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A B S T R A C T

In the context of our increasingly digitalized society, virtual interactions have become integral to daily
communication, complementing traditional face-to-face interactions. These digital pathways, however, are
often overlooked in the context of epidemic control, particularly in Digital Contact Tracing, where adoption
rates of tailored wearable applications for this purpose remain suboptimal. This study elucidates the key role
of the virtual environment in managing infectious disease outbreaks. We develop an integrated framework
that combines various detection strategies to assess the efficacy of virtual tools in bending epidemic waves,
analogous to conventional Contact Tracing approaches. Our analysis extends to the dynamics of higher-order
interactions — characteristic of virtual platforms — and their contribution to epidemic control. Furthermore,
we investigate the interplay between physical and virtual interactions, that aligned interactions optimize
epidemic control in daily routine scenarios. Our findings underscore the critical role of virtual interactions
in epidemic management, suggesting that current societal structures inherently support innovative detection
and control strategies.
1. Introduction

In today’s digital age, digital technologies significantly enhance
public health responses to infectious diseases by speeding up and
refining epidemic control [1,2] through advanced tools and services
like awareness campaigns [3] and Contact Tracing applications [4].
Recent research has shown that Digital Contact Tracing can drastically
reduce epidemic spread [5–15], particularly through early detection
of cases that allows a swift isolation of superspreaders that efficiently
alters the epidemic trajectory. However, despite its benefits, Digital
Contact Tracing has had limited effectiveness in the context of COVID-
19 [13]. In particular, it has been shown that Digital Contact Tracing
has prevented less than 10% of cases [14,15] in countries such as
Spain, Germany or UK due to a rather low adoption rates of the digital
applications that, for instance, only reached the 21% in the case of
Spain [16].

Shifting from traditional health-based tracing, in this work we
analyze a decentralized approach that leverages social media to en-
hance detection by empowering individuals to disclose their infectious
status. This approach, here termed as Self-Reported Digital Alert (SRDA),
facilitates a quick and broad communication of exposure — prompting
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their contacts to seek testing — and potentially overcomes the adop-
tion challenges faced by conventional tracing applications. This latter
advantage relies on the use of online social platforms, like WhatsApp,
to leverage their vast user base that, in the latter case, has recently
reached approximately 2.78 billion active users [17].

Apart from the large coverage of well-established digital commu-
nication platforms, their use to disseminate SRDAs offers a distinct
advantage: most of the communication channels through social plat-
forms are group-based (61% in the case WhatsApp). Thus, at variance
with the pairwise nature of Digital Contact Tracing, modeling the
impact of SRDA propagation necessitates considering higher-order in-
teractions among users. The characteristics of higher-order interactions,
extensively studied in the field of complex systems [18–20], may
significantly affect the onset of collective behaviors as shown in diverse
contexts such as percolation [21–23], synchronization [24–27] or social
dynamics [28–32]. Thus, in our case, we anticipate that higher-order
interactions will be crucial in enhancing the efficacy of SRDAs for
controlling epidemic waves.

To show how the propagation of SRDAs through virtual platforms
we have followed the following steps. First, in Section 2, we introduce a
https://doi.org/10.1016/j.chaos.2024.115592
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general compartmental framework where epidemic spreading competes
with three different detection pathways: namely symptomatic detection
(SD), Digital Contact Tracing (CT), and those coming from SDRAs in vir-
tual platforms and thus called virtual detection (VD). While the former
two (SD and CT) are well-known detection routes acting either at the
individual level (SD) or through pairwise interactions (CT), the latter
(VD) relies on the structure of higher-order interactions accounting for
virtual communication channels. Thereafter, in Section 3 we address
the following two questions: (i) what does VD add to the well-known
SD and CT detection routes? and (ii) what is the role of higher-order
structures in boosting the effects of VD on epidemic control? Finally,
in Section 4, we study epidemic control in realistic scenarios where
the physical network and the projection of the virtual structure are
not coincident. To this aim, we consider eight face-to-face interaction
networks as diffusion spaces for the epidemic. To round off, in Section 5
we draw the main conclusions of our study.

2. Modeling contagion and detection processes

Detection strategies such as Contact Tracing and the proposed Vir-
tual Detection through SRDA propagation can be modeled as a con-
tagion process. In this process, those individuals with the infectious
state detected contribute to identifying other positive cases within their
social network. This mechanism competes with the direct spread of
the virus, thus aiming to curtail its transmission by pinpointing and
isolating those actively spreading the infection. It is important to note
that the cascade of detections triggered by CT and VD is only activated
provided the virus is present in the system and, more importantly, once
the first individuals participating in these cascades have tested positive
after displaying symptoms.

2.1. Compartmental model

To incorporate the combined detection dynamics into a model for
understanding the transmission of SARS-CoV-2, we build an epidemic
model with seven states or compartments: Susceptible (𝑆), Exposed
(𝐸), Pre-symptomatic (𝑃 ), Infectious asymptomatic (𝐼𝐴), Infectious
symptomatic (𝐼𝑆 ), Detected (𝐷), and Removed (𝑅). The transitions
between these states are depicted in Fig. 1 and are explained below.
Individuals designated as Susceptible (𝑆) are those who are currently
healthy and can potentially become infected. This infection can occur
through direct contact with Pre-Symptomatic (𝑃 ), Asymptomatic (𝐼𝐴)
and Symptomatic (𝐼𝑆 ) Infectious agents, being the associated infectivi-
ties: 𝛽𝐴, 𝛽𝐴 and 𝛽𝑆 , respectively. Upon infection, a Susceptible agent
transforms into the Exposed (𝐸) state. The Exposed state (𝐸) corre-
sponds to a stage during which an individual exhibits no symptoms
and is non-contagious. This state persists for an average duration of
𝜂−1 days. Following the 𝐸 state, individuals transition to the Pre-
symptomatic state (𝑃 ). In this stage, no symptoms are apparent, but
the individual is already contagious, with a contagion rate denoted as
𝛽𝐴. In the absence of detection, individuals remain in this 𝑃 state for
an average period of 𝛼−1 days. Following the Pre-symptomatic stage, a
fraction (1 − 𝑝) individuals may persist as asymptomatic (𝐼𝐴). Those in
the 𝐼𝐴 compartment share similar characteristics in terms of infectivity
and detectability as those in the 𝑃 stage. In the absence of detection,
individuals in this compartment remain, on average, for 𝜇−1 days before
transitioning to the Removed state (𝑅). Conversely, the remaining frac-
tion (𝑝) of individuals from the 𝑃 stage proceed to become Infectious
symptomatic (𝐼𝑆 ). This compartment is distinguished by the infectivity
denoted as 𝛽𝑆 when coming into contact with an 𝑆 agent. Similar
to the 𝐼𝐴 compartment, individuals in the 𝐼𝑆 compartment spend an
average of 𝜇−1 days before progressing to the Removed state (𝑅), unless
detected before this transition occurs.

Central to our study is the dynamics around the Detection compart-
ment (𝐷). This stage is accessible to individuals in the 𝑃 , 𝐼𝑆 , and 𝐼𝐴
states and, as described in the introductory part, agents in these latter
compartments can be detected through three different pathways:
2 
Fig. 1. Compartmental model and interaction channels in spreading and detec-
tion dynamics. (a) Spreading and detection compartmental model is described. The
model has seven compartments: susceptible (𝑆), exposed (𝐸), presymptomatic (𝑃 ),
infectious asymptomatic (𝐼𝐴), infectious symptomatic (𝐼𝑆 ), detected (𝐷), and recovered
(𝑅). Arrows indicate the possible transitions between different states. (b) Types of
interactions between individuals: pairwise physical interactions (gray lines) and higher-
order virtual interactions (light-blue structures). (c) Schematic representation of the
set of matrices {𝜟(1) ,… ,𝜟(𝑀)} embodying the correlations between the two interaction
pathways for each order of interaction (𝑚). In particular, 𝛥(1)

𝑖𝑗 = 1 if nodes 𝑖 and 𝑗
interact both physically and through a virtual group of order 𝑚 = 1, and 𝛥(1)

𝑖𝑗 = 0
otherwise. Similarly, 𝛥(2)

𝑖𝑗 = 1 if nodes 𝑖 and 𝑗 interact both physically and through a
virtual group of order 𝑚 = 2, and 𝛥(2)

𝑖𝑗 = 0 otherwise. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

1. Symptomatic Detection (SD). Symptomatic infectious individuals
(those in 𝐼𝑆 ) can be promptly identified as they exhibit symp-
toms with rate 𝛿, which is related to the average time elapsed
from the onset of symptoms to taking a viral test. After the
detection of symptomatic agents, the other detection routes are
initiated.

2. Contact Tracing Detection (CT). The identification of infectious
cases (those in compartments 𝑃 , 𝐼𝐴, and 𝐼𝑆 ) can occur through
Contact Tracing. In this context, we consider that a fraction 𝑓
of the population utilizes a detection application. Consequently,
an agent can be identified provided that both the detected indi-
vidual (in 𝐷) and the corresponding infectious contact (either in
𝑃 , 𝐼𝐴, or 𝐼𝑆 ) are equipped with the tracking application, which
happens with probability 𝑓 2. Hence, the detection rate 𝛱𝐶𝑇 ,
introduced in Fig. 1(a), depends both on the mutual adoption
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Table 1
Collection of epidemiological parameters of the 𝑆𝐸𝑃𝐼𝐴𝐼𝑆𝑅 model whose values are
fixed and taken from observations regarding SARS-CoV-2 propagation (see references).

Parameter Explanation Value Reference

𝜂 Rate 𝐸 → 𝑃 1∕2.5 day−1 [34]
𝛼 Rate 𝑃 → 𝐼𝐴 , 𝐼𝑆 1∕2.5 day−1 [34]
𝑝 Fraction of Symptomatic 0.65 [35]
𝜇 Rate 𝐼𝐴 , 𝐼𝑆 → 𝑅 1∕7 day−1 [36,37]

of the application and on the physical interaction of the agents
(which guarantees the recording of the contact).

3. Virtual Detection (VD). In addition to CT, the identification of
infectious cases (those in 𝑃 , 𝐼𝐴, and 𝐼𝑆 ) can also occur via
individuals propagating SRDAs virtually. In our model, SDRAs
are released through virtual groups (of arbitrary size) to which
the infectious user takes part of, and we term the rate at which
infectious (undetected) cases decide to undergo testing following
this group interaction channel as 𝛱𝑉 𝐷.

Finally, regardless of the compartment of provenance, once in the
state an infectious individual cannot spread the pathogen due to

solation, moving to the final stage 𝑅 with a rate 𝛾. Let us note that the
odel assumes that detected individuals remain in isolation and stop

preading the disease. This has been reported to be the case in South
orea during the COVID-19 pandemic [33], where the population
howed an unwavering commitment. Nevertheless, the impact of those
ree-riders who do not follow the sanitary rules can be captured as a
actor that reduces the actual detection rates.

According to the former description, the 𝑆𝐸𝑃𝐼𝐴𝐼𝑆𝑅 model com-
prises six epidemiological parameters (plus two more related to the
detection process). The values of four of the six epidemiological pa-
rameters are outlined in Table 1 , while the values of the remaining
two (the infectivities 𝛽𝐴 and 𝛽𝑆 ) depend on the specific network under
analysis. In particular, the values of 𝛽𝐴 and 𝛽𝑆 are chosen such that,
in the absence of detection policies, the final size of the epidemic (the
attack rate 𝑟∞) is the same (𝑟∞ = 0.9) for all the networks analyzed.

Lastly, regarding the two parameters that characterize detections,
𝛾 and 𝛿, we fix 𝛾 = 1 while we choose a small value, 𝛿 = 0.05, for the
𝑆𝐷 rate that trigger the detection channels related to 𝐶𝑇 and 𝑉 𝐷. This
low value allows us to analyze the isolated and intertwined effects of
CT and VD.

2.2. Interaction backbone mediating contagion and detection processes

As shown in Fig. 1(a) and described in the former section, four
different transitions are associated to interactions between agents in
the system. Namely: 𝑆 → 𝐸, 𝑃 → 𝐷, 𝐼𝑆 → 𝐷, and 𝐼𝐴 → 𝐷.

As usual in network epidemiology, we assume that pairwise inter-
actions are dictated by a graph of 𝑁 nodes (the amount of individuals)
and whose 𝐿 edges are encoded in an 𝑁 × 𝑁 adjacency matrix, 𝐀 =
{𝑎𝑖𝑗}, whose entries 𝑎𝑖𝑗 = 1 when nodes 𝑖 and 𝑗 interact, and 𝑎𝑖𝑗 = 0
otherwise. With the help of this matrix we can define the number of
pairwise physical interactions (the degree) of a node 𝑖 as: 𝑘𝑖 =

∑𝑁
𝑗=1 𝑎𝑖𝑗 .

In general, in this manuscript, we will consider face-to-face contact data
to construct the network of physical interactions. The characteristics of
the real networks considered are summarized in Table 2 and, although
some of the datasets have temporal resolution, we restrict our study to
their static coarse-graining by setting, for these time-varying data sets,
a temporal window of five minutes as the minimum interaction time to
define a link in the static version of the graph.

Pairwise physical interactions govern completely the backbone of
contagion processes, i.e. the transitions 𝑆 → 𝐸, since these events
correspond to physical interactions. This way, a Susceptible node 𝑖
whose neighbor set contains agents in states 𝑃 , 𝐼𝐴 and 𝐼𝑆 can be

nfected by these individuals with the rates described above. In addition

3 
able 2
tatistics of real-world physical interaction networks. Number of nodes and average
onnectivity after processing the data as indicated in the manuscript.
Network 𝑁 𝑘 Reference

Malaui village 84 8 [38]
Hospital 72 10 [39]
Scientific conference 330 5 [40]
French high school 324 9 [41]
Workplace 212 9 [42]
Primary school 242 16 [43]
American high school 784 60 [44]
University 675 101 [45]

to contagion processes, the network encapsulated in 𝐀 also dictates
those detection processes (𝑃 → 𝐷, 𝐼𝑆 → 𝐷, and 𝐼𝐴 → 𝐷) activated
hrough the CT pathway, since it operates through reconstructing those
ncounters recorded by the application and, obviously, they correspond
o physical interactions.

Differently to CT, those detections made via the VD channel do
ot operate solely through a complex network of pairwise virtual
nteractions but, instead, use to take place through groups rather than
dges. These groups in which SRDAs are disseminated by infectious
and detected) agents are called hyperedges and, all together, form
nother interaction backbone termed hypergraph. In the hypergraph
he collection of groups can be grouped in different sets according to
he number of members they contain. In this way, all the groups of 𝑚+1
ndividuals compose the class of hyperedges of order 𝑚, with 𝑚 ∈ [1,𝑀]
note that 𝑚 = 1 correspond to groups of 2 individuals, i.e. virtual links).
s shown in Fig. 1(b) the collection of virtual groups (hyperedges)
nd that of physical edges coexist in such a way that provide different
eans of interactions to a particular set of individuals.

In order to illustrate the microscopic mechanisms involved in VD
nd taking place on the hypergraph structure let us focus, without any
oss of generality, on one particular order 𝑚 and a particular node 𝑖.
his way, the set  (𝑚)

𝑖 is the collection of all the hyperedges which node
belongs to. The cardinality of  (𝑚)

𝑖 corresponds to the generalized de-
ree of order 𝑚 of node 𝑖, defined as 𝜅(𝑚)

𝑖 , so that  (𝑚)
𝑖 = {𝜎𝑖 (𝑚)1 ,… , 𝜎𝑖 (𝑚)

𝜅(𝑚)𝑖

}.

nce the set  (𝑚)
𝑖 is defined it is useful to quantify the overlap of each

roup 𝜎𝑖 (𝑚)𝛼 with the physical contacts of node 𝑖 which are dictated by
he adjacency matrix 𝐀. To this aim let us first define, for each order
f interaction 𝑚, an adjacency tensor 𝐀(𝐦) = {𝑎(𝑚)𝑖,𝑗1 ,…,𝑗𝑚

}, whose entries
(𝑚)
𝑖,𝑗1 ,…,𝑗𝑚

= 1 in case the set of nodes {𝑖, 𝑗1,… , 𝑗𝑚} corresponds to any
f the groups 𝜎𝑖 (𝑚)𝛼 ∈  (𝑚)

𝑖 , whereas 𝑎(𝑚)𝑖,𝑗1 ,…,𝑗𝑚
= 0 otherwise. Second, we

efine a matrix �̂�(𝑚) = {�̂�(𝑚)𝑖𝑗1
} whose elements are �̂�(𝑚)𝑖𝑗1

= 𝛩
(

𝑎(𝑚)𝑖,𝑗1…,𝑗𝑚

)

,
here 𝛩 is the Heaviside function. Therefore, we have �̂�(𝑚)𝑖𝑗 = 1 only

when nodes 𝑖 and 𝑗 are involved in at least one interaction of order 𝑚,
hereas �̂�(𝑚)𝑖𝑗 = 0 otherwise. Finally, the pairwise physical connections

hat are replicated in groups of order 𝑚 can be captured in a new matrix
(𝑚) whose elements are 𝛥(𝑚)

𝑖𝑗 = �̂�(𝑚)𝑖𝑗 ⋅ 𝑎𝑖𝑗 so that 𝛥(𝑚)
𝑖𝑗 = 1 when there is

both a physical interaction and a virtual interaction of order 𝑚 between
nodes 𝑖 and 𝑗, while 𝛥(𝑚)

𝑖𝑗 = 0 otherwise, as illustrated in Fig. 1(c). These
projection of group interactions into the backbone of physical edges
will play an important role in defining 𝛱𝑉 𝐷 as we will explain below.

Let us also note that we are assuming undirected virtual inter-
actions, as we consider that in the context of SRDAs dissemination,
regardless of the social relevance of the individual who disseminates
information about their infectious status, the key factor influencing
their impact on the recipient is whether or not there was physical
contact between the two individuals.

2.3. Microscopic dynamical equations

The dynamics of the introduced compartmental model can be an-

alyzed through a set of coupled differential equations. To this end,
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we consider that the dynamical state of a node 𝑖 at a time 𝑡 is char-
cterized by the probabilities of being susceptible (𝜌𝑆𝑖 (𝑡)), exposed

(𝜌𝐸𝑖 (𝑡)), presymptomatic (𝜌𝑃𝑖 (𝑡)), infectious asymptomatic (𝜌𝐼𝐴𝑖 (𝑡)), infec-
tious symptomatic (𝜌𝐼𝑆𝑖 (𝑡)), detected (𝜌𝐷𝑖 (𝑡)) and recovered (𝜌𝑅𝑖 (𝑡)). The
differential equations describing the evolution of these probabilities are
written as follows:

�̇�𝑆𝑖 = −𝛱𝑆𝐸
𝑖 (𝑡)𝜌𝑆𝑖 (𝑡) , (1)

�̇�𝐸𝑖 = −𝜂𝜌𝐸𝑖 (𝑡) +𝛱𝑆𝐸
𝑖 (𝑡)𝜌𝑆𝑖 (𝑡) , (2)

�̇�𝑃𝑖 =
[

−𝛼 −𝛱𝐶𝑇
𝑖 (𝑡) −𝛱𝑉 𝐷

𝑖 (𝑡)
]

𝜌𝑃𝑖 (𝑡) + 𝜂𝜌𝐸𝑖 (𝑡) , (3)

�̇�𝐼𝐴𝑖 =
[

−𝜇 −𝛱𝐶𝑇
𝑖 (𝑡) −𝛱𝑉 𝐷

𝑖 (𝑡)
]

𝜌𝐼𝐴𝑖 (𝑡) + (1 − 𝑝)𝛼𝜌𝑃𝑖 (𝑡) , (4)

�̇�𝐼𝑆𝑖 =
[

−𝜇 − 𝛿 −𝛱𝐶𝑇
𝑖 (𝑡) −𝛱𝑉 𝐷

𝑖 (𝑡)
]

𝜌𝐼𝑆𝑖 (𝑡) + 𝑝𝛼𝜌𝑃𝑖 (𝑡) , (5)

�̇�𝐷𝑖 = −𝛾𝜌𝐷𝑖 (𝑡) + 𝛿𝜌𝐼𝑆𝑖 (𝑡)

+
[

𝛱𝐶𝑇
𝑖 (𝑡) +𝛱𝑉 𝐷

𝑖 (𝑡)
]

[

𝜌𝑃𝑖 (𝑡) + 𝜌𝐼𝐴𝑖 (𝑡) + 𝜌𝐼𝑆𝑖 (𝑡)
]

(6)

�̇�𝑅𝑖 = 𝛾𝜌𝐷𝑖 (𝑡) + 𝜇
[

𝜌𝐼𝐴𝑖 (𝑡) + 𝜌𝐼𝑆𝑖 (𝑡)
]

, (7)

Since the sum of probabilities associated to a node 𝑖 must remain equal
to 1 we have:

�̇�𝑆𝑖 (𝑡) + �̇�𝐸𝑖 (𝑡) + �̇�𝑃𝑖 (𝑡) + �̇�𝐼𝐴𝑖 (𝑡) + �̇�𝐼𝑆𝑖 (𝑡) + �̇�𝐷𝑖 (𝑡) + �̇�𝑅𝑖 (𝑡) = 0, (8)

so that the set of 7 equations per node can be reduced to 6, yielding a
set of 6𝑁 coupled differential equations for the whole system.

Now let us describe the terms associated to transitions due to
pairwise or group interactions. In the former set of equations, these
transitions are captured by the rates 𝛱𝑆𝐸

𝑖 , 𝛱𝐶𝑇
𝑖 and 𝛱𝑉 𝐷

𝑖 (𝑡) that ac-
count for Infections, Contact Tracing Detections and Virtual Detections
respectively. These three rates read as follows:

𝛱𝑆𝐸
𝑖 (𝑡) =

𝑁
∑

𝑗=1
𝑎𝑖𝑗

{

𝛽𝐴
[

𝜌𝑃𝑗 (𝑡) + 𝜌𝐼𝐴𝑗 (𝑡)
]

+ 𝛽𝑆𝜌
𝐼𝑆
𝑗 (𝑡)

}

, (9)

𝛱𝐶𝑇
𝑖 (𝑡) =

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑓

2𝜌𝐷𝑗 (𝑡) , (10)

𝛱𝑉 𝐷
𝑖 (𝑡) =

𝑀
∑

𝑚=1

𝜅(𝑚)𝑖
∑

𝛼=1
𝛯𝑖(𝜎𝑖 (𝑚)𝛼 ) . (11)

As anticipated, Eqs. (9) and (10), accounting for the Infection and
Contact Tracing detection rates, are built upon summing over the
contributions from physical neighbors of node 𝑖, i.e. mediated by the
elements of the 𝑖th row of the adjacency matrix 𝐀. In contrast, the
last expression, Eq. (11), accounts for the detection rate due to the
dissemination of SRDAs through hyperedges and, therefore, the rate
comprises the sum across all possible orders and, for each order 𝑚, it
considers each of the 𝜅(𝑚)

𝑖 groups in the set  (𝑚)
𝑖 .

The modeling of the contribution of each group to the detection
rate, denoted in Eq. (11) as 𝛯𝑖(𝜎

𝑖 (𝑚)
𝛼 ), reads as follows:

𝛯𝑖(𝜎𝑖 (𝑚)𝛼 ) = 𝜉(𝑚)𝐷(𝜎𝑖 (𝑚)𝛼 )
⎡

⎢

⎢

⎣

∑

𝑗∈𝜎𝑖 (𝑚)𝛼
𝜌𝐷𝑗 (𝑡)

𝑚

⎤

⎥

⎥

⎦

𝜈(𝑚)

, (12)

here 𝐷(𝜎𝑖 (𝑚)𝛼 ) is the expected number of detected neighbors of node 𝑖
elonging to the virtual hyperedge of order 𝑚 𝜎𝑖 (𝑚)𝛼 with which node 𝑖
lso has physical interaction. This quantity reads:

(𝜎𝑖 (𝑚)𝛼 ) =
∑

𝑗∈𝜎𝑖 (𝑚)𝛼

[

𝛥(𝑚)
𝑖𝑗 𝜌𝐷𝑗 (𝑡)

]

. (13)

The expression in Eq. (12) can be explained as follows: 𝜉(𝑚) is the
ate at which the result is obtained once the node 𝑖 decides to go testing,
his rate is activated (and multiplied) by the number of SRDAs launched
n the group which are also physical contacts of 𝑖, Eq. (13), while the
ast term accounts for an echo chamber effect that captures the synergy
ith the group towards testing. Therefore, synergy results from a peer

ressure created by the group chat environment and becomes more

4 
elevant when the relative fraction of positives present in the group
s large. This last term is also modulated by an exponent 𝜈(𝑚) which
ontrols the non-linearity of the synergistic detection process. This
ay, in a similar way as introduced in [46,47], social reinforcement

inhibition) to undergo testing corresponds to rates 𝜈(𝑚) < 0 (𝜈(𝑚) > 0).
he linear contribution, i.e. 𝛯𝑖(𝜎

𝑖 (𝑚)
𝛼 ) = 𝜉(𝑚)𝐷(𝜎𝑖 (𝑚)𝛼 ), is recovered by

etting 𝜈(𝑚) = 0.
Finally, let us note that the expression chosen 𝛱𝑉 𝐷

𝑖 (𝑡) is inspired by
he infection rate introduced by St-Onge et al. [48] in the context of
ocial spreading dynamics. In this latter case, the infection rate for a
ealthy node through one of its hyperedges increases with the number
f infectious neighbors within that hyperedge, in contrast to traditional
pproaches on simplicial models of social contagion [28], in which the
nfection pathway through a particular hyperedge is only activated in
ase all the acquaintances belonging to this hyperedge are infectious.

. The dynamics of Self-Reported Digital Alerts

In this section we analyze the dynamics of contagion processes in
ompetition with the spread of detection cascades by exploring the
ynamical behavior of the 𝑆𝐸𝑃𝐼𝐴𝐼𝑆𝑅 model introduced above. Our
nalysis are carried out by integrating the set of Eqs. (1)–(7) from a
nitial condition consisting on a small infectious seed homogeneously
istributed (𝜌𝐸𝑖 (0) = 0.01, ∀𝑖 ∈ 𝑁). The dynamics is then analyzed
ntil the unique equilibrium in which the population splits between
usceptible and recovered (i.e. 𝜌𝑆𝑖 + 𝜌𝑅𝑖 = 1, ∀𝑖 ∈ 𝑁) is reached. This
nalysis enables us to unveil and characterize the contribution of the
issemination of SRDAs to the mitigation of epidemic waves in the
ollowing sections.

.1. Self-Reported Digital Alerts versus Contact tracing

We start analyzing the individual effect of Virtual Detections on
pidemic control by assuming, as a first approach, that both physical
nd virtual interactions take place on the same pairwise network (so
hat group interactions do not apply at this stage and 𝑀 = 1) and that
ynergy is linear 𝜈(1) = 0.

In Fig. 2(a) we show the time evolution of the fraction of individuals
hat are infected at time 𝑡,

(𝑡) = 1
𝑁

𝑁
∑

𝑖=1
𝜌𝑆𝑖 (𝑡)𝛱

𝑆𝐸
𝑖 (𝑡), (14)

sing as the backbone for physical and virtual interactions the face-to-
ace contact data from an American high school [44], whose charac-
eristics are summarized in Table 2. Considering, as anticipated above,

negligible fraction of symptomatic detection 𝛿 = 0.05 to trigger
etection and removing the contribution of Contact Tracing by setting
= 0, we observe how the dissemination of SDRAs behind VD promotes

he bending of the epidemic curve, i.e. the anticipation and reduction
f the epidemic peak. In particular, larger values of 𝜉 = 𝜉(1) lead to
faster (and larger) mitigation, providing an alternative way to bend

he epidemic curve without the need to implement CT applications in
obile phones.

