICLE