
Annals of Medicine

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/iann20

Machine learning algorithms for the evaluation of
risk by tick-borne pathogens in Europe

Agustín Estrada-Peña & José de la Fuente

To cite this article: Agustín Estrada-Peña & José de la Fuente (2024) Machine learning
algorithms for the evaluation of risk by tick-borne pathogens in Europe, Annals of Medicine,
56:1, 2405074, DOI: 10.1080/07853890.2024.2405074

To link to this article:  https://doi.org/10.1080/07853890.2024.2405074

© 2024 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 30 Sep 2024.

Submit your article to this journal 

Article views: 596

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=iann20

https://www.tandfonline.com/journals/iann20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07853890.2024.2405074
https://doi.org/10.1080/07853890.2024.2405074
https://www.tandfonline.com/doi/suppl/10.1080/07853890.2024.2405074
https://www.tandfonline.com/doi/suppl/10.1080/07853890.2024.2405074
https://www.tandfonline.com/action/authorSubmission?journalCode=iann20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=iann20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07853890.2024.2405074?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/07853890.2024.2405074?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/07853890.2024.2405074&domain=pdf&date_stamp=30%20Sep%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/07853890.2024.2405074&domain=pdf&date_stamp=30%20Sep%202024
https://www.tandfonline.com/action/journalInformation?journalCode=iann20


Research Article

Annals of Medicine
2024, VOL. 56, NO. 1, 2405074

Machine learning algorithms for the evaluation of risk by tick-borne 
pathogens in Europe

Agustín Estrada-Peñaa*  and José de la Fuenteb,c 
aDepartment of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain; bSaBio (Health and Biotechnology), 
Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain; cDepartment of Veterinary Pathobiology, 
Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA

ABSTRACT
Background:  Tick-borne pathogens pose a major threat to human health worldwide. 
Understanding the epidemiology of tick-borne diseases to reduce their impact on human health 
requires models covering large geographic areas and considering both the abiotic traits that 
affect tick presence, as well as the vertebrates used as hosts, vegetation, and land use. Herein, we 
integrated the public information available for Europe regarding the variables that may affect 
habitat suitability for ticks and hosts and tested five machine learning algorithms (MLA) for 
predicting the distribution of four prominent tick species across Europe.
Materials and methods:  A grid of cells 20 km in diameter was prepared to cover the entire 
territory, containing data on vegetation, points of water, habitat fragmentation, forest density, 
grass extension, or imperviousness, with information on temperature and water deficit. The 
distribution of the hosts (162 species) was modelled and included in the dataset. We used five 
MLA, namely, Random Forest, Neural Networks, Naive Bayes, Gradient Boosting, and AdaBoost, 
trained with reliable coordinates for Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus, 
and Hyalomma marginatum in Europe.
Results:  Both Random Forest and Gradient Boosting best predicted ticks and host environmental 
niches. Our results demonstrate that MLA can identify trait-matching combinations of 
environmental niches. The inclusion of land cover and land use variables has a superior capacity 
for predicting areas suitable for ticks, compared to classic methods based on the use of climate 
data alone.
Conclusions:  Flexible MLA-driven models may offer several advantages over traditional models. 
We anticipate that these results may be extrapolated to other regions and combinations of 
tick-vertebrates. These results highlight the potential of MLA for inference in ecology and provide 
a background for the evolution of a completely automatized tool to calculate the seasonality of 
ticks for early warning systems aimed at preventing tick-borne diseases.

Introduction

Ticks and tick-borne pathogens (TBPs) constitute major 
threats to human health worldwide [1]. Ecologists have 
long suspected that species are more likely to interact 
if their traits match in a particular manner [2, 3]. It is 
known that ticks and vertebrates interact in different 
ways to improve the circulation of TBPs, which is com-
monly disregarded when modelling the prevalence of 
these diseases [4, 5]. Advances have been made to 
understand the role of some hosts in the circulation of 
TBPs [6] in field surveys of variable size because of the 
difficulties resulting from large-scale surveys [7, 8]. On 

the other hand, modelling has been used to map the 
potential distribution of TBPs without considering that 
their patterns of circulation depend on the availability 
of competent reservoirs [9, 10]. The importance of 
landscape features in the habitat suitability of ticks is 
well supported by field studies [11–15]. While com-
monly neglected, the relative composition of the com-
munities of vertebrates may have a pivotal role in 
modelling the distribution of ticks and/or TBPs [16, 17]. 
Climate, landscape, and biotic (hosts-derived) explana-
tory variables have only been partially integrated into 
datasets involving large territories, such as continents 
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[18]. Despite the exponential growth in data availabil-
ity, broader interoperability among datasets is still nec-
essary. This would be applicable not only to the basic 
knowledge of tick ecology but also for understanding 
the probable distribution of ticks transmitting patho-
gens from solid, reliable, open-source, and curated 
sources of data. Such a framework should have an 
adequate resolution to capture the regional events 
impacting the distribution of both ticks and TBPs, and 
we propose a grid of homogeneously sized polygons 
accommodating the regional traits acting on ticks and 
vertebrate demographic processes.

Modelling methods used for ticks are commonly 
restricted to a subset of the methods currently avail-
able [19–21]. The big data revolution has led to eco-
logical studies of arthropod-borne pathogens, 
together with a panoply of modelling methods col-
lectively known as Machine Learning Algorithms 
(MLA). Climate data have been commonly used for 
tick modelling approaches, sometimes with the inclu-
sion of an index of vegetation stress (the NDVI or 
normalized difference vegetation index). Other 
explanatory variables, such as those derived from the 
landscape composition and topology, or the pres-
ence/absence of vertebrates used as competent res-
ervoirs or propagation hosts, are not a common part 
of such a modelling framework.

In this study, we addressed the challenge of assem-
bling and providing an open-access dataset that 
includes the most important variables that define ticks 
and hosts environmental niches. We then compared 
the ability of several MLA to select the necessary vari-
ables to predict the niche of both ticks and vertebrates 
in Europe. In addition to releasing the first European 
dataset of tick and host distributions, together with 
climate, landscape, and biotic variables, we aimed to 
explore the outcomes of methods that have not been 
tested before in this context and to check if the distri-
bution of the vertebrates that ticks feed improves the 
modelling of the tick’s distribution. These results 
advance the prediction of the threats associated with 
tick-borne diseases in Europe and have possible appli-
cations in other regions.

Material and methods

Background: structure of the dataset

The Copernicus Land Monitoring System hosts the 
greatest and most detailed datasets of land use and 
land cover features available for Europe (https://www.
esa.int/Applications/Observing_the_Earth/Copernicus/
Europe_s_Copernicus_programme). It contains data of 

interest to identify the variables that shape the niche 
of ticks and vertebrates. Hence, we approached the 
integration of data for the joint modelling of the dis-
tribution of vertebrates and ticks in Europe using (a) a 
large set of climate data, (b) a set of data regarding 
the landscape, such as several features of vegetation, 
its fragmentation, dominance, land use, and distance 
to critical features known to affect tick presence, and 
(c) the distribution of vertebrates in the European ter-
ritory that is also modelled from available records and 
the variables mentioned below. We explored the power 
of several MLA selecting the best combinations of 
such a large set of variables to produce the best 
description of the tick/vertebrate habitats (Table 1). 
The aim of MLA is to assess the distribution and hab-
itat suitability of both ticks and hosts. We used the 
term ‘habitat’ to name the combination of abiotic (cli-
mate), biotic (vertebrate hosts), and landscape fea-
tures, such as amount of forest and fragmentation 
among others that integrate the target territory. 
Habitat suitability is thus a continuous numeric out-
come, that shapes the territory in which a species (tick 
or vertebrate) may be present or absent. Existing envi-
ronmental data for Europe (such as forest composi-
tion, grass communities, or points of water) are 
commonly delivered in a raster format, at high reso-
lution (even at 10 m/pixel for the whole continent) on 
the official European Environmental Agency website 
(https://www.eea.europa.eu/data-and-maps) or on the 
Ecodatacube website (https://stac.ecodatacube.eu/). 
The dataset presented here comes in part from the 
official links mentioned above; it is complemented by 
climate interpolated data.

The basis of the dataset is a set of hexagonal cells 
that cover the European territory, consisting of 19,291 
hexagonal cells with a diameter of 20 km each, cov-
ering the target territory; some peripheral cells are 
smaller because they cover parts of the sea and are 
therefore cut to follow the coastline. Each cell of the 
grid is filled with the values of the variables described 
below, which may have an importance for the delin-
eation of the tick habitat. All the data explained 
below were entered for each tile using simple over-
lap GIS methods, allowing the selection of different 
combinations of variables to build the most reliable 
models. It is not possible to work with points of ras-
ter images because of the large extension of the tar-
get territory and because many variables (e.g. 
landscape features) make sense only in the context 
of a surface instead of a point. Special care was taken 
to avoid missing fields while translating the rasters to 
the polygons dataset; all the 19,291 cells have the 
complete set of data.

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Europe_s_Copernicus_programme
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Europe_s_Copernicus_programme
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Europe_s_Copernicus_programme
https://www.eea.europa.eu/data-and-maps
https://stac.ecodatacube.eu/
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Table 1.  The abiotic variables (climate, vegetation, and landscape features) included in the dataset for modelling the environmen-
tal niche of four species of ticks and their vertebrate hosts in Europe.
Name of the 
variable Meaning Obtained from Available at Comments

EEA median Median value of the vegetation 
category (the most 
represented value in the 
target cell)

Ecosystems Types of Europe V3.1 
eea_r_3035_100_m_ 
etm-terrestrial- 
c_2012_v3-1_r00.tif

https://sdi.eea.europa.eu/catalogue/
srv/api/records/7c0cf3f2-ab54- 
4cd0-a635-b322df7197f6

A document ‘Ecosystem_
mapping_v3_1.pdf’ explains 
all the details. Available in 
the link provided. The 
dataset includes 52 
categories of vegetation.

EEA minority The category of vegetation of 
the smallest patch in the 
target cell

Ecosystems Types of Europe V3.1 
eea_r_3035_100_m_ 
etm-terrestrial- 
c_2012_v3-1_r00.tif

EEA majority The category of vegetation of 
the largest patch in the 
target cell

Ecosystems Types of Europe V3.1 
eea_r_3035_100_m_ 
etm-terrestrial- 
c_2012_v3-1_r00.tif

EEA variety The number of different 
categories of vegetation in 
the target cell of the grid

Ecosystems Types of Europe V3.1 
eea_r_3035_100_m_ 
etm-terrestrial- 
c_2012_v3-1_r00.tif

FTY Type of forest (coniferous, 
broadleaf or mixed)

FTY_2018_100m_eu_03035_
V1_0.tif

https://land.copernicus.eu/
pan-european/high-resolution-
layers/forests/forest-type-1

The indicator is a measure of 
the dominant type of forest 
in each tile

FTY_buffer Average distance of all the 
pixels in a cell to the 
nearest forest patch

FTY_2018_100m_eu_03035_
V1_0.tif

The value indicates ‘how near’ 
is a pixel, in average, from 
a forest patch of any type

TCDCount Area of forest Tree Cover Density TCD_2018_ 
100m_eu_03035_V2_0.tif

https://land.copernicus.eu/
pan-european/high-resolution-
layers/forests

All the variable beginning with 
‘TCD’ refer to ‘tree cover 
density’, in a value ranging 
from 0 to 100

TCDSum Sum of the tree coverage in the 
area(s) of forest

TCDvariance Variance of the tree coverage in 
the area(s) of forest

TCDMedian Median of the tree coverage in 
the area(s) of forest

GRSCount Number of pixels of grass per 
polygon

GRA_2018_100m_eu_03035_
V1_0.tif

https://land.copernicus.eu/en/
products/high-resolutio
n-layer-grassland

High Resolution Layer 
Grassland 2018. Value refers 
to the area occupied by 
grass in each cell.

GRSbuffer Average distance of all the 
pixels in a cell to the 
nearest patch of grass.

The value indicates ‘how near’ 
is a pixel, in average, from 
a patch of grass of any type

TMAX1 First coefficient of the harmonic 
regression of the maximum 
temperature (1990–2020)

TerraClimate Data https://developers.google.com/
earth-engine/datasets/catalog/
IDAHO_EPSCOR_TERRACLIMATE

This value also describes the 
mean multi-annual value of 
daily maximum temperature

TMAX2 Second coefficient of the 
harmonic regression of the 
maximum temperature 
(1990–2020)

Both values describe the slope 
of spring and autumn (and 
the day of beginning 
according to changes in the 
time series) as well as the 
duration of summer and 
autumn in climatic terms 
(not calendar dates)

TMAX3 Third coefficient of the 
harmonic regression of the 
maximum temperature 
(1990–2020)

TMIN1 First coefficient of the harmonic 
regression of the minimum 
temperature (1990–2020)

TerraClimate Data https://developers.google.com/
earth-engine/datasets/catalog/
IDAHO_EPSCOR_TERRACLIMATE

This variable describes the 
mean multi-annual value of 
daily minimum temperature

TMIN2 Second coefficient of the 
harmonic regression of the 
minimum temperature 
(1990–2020)

Both TMIN1 and TMIN2 
describe the slope of spring 
and thus the beginning of 
spring.

TMIN3 Third coefficient of the 
harmonic regression of the 
minimum temperature 
(1990–2020)

Both TMIN1 and TMIN3 
describe the slope of 
change summer-autumn 
and thus the beginning of 
autumn

VPD1 First coefficient of the harmonic 
regression of the water 
vapour deficit (1990–2020)

TerraClimate Data https://developers.google.com/
earth-engine/datasets/catalog/
IDAHO_EPSCOR_TERRACLIMATE

They describe the mean 
multi-annual value of 
vapour pressure deficit

VPD2 Second coefficient of the 
harmonic regression of the 
water vapour deficit 
(1990–2020)

VPD3 Third coefficient of the 
harmonic regression of the 
water vapour deficit 
(1990–2020)

(Continued)

https://sdi.eea.europa.eu/catalogue/srv/api/records/7c0cf3f2-ab54-4cd0-a635-b322df7197f6
https://sdi.eea.europa.eu/catalogue/srv/api/records/7c0cf3f2-ab54-4cd0-a635-b322df7197f6
https://sdi.eea.europa.eu/catalogue/srv/api/records/7c0cf3f2-ab54-4cd0-a635-b322df7197f6
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1
https://land.copernicus.eu/pan-european/high-resolution-layers/forests
https://land.copernicus.eu/pan-european/high-resolution-layers/forests
https://land.copernicus.eu/pan-european/high-resolution-layers/forests
https://land.copernicus.eu/en/products/high-resolution-layer-grassland
https://land.copernicus.eu/en/products/high-resolution-layer-grassland
https://land.copernicus.eu/en/products/high-resolution-layer-grassland
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE
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Climate data

Climate data represent part of the abiotic features that 
are known to impact the life cycle of ticks. It is widely 
accepted that adequate combinations of temperature 
and humidity can delineate the presence/absence/
abundance of ticks, provided there are no geographi-
cal barriers and suitable hosts are available. In our 
application, climate data were obtained from the inter-
polated set known as ‘TerraClimate’ (available at https://
www.climatologylab.org/terraclimate.html) at monthly 
intervals for the period 1990–2022. An interpolated cli-
matology used for tick habitat prediction must include 
at least data on minimum and maximum temperature 
and water vapor deficit, or a measure of water in the 
air. It is known that rainfall is poorly correlated with 
measures of water in the air [22] and that rainfall may 
have a local and temporal effect on tick populations. 
An interpolated climatology dataset avoids gaps pro-
duced by ice, clouds, or snow for large periods in sat-
ellite imagery (i.e. winter in the northern portions of 
the target area). The complete TerraClimate time series 
[23] was summarized as the monthly average of each 
variable, which was later subjected to harmonic regres-
sion. The use of harmonic regression coefficients has 
been previously validated because they are free of the 
frequent issues of spatial correlation and multicol-
linearity between the layers of explanatory variables. 
The harmonic regression curves have several coeffi-
cients. The coefficients of the harmonic regressions 
retain the annual average values of a variable, the 
moment and slope of change in spring, the length of 
summer, and the moment and rate of change in 
autumn. We used the first three coefficients of the har-
monic regression for each climate variable as explana-
tory layers for predictive mapping with total of nine 
variables accounting for the maximum and minimum 
temperature and water vapor deficit. These variables 
were used scaled at the resolution of the grid. Raster 

images were overlapped with the grid, and the median 
value of the raster pixels enclosed by each cell of the 
grid was obtained and used for modelling (see Table 1).

Landscape/vegetation and vertebrate host data

Landscape and vegetation data are another major 
determinant of the distribution of ticks and vertebrates 
but have rarely been explored (but see [24]). We 
included a variety of traits, such as the type of forest 
or grass, dominant land use and/or land cover in each 
grid cell, the amount, persistence, and extension of 
aquifers, the fragmentation of the habitat, or the mean 
distance of each single pixel in the cell to forest, grass, 
or bare ground. Most of these variables have been 
associated with tick density in various field studies. 
The effects of habitat fragmentation (or habitat con-
nectivity) have been demonstrated in ticks, but their 
impact on the circulation of TBPs has not been 
explored in a wide area [25]. Table 1 includes the 
names of all the variables in the final gridded dataset, 
the link from which the original open-access data were 
obtained, and its meaning in the context of this study. 
All these data in their original raster format (some of 
them well over 10 GB in size) were transferred to each 
cell of the hexagonal grid using basic GIS overlap 
techniques.

After building the previous dataset, we addressed 
the relationships between ticks and their hosts. A 
high-resolution set of maps displaying the distribution 
of vertebrates does not exist in Europe, similar to the 
GAP analysis project for the USA available at https://
w w w.usgs.gov/programs/gap -analys is-projec t . 
Therefore, layers with vertebrate distribution in the tar-
get territory were prepared de novo from the already 
available information about their presence (see below). 
Therefore, we obtained information about the distribu-
tion of vertebrate species that have been recorded as 
hosts for the tick(s) and/or reservoirs of pathogen(s). 

Name of the 
variable Meaning Obtained from Available at Comments

Impervious Impervious surface in the target 
cell

https://www.eea.europa.eu/
data-and-maps/dashboards/
imperviousness-in-europe

It provides accounts of land 
surface sealing status and 
change in Europe (EEA39 
and EU28) for every 3 years 
between 2006 and 2015

Impervious_
buffer

The average distance between 
impervious surface and any 
other vegetated patch in the 
target cell

Vertebrates 
(various 
specific 
names)

The expected suitability of the cell in the grid for 162 species of vertebrates, reported as hosts for ticks or competent reservoirs for 
tick-borne pathogen

Data about the meaning of each abbreviation are included, as well as the link to the original image in raster format, available in the data pool of European 
Union. Fragmentation of the habitat was not included because existing datasets lack Switzerland and all the Balkans countries, thus affecting the integrity 
of the dataset. It is known that habitat fragmentation affects the populations of both ticks and vertebrates, but its inclusion in the current dataset has 
resulted unfeasible.

Table 1.  Continued.

https://www.climatologylab.org/terraclimate.html
https://www.climatologylab.org/terraclimate.html
https://www.usgs.gov/programs/gap-analysis-project
https://www.usgs.gov/programs/gap-analysis-project
https://www.eea.europa.eu/data-and-maps/dashboards/imperviousness-in-europe
https://www.eea.europa.eu/data-and-maps/dashboards/imperviousness-in-europe
https://www.eea.europa.eu/data-and-maps/dashboards/imperviousness-in-europe
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The purpose is 2-fold: building the most complete 
dataset of traits that could influence the presence/
absence/abundance of ticks and interpreting the 
impact of the inclusion of the suitability of the habitat 
for vertebrates on tick modelling. We used ~3 million 
records of vertebrates that were heterogeneously dis-
tributed in the target territory. We developed models 
to predict the distribution and habitat suitability of 
these vertebrate species using the same algorithms as 
for ticks (see below).

Pre-processing and scaling of data

As mentioned, before building the modelling algo-
rithms and the workflow, we explicitly tested the data-
set for missing data. Both dataset and raster data 
(explanatory variables) were projected with the official 
European projection (LAEA) and were clipped with the 
same sea mask. Therefore, the complete set of 19,291 
cells had the complete set of explanatory variables 
without missing data. All the variables were subjected 
to a rescaling and centering around mean to avoid 
issues derived from the different scales of the actual 
data. All the climatic variables were rescaled and cen-
tered as it is the most straightforward data transforma-
tion and centers and scales a variable to mean zero 
and standard deviation one. Therefore, it ensures that 
the criterion for finding linear combinations of the pre-
dictors is based on how much variation they explain 
and therefore improves the numerical stability. 
Landscape continuous variables (e.g. amount of can-
opy) were also centered and rescaled. Categorical vari-
ables (e.g. type of forest) were not rescaled as before 
but were turned into continuous by the algorithms 
before modelling. However, to note, all the data 
included in the gridded dataset remained with their 
original values in the released version available as 
Supplementary Material. We did not want to modify 
the original values since this could refrain the use of 
the dataset in other ways. Variables derived from the 
habitat suitability prediction of vertebrates (continuous 
values between 0 and 100%) were also centered and 
rescaled to fit its scale to the previous explanatory 
variables.

Evaluation of the habitat suitability for 
vertebrates in the target territory

The predicted habitat suitability (range: 0–100) of a 
total of 162 vertebrate species was included in the 
available dataset. All these species have been reported 
in the last 40 years as hosts of at least one of the tick 

species of concern and/or are common reservoirs of 
pathogens, such as Borrelia spp., Anaplasma phagocy-
tophilum, or Rickettsia spp. The point distribution (coor-
dinates) of the hosts necessary to train the models 
was the set previously produced for other purposes 
[18], and it includes about three millions of records, 
after the removal of records with issues like wrong 
coordinates (e.g. over the sea). We filtered the species 
distribution records to ‘couple’ with the resolution of 
the grid dataset. This is because the reported distribu-
tion of vertebrates in the target territory may have a 
resolution of even a few hundred meters, while the 
grid has a resolution of 20 km. The point distribution 
of each vertebrate was overlapped over the grid using 
a simple spatial query, and we selected the cells of the 
grid with records of the vertebrate. These cells were 
marked as positive for the species. Since these surveys 
are rarely random, we did not consider the number of 
records of a vertebrate in a cell, and it was turned pos-
itive with only one record.

Before defining the workflow of modelling, sets of 
positive and negative records of each species of verte-
brate that are necessary to train the algorithms were 
prepared. We selected presence cells that were those 
where the species has been reported. To select absence 
cells, we adhered to a strategy consisting of the selec-
tion of cells in which other vertebrates were reported, 
confirming the existence of surveys in that cell but the 
focus species remains unreported. The dataset of 
absences for each species was built separately in a 
looping selection of cells. Although these are not real 
absence sets, preliminary tests confirmed that they 
perform better than a set of randomly selected 
pseudo-absences. The pure random selection of 
pseudo-absences may include climate or landscape 
conditions that are too extreme for the existence of 
any vertebrate in our set of species, therefore biasing 
the choice of the range of explanatory variables, build-
ing unreliable models.

Selection of algorithms was based on its ability for 
modelling other living organisms and its capacity to 
handle common problems like features election and/or 
overfitting [11, 13, 15, 18]. We used five MLA: Random 
Forest, Neural Networks, Naive Bayes, Gradient 
Boosting, and AdaBoost, that we briefly describe here. 
Random Forest builds a set of decision trees. Each tree 
is developed using a bootstrap sample of the training 
data. When developing individual trees, an arbitrary 
subset of attributes is drawn (hence the term ‘Random’) 
from which the best attribute for the split is selected. 
Random forests use bootstrap sampling and feature 
bagging to reduce the variance and overfitting of indi-
vidual trees. Bootstrap sampling means that each tree 

https://doi.org/10.6084/m9.figshare.25197437
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of decisions is trained on a random subset of data, 
and feature bagging means that each split is based on 
a random subset of the features. Random forests can 
handle both numerical and categorical features and 
can perform feature importance and handle missing 
data. The final model is based on a majority vote of 
individually developed trees in the forest. For Random 
Forests, we stated the number of trees at 10, with rep-
licate training, without balancing the class distribution. 
The AdaBoost (‘adaptive boosting’) is a MLA that can 
be used with other learning algorithms to boost their 
performance. This is done by tweaking the weak learn-
ers. For AdaBoost, we used the option ‘tree’ as base 
estimator, with 50 estimators and a learning rate of 1, 
using the SAMME.R as classification algorithm and the 
linear regression loss function. Gradient Boosting is an 
MLA for regression and classification problems that 
produces a prediction model in the form of an ensem-
ble of weak prediction models, typically decision trees. 
For Gradient Boosting, we used 100 trees, and a learn-
ing rate of 0.3, with Lambda = 3. The Neural Networks 
used 100 neurons in one hidden layer, activated by 
the rectified linear unit (ReLu) function and the 
L-BFGS-B solver, with alpha = 0.0001 and 200 maxi-
mum iterations. For Naive Bayes, we assumed equiprob-
able classes (i.e. priors = 1/(number of classes)). These 
MLA are available in the ‘Orange’ programming envi-
ronment version 3 (https://orangedatamining.com). 
Orange is a set of Python routines distributed as an 
open-access software.

The algorithms calculate the probability of the 
presence/absence of each organism (vertebrate or tick) 
by selecting the best combination of variables with 
which such a probability is calculated. The algorithms 
compare the ‘true’ presence/absence of the modeled 
organism, building a confusion table (sensitivity and 
specificity) where the output is a value of the perfor-
mance of each algorithm for each species over the 
entire territory. To estimate the skill of the models, we 
used cross-validation. Cross-validation is a technique 
for evaluating a model and testing its performance. It 
compares and selects an appropriate model for the 
specific predictive modeling problem. The records of 
each species were divided into a 70% (training set) 
and a 30% (evaluation set). Each model was trained 
and then validated against the evaluation set. This was 
repeated 10 times. Every detail of cross-validation for 
each algorithm and species can be studied in the 
scripts provided in the Supplementary Material.

The set of features (explanatory variables) that bet-
ter explained the known distribution of each species 
was included in the final model. A maximum of 15 
variables were allowed to be selected in the best 

model for each species, that were selected following 
the indexes of the model performance including/
excluding sets of variables (information provided by 
the variables). As an indicator of the performance of 
each MLA, we primarily used the AUC, which is the 
area under the receiver operating characteristic (ROC) 
curve. To complete the analysis of performance, we 
also used the classification accuracy (CA, the propor-
tion of correctly classified records); Precision, which is 
the proportion of true positives among instances clas-
sified as positive; Recall, as the proportion of true pos-
itives among all positive instances in the data; F1, 
which is a weighted harmonic mean of precision and 
recall; Specificity, which is the proportion of true neg-
atives among all negative instances; and the Matthews 
correlation coefficient (MCC), which takes into account 
true and false positives and negatives and is generally 
regarded as a balanced measure. For model interpreta-
tion, the Gain Ratio (a ratio of the information gain 
and the intrinsic information of the attribute, which 
reduces the bias towards multivalued features that 
occur in information gain, the Gini index or the 
inequality among values of a frequency distribution, 
and the Chi2 or dependence between the feature and 
the class as measured by the chi-square statistic. All 
these indexes are accessible in the scripts accompany-
ing this study as Supplementary Material.

In machine learning, overfitting occurs when an 
algorithm fits too closely or even exactly to its training 
data, resulting in a model that can’t make accurate 
predictions or conclusions from any data other than 
the training data. A model is overfitting the training 
data when the model performs well on the training 
data but does not perform well on the evaluation 
data. We thus watched the evaluation metrics; in case 
of overfitting, we reduced the feature selection (i.e. the 
number of explanatory variables selected simultane-
ously) and/or increased the number of passes on train-
ing data. We detected overfitting in four species of 
vertebrates: two species of the genus Lacerta and two 
species of the family Gliridae. They all have either a 
major distribution area in southern Palearctic (northern 
Africa) or eastern Palearctic. The target territory cap-
tured only the periphery of their ranges and therefore 
its niche was inadequately described. These species 
were removed from the final dataset and the modelling.

We chose the results of the modelling of 11 species 
of vertebrates as proof-of-concept to show the reliabil-
ity of the modelling algorithms regarding the reported/
modeled distribution of vertebrates. These species are 
large ungulates (Alces alces, Capreolus capreolus, Cervus 
elaphus), small-to medium-sized mammals (Erinaceus 
europaeus, Apodemus sylvaticus, Sorex araneus), small 
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birds (Parus major, three species of Turdus), and one 
species of reptiles (Lacerta lepida). Three Turdus species 
were selected to demonstrate the power of the pro-
posed methods to map their different areas of distri-
bution. The lacertid is restricted to the Mediterranean 
region and has been included to demonstrate the abil-
ity of the MLA to discern its known niche.

Evaluation of the habitat suitability for ticks in 
the target territory

To show the performance of the MLA for ticks, we per-
formed an explicit modelling of the expected occur-
rence of four species of ticks occurring in Europe, 
which are of interest to human or animal health, and 
for which enough geo-referenced field data exist [18], 
allowing adequate training of models. The dataset 
includes a total of more than 16,000 reliable records, 
with an accuracy of geolocation of about 1 kilometer. 
The four tick species were Ixodes ricinus, Dermacentor 
marginatus, Dermacentor reticulatus, and Hyalomma 
marginatum. We adhered to the same algorithms, pro-
tocols, pre-processing methods, and algorithm tunning 
described before for the vertebrates (see section 3). 
Algorithms were allowed to select features derived 
from the distribution of the vertebrates with explicitly 
comparing the performance of these variables in rela-
tion to the ones commonly used for tick modelling 
based on climate and landscape features (e.g. [5, 18, 
20]). The script for modelling the distribution of these 
four species of ticks is available as Supplementary 
Material.

Results

Tick species distribution is better modelled using 
climate and vegetation features

Three types of algorithms performed better than the 
other two in modelling the environmental niche of the 
four species of ticks that were tested. These include 
gradient boosting, random forest, and neural networks. 
Both AdaBoost and Naive Bayesian performed ~10% 
worse, assessed with the indicators of performance. 
The AUC values for each algorithm and species are 
included in Table 2. Supplementary Material 1 includes 
the complete set of indexes of performance of the five 
algorithms, including CA, F1, Precision, Recall, and 
MCC (see Methods for definition and interpretation of 
these indexes). In any case, the AUC was in line with 
the values of performance detected by other indexes; 
as mentioned, it was used as the index of reference in 
the validation of models. The performance of the top 

MLA for each species for calculating the probability of 
the presence of each tick species (which was consis-
tently Gradient Boosting) is included in Table 3.

The algorithm best predicting the habitat suitability 
for each tick species was used to capture the set of 
variables chosen as the best predictive set. It is inter-
esting to note that only the set of variables related to 
weather influenced the final models while the set of 
landscape-related variables was only secondary among 
the set of best descriptors. Each species had different 
landscape-related variables as better determinants of 
suitable habitat at the chosen scale, as shown in Table 
4. Only the top 15 explanatory variables were included 
in the summary table. Supplementary Material 1 
includes the complete set of variables and their relative 
contribution (measured by several indexes) to the best 
model obtained by the top-performing MLA. Most 
repeated features were related to the category of veg-
etation. In some cases, distance to impervious surface, 
buffer to grass areas, or type and category of forests 
were included in the models interpreted as an effect 
derived from the preferences of hosts. Importantly, no 
host-dependent variables were necessary to obtain the 
best models for the four target tick species. Interestingly, 
the selected tick species can be modelled without the 
inclusion of any vertebrate-derived variable. No MLA 
selected features regarding the habitat suitability for 
vertebrate species. Figure 1 shows the maps of pre-
dicted suitability (in terms of probability) for the four 
species of ticks modelled.

Interestingly, most of the tick species., except D. 
reticulatus, have a similar set of important features, 
indicated in color in Table 4, as evaluated by the ‘infor-
mation gain’ of the model after the selection of such 
feature(s). Therefore, most of the environmental niches 
of these ticks were dominated by a few prominent 
variables. The addition of other variables contributes 
to improving the predictive results, which is better 
seen for all species, except D. reticulatus, for which the 
contribution of each variable is poorer than for other 
species, probably indicating that the resolution of the 
dataset may not be suitable for this species.

Vertebrates are better modelled by landscape-
derived features

As for the results obtained for ticks, three different 
MLA (Gradient Boosting, Random Forest, and Neural 
Networks) outperformed AdaBoost and Naive Bayes in 
the modelling of the environmental niche of verte-
brate species that were tested as a proof-of-concept. 
Both AdaBoost and Naive Bayes performed ~15% 
worse, using the indicators of performance as 

https://doi.org/10.6084/m9.figshare.25197437
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mentioned. All the values of AUC for each algorithm 
and the vertebrate species selected for the proof-of-
concept are included in Table 5. Supplementary 
Material 2 includes the complete set of indexes of per-
formance of the five algorithms, including CA, F1, 
Precision, Recall, and MCC, for these species, as well as 
the contribution of each variable to the best model. In 
general, the 162 vertebrate species were modelled 
with a similar performance (with a specificity near 85% 
and sensitivity higher than 93%) independent of the 
taxonomic status of the animal (mammal, bird, reptile), 
the number of available records (in every case more 
than 500 georeferenced records for the target terri-
tory), and its known range (widely distributed or 
restricted to a region). Figure 2 includes the species 
outcome of vertebrates in the target area; this can be 
quickly translated into beta-diversity of vertebrates in 
the region. Supplementary Material 3 includes maps of 
the expected environmental suitability for the 11 ver-
tebrate species modelled as proof-of-concept. Other 
than the explanatory variables, the Geopackage dis-
tributed as Supplementary Material contains data of 
the predicted distribution of all species of mammals 
selected in the target territory.

Discussion

The objective of this study was twice, namely (i) the 
building of a dataset including the largest number of 
variables with ecological meaning that could be of inter-
est for studies regarding the epidemiology of ticks and 
tick-borne pathogens, and (ii) to elaborate on the ability 
of MLA to predict the range of the most important spe-
cies of ticks (and their hosts) affecting human health in a 

large territory like Europe. The distribution of the verte-
brates that act as hosts for the ticks or reservoirs for the 
pathogens they transmit is a concept of interest in a con-
cept for increasing the impact of machine learning to 
face infectious disease challenges [26], global change, 
and the spread of TBPs affecting human health world-
wide [1]. Automatic algorithms can systematically ingest 
information and produce ‘risk’ maps, with a focus on pre-
venting the transmission of TBPs to humans. To achieve 
this objective, we built an integral dataset of climate, 
vegetation, and landscape features for the European ter-
ritory, obtained from authorized sources of official institu-
tions, and conforming a grid over the target territory. 
Such dataset is intended as the backbone of future 
research on the topic demonstrating its capabilities to 
capture the environmental niche of the targeted organ-
isms. The final purpose is to improve human health since 
ticks are vectors of many human-threatening microor-
ganisms. Predictive mapping and evaluation of climate 
change scenarios (affecting the phenology and distribu-
tion of vertebrates) seem to be the best ways to achieve 
such active prevention.

The dataset includes (a) known physical (landscape) 
parameters affecting the distribution of ticks and their 
hosts, (b) the predicted distribution of 162 species of 
vertebrates that have been recorded as hosts for the 
ticks in the target territory, and (c) climate data, includ-
ing maximum and minimum temperatures and a mea-
sure of humidity in the air, which is missing in many 
studies regarding the expected habitat suitability for 
ticks [22]. Studies have addressed the importance of 
these variables in the modeling of tick environmental 
suitability [27]. We selected a grid format delivered in 
a GeoPackage file to incorporate the explanatory vari-
ables, in a common and open format, compatible with 
the current standards allowing sharing information 
associated with spatial structures; these variables are 
commonly available in a variety of other formats that 
could make it difficult to model over such a heteroge-
neous framework. It has been demonstrated that, at 
least for biological studies, a hexagonal design like the 
one produced in this study summarizes better the 
habitat structure in the territory covered by each cell 
[28]. This is the largest effort to produce a massive 
dataset for mapping purposes; as such, other algo-
rithms or modelling approaches have not been ever 
tested on the set of data released in this study.

In recent decades, efforts have been made to apply a 
variety of methods to the prediction of the environmen-
tal niche of ticks and TBPs [27, 29–31]. These strategies, 
however, has been criticized because of the poor choice 
of explanatory variables, that are expected to not reflect 
correctly the climate niche of the ticks, and/or the 

Table 2.  The AUC values of the best model for each of the 
four species of ticks tested.

Model AUC I. ricinus
D. 

marginatus D. reticulatus
H. 

marginatum
Gradient 

boosting
0.980 0.957 0.983 0.982

Random forest 0.966 0.937 0.964 0.968
AdaBoost 0.883 0.785 0.868 0.855
Neural 

network
0.952 0.923 0.960 0.962

Naive Bayes 0.870 0.847 0.888 0.914

The complete list of performance values for each algorithm is included as 
Supplementary Material 1.

Table 3.  The performance of gradient boosting for detecting 
presence or absence of the four target species of ticks.
Species Presence (%) Absence (%)

I. ricinus 93.1 85.4
D. marginatus 80.9 78.9
D. reticulatus 98.2 74.3
H. marginatum 98.6 79.1
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systematic use of a few methods of modelling [32, 33] 
without testing new possibilities. One of the main prob-
lems is the use of interpolated climate data originally 

conceived to describe Earth’s climate. At least in the case 
of ticks, the choice of the variables for modelling exer-
cises has been generally carried out by researchers after 
the subjective removal of some variables [34] based 
commonly on autocorrelation features. However, the 
elimination of these variables could eliminate the most 
prominent features explaining the actual distribution of 
the target organism. It has been demonstrated [32] that 
harmonic regression of temperature values produces a 
few variables that retain the maximum explanatory 
power. The first three coefficients of a harmonic regres-
sion can describe the seasonal variation of the variable, 
without the need for pre-tailored datasets [32] and 
accounting for an ecological perspective regarding the 
organism to be modelled. Other sources of unreliability 
commonly consider that the distribution of TBPs can be 
predicted using only the distribution of tick vectors (as 
mentioned in e.g. [33]). Ticks and reservoirs shape finely 
tuned biotic combinations that are behind major 
changes in pathogen prevalence across European bio-
topes [33, 35, 36]. Nevertheless, it is still far from com-
pletely understanding the phenomena that erect 
vertebrate communities [37, 38], and this is why we 
assumed a species-by-species model instead of a joint 
model of the communities.

Table 4.  The set of the explanatory variables that produced 
the better model for each species of tick.

I. ricinus
D. 

marginatus D. reticulatus
H. 

marginatum
VPD1 0.474 0.632 0.217 0.677
VPD_annual 0.468 0.686 0.204 0.658
TMax_annual 0.370 0.683 0.258 0.658
TCD_variance 0.341 0.106 0.070
TMax1 0.339 0.600 0.283
TMin1 0.335 0.233 0.349
TMin_annual 0.306 0.415 0.223 0.448
VPD2 0.290 0.382 0.133 0.485
VPD3 0.288 0.174 0.096 0.343
Buffer_Imperv 0.250 0.194 0.064
EEA_maj 0.246 0.391 0.184 0.223
TMin2 0.244 0.189 0.167 0.060
EEA_median 0.238 0.356 0.158 0.227
TMax3 0.224 0.280 0.221 0.105
TMax2 0.198 0.150
TMin3 0.207 0.145 0.100
TMax_annual 0.258
Impervious 

surface
0.117

EEA_min 0.114
TCD_median 0.055

The abbreviations used in the table correspond with the definitions of 
each variable in Table 1.  The color bars indicate the variables that have 
the greatest contribution in the modeling of each species of ticks.

Figure 1.  The modelled habitat suitability for the four species of ticks addressed in this study. (A) Ixodes ricinus. (B) Dermacentor 
reticulatus. (C) Dermacentor marginatus. (D) Hyalomma marginatum. The modelled habitat suitability of 11 species of verte-
brates used as proof-of-concept is included in the Supplementary Material.
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Our results showed that models of tick distribu-
tion were not improved by the inclusion of the dis-
tribution of hosts. This is important in the modern 
context of the epidemiology of TBPs because may be 
indicative of the probable lack of importance of ver-
tebrate species [39, 40]. Results are suggestive that 
key hosts may be necessary for the circulation of 
selected TBPs [39]. A continuum of species-abundance 
patterns of the community of vertebrates, that 
changes across the space, could thus be responsible 
for the support of most TBPs. These communities of 
vertebrates would distribute along patterns of cli-
mate and landscape variables, replacing one to each 
other in the space promoting a gradient of TBPs cir-
culation. Under this hypothesis, the abrupt decline 
or absence of several vertebrates simultaneously 
would be responsible for the absence of the patho-
gens. The challenge is the modeling of the tick  
distribution against the groups of vertebrate’s com-
munities. We consider that although an improved 
modeling framework could be an efficient method to 
address the impact of key hosts on tick’s distribution 
patterns, only field surveys can produce the neces-
sary data supporting the importance (even at local 

scales) of different species of hosts in the mixture of 
a community assemblage.

The largest approach to a European-wide modeling 
of several tick species has been addressed previously 
using null-models and looking for a clear climate sig-
nal shaping the predicted tick distribution [41]. This 
study concluded that only one tick species (Hyalomma 
lusitanicum, not included in the current study) did not 
show a strong climate signal and elaborated on the 
probable role of vertebrates in shaping the niche of 
the tick. While we consider that the modeling back-
ground developed in that previous study is solid and 
coherent, we wonder if the few records of the tick 
available in the compilation used by the authors pro-
duced the confusing results as reported [41]. We inter-
pret these findings as the dimensions of a hypervolume 
formed by the number of explanatory variables (fea-
tures). Each tick species colonizes different portions of 
the dimensions of such hypervolume shaped by cli-
mate and landscape variables. The axes of the hyper-
volume of TBPs could include both the ‘basic’ set of 
variables defining tick distribution, plus the ones 
derived from vertebrates, a concept that has been 
approached on several occasions in ecology and 

Table 5.  The values of AUC for each model of 11 vertebrate species modelled as a proof-of-concept.
Algorithm Aa As Cc Ce Ee Ll Le Sa Pm Ti Tm Tp

Gradient 
boosting

0.978 0.985 0.969 0.977 0.975 0.979 0.959 0.980 0.953 0.975 0.954 0.963

Random forest 0.978 0.984 0.970 0.977 0.977 0.979 0.963 0.980 0.955 0.976 0.960 0.967
AdaBoost 0.873 0.895 0.848 0.872 0.866 0.869 0.834 0.880 0.825 0.861 0.825 0.838
Naive Bayes 0.846 0.885 0.809 0.863 0.849 0.852 0.803 0.840 0.802 0.876 0.795 0.820
Neural network 0.976 0.986 0.961 0.976 0.972 0.981 0.953 0.975 0.948 0.972 0.945 0.957

Included are Alces alces (Aa), Apodemus sylvaticus (as), Capreolus capreolus (Cc), Erinaceus europaeus (Ee), Lacerta lepida (Ll), lepus europaeus (Le), 
Sorex araneus (Sa), Parus major (Pm), Turdus iliacus (Ti), Turdus merula (Tm), and Turdus philomelos (Tp).

Figure 2.  The species outcome (species diversity, beta diversity) of the vertebrates in the target area. The species outcome (spe-
cies diversity, beta diversity) of the vertebrates in the target area. Wide areas of low species outcome over Russia and neighboring 
countries are not because these areas have low diversity of vertebrates. Models were produced for vertebrates with a European 
distribution range, therefore not colonizing territories at the east of the main target area of study (as shown in the figure).
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epidemiology [42]. Attention must be paid to the fact 
that such a concept would be lost if a reduction in 
principal components is used to simplify the number 
of explanatory variables (as reported in Refs. [43, 44]).

It is difficult to model the distribution of vertebrates 
at such a large scale because of several possible gaps, 
such as (a) the different collection pressures carried 
out at different sites in Europe, producing heteroge-
neous collections of records, (b) the status of some 
species as protected or of difficult trapping, rendering 
few georeferenced records to train models, or (c) the 
scientific interest of a species in the circulation of 
pathogens of any kind that increases its surveillance, 
thus resulting in an extra number of records relative to 
other species. All these effects produce a bias in the 
known distribution of species. As expected, the verte-
brates included in this study were better modelled 
with combinations of landscape-derived variables, 
such as the type of forest, the buffer effect of some 
vegetation types, or the distance to human shelters or 
impervious areas. Although climate may play a role 
shaping the distribution of some species, the rule 
observed is that vertebrates are mainly affected by 
landscape features. This has an effect that pervades 
the modelling of ticks because landscape-derived vari-
ables have also been selected in tick models, although 
ranked in less prominent positions. The expected dis-
tribution of ticks was adequately captured [45] but we 
noticed a critical gap in modelling the distribution of 
D. reticulatus. It is well known that D. reticulatus per-
manently colonizes regions east of the area calculated 
by our models [46]. This underprediction has not been 
captured by the measures of sensitivity and specificity 
of the model. This points to an issue borne in the cal-
ibration of the model with insufficient data or without 
reliable records [44, 45]. We consider the most proba-
ble source of error to be the coarser resolution used in 
the current study. It has been reported (e.g. [46–48]) 
that this tick may occur in small patches because local 
conditions that could not be captured by the rough 
resolution of the grid dataset. This is something that 
should be considered in future developments, aiming 
to conciliate the different modelling approaches with 
particularly complex species.

Our results cannot support the recently revisited 
modeling of H. marginatum in its range [49]. The 
expected distribution of such prominent tick species 
has been reported several times [50–53] and these 
outcomes overlap well with the expected resolution of 
the tick as shown in our study, even if developed at 
low resolution and using radically different algorithms. 
We consider that the unexpected results reported for 
H. marginatum in Ref. [49] in which a Mediterranean 

tick was predicted to have suitable habitat in, e.g. 
northern Scotland and most of central Europe resulted 
from the poor choice of records (including those 
reported as ‘invasive’ in central and northern Europe, 
and unverified records disconnected from the main 
population area) and the incorrect selection of explan-
atory variables. Given the importance of H. margina-
tum in human health, we consider urgent the 
verification of these results [49] that are not congruent 
with any other approach to the known distribution 
and modeling of the species. The lack of Supplementary 
Material in the original publication [49] makes unfeasi-
ble any corroboration. In any case, it results complex 
the comparison of the MLA modelling approach with 
other methods commonly used for tick distribution 
modelling [13, 19, 29, 32]. A comparison of methods 
has not been carried out, because other methods have 
been commonly driven by explanatory layers as raster 
data. Our approach has been the opposite: summariz-
ing explanatory variables in coherent blocks of infor-
mation that are statistically tractable by solid statistics. 
Future studies should address comparative modelling 
results, and field studies about vertebrate communi-
ties, climate, and ticks, would confirm the findings pre-
dicted in the current approach. The deep study of the 
many ‘combinations’ of hosts and ticks, together with 
an accurate dataset of pathogen’s prevalence in ticks 
and hosts for the whole territory (with different spe-
cies of vectors and reservoirs) is ongoing

The spread of ticks affecting human health and 
their impact on the world health system has enhanced 
efforts to predict and anticipate their impact on 
human health. Reliable and precise methods are nec-
essary to handle the variable, non-linear interactions 
among variables since these variables define (a) the 
ecological niche of organism(s) and (b) the areas of 
risk for humans (once translated into a map). We con-
sider that MLA can be used in a chain of decisions 
aimed at improving these aspects of human health. 
The results of these models can be applied to a bet-
ter design of preventive and control interventions for 
TBP, such as personalized medicine-based vaccines 
and therapeutics.
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