To illustrate the isolated and intertwined effect of detection strate-
ies (CT and VD), we show in Fig. 2(b) the attack rate,

∞ = lim
𝑡→∞

1
𝑁

𝑁
∑

𝑖=1
𝜌𝑅𝑖 (𝑡), (15)

ith respect to both 𝜉 and 𝑓 . The shape of the contour lines indicates
he complementary effect of the two detection strategies. Nevertheless,
D reduces the epidemic size more than CT, e.g., while the curve of
∞ = 0.7 crosses the 𝑥-axis (absence of VD) at 𝑓 ≈ 0.7, it only requires
𝜉 ≈ 0.5 to achieve the same attack rate in the absence of CT (when the
curve crosses the 𝑦-axis). The reason behind this asymmetry between
CT and CD has its roots on the functional form of the VD rate, Eq. (11).
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Fig. 2. Virtual Detection bends the epidemic wave. (a) Temporal evolution of the fraction of new contagions given 𝛿 = 0.05 and 𝑓 = 0. Both physical and virtual interactions
are represented by a school proximity network. Each line represents a different value of 𝜉. (b) Joint outcome in the attack rate 𝑟∞ between the influence of Digital Contact Tracing
and SRDA strength. Both physical and virtual interactions are represented by a school proximity network, and 𝛿 = 0.05. (c) Map between the minimum strength of CT and VD
needed to reach 𝑟∞ = 0.75, for different maximum interaction orders. The physical and virtual interactions are represented by a synthetic random hypergraph with maximum
downward closure, and 𝛿 = 0.05.
In particular, when restricting (as it is the case in Fig. 2(b)) to pairwise
and linear interactions the former rate reads:

𝛱𝑉 𝐷
𝑖 (𝑡) =

𝑁
∑

𝑗=1

[

𝑎𝑖𝑗𝜉𝜌
𝐷
𝑗 (𝑡)

]

, (16)

showing a linear dependency on 𝜉. In contrast, the rate associated to CT,
Eq. (10), depends quadratically on 𝑓 , so that, in order to have similar
detection rates for both mechanisms, we need 𝜉 ∼ 𝑓 2.

Furthermore, Fig. 2(b) shows that the effectiveness of both CT and
VD in reducing the epidemic attack rate saturates for intermediate
and large values of 𝜉 and 𝑓 . Recall that both strategies rely on the
propagation of detection cascades that operate through the interaction
of infectious and detected individuals. Thus, since both CT and DV
are activated after the first (symptomatic) detections, both are very
effective when there are many infected individuals. However, in a
situation of low incidence, such as during the decay of the epidemic
wave (see Fig. 2(a)), this efficacy drops considerably and, as a result,
many individuals end up being infected in the last phase of the epi-
demic, thus increasing the final attack rate. These findings underscore
the importance of the combined effect of symptomatic detection and
interaction-based detection, which is optimal for reducing the attack
rate of an epidemic virus, as demonstrated in [5].

3.2. Influence of higher-order interactions

So far, we have studied how VD policy effectively bends the epi-
demic curve by hindering the spread of a pathogen. In this subsection,
we extend our analysis to scenarios where the SRDAs spread through
5 
groups of different sizes. To study the effect of virtual hyperedges of
different order in the range 𝑚 ∈ [1,𝑀], we make use of a synthetic
random hypergraph whose nodes have in average the same number
of hyperedges, i.e. generalized degree, across all types and orders of
interactions, and in which all the hyperedges of order 𝑚 are faces of
the hyperedges of order 𝑚 + 1 (the details about the crafting are in
Appendix A). In particular, we set ⟨𝑘⟩ = ⟨𝜅(𝑚)

⟩ = 12, ∀𝑚 ∈ [1,𝑀] and
𝑁 = 500.

In Fig. 2(c) we plot the combinations of parameters 𝑓 -𝜉 needed to
reduce the epidemic size from the baseline value 𝑟∞ = 0.9 to 𝑟∞ = 0.75
for different values of 𝑀 (the maximum order of hyperedges present
in the hypergraphs). Obviously, in the absence of virtual interactions,
𝑀 = 0, we observe that the function in the (𝑓 , 𝜉)-plane does not depend
on 𝜉 and a value 𝑓 ≈ 0.8 is required to reach 𝑟∞ = 0.75. For 𝑀 = 1,
i.e. both detection pathways occur through pairwise interactions, and
hence we recover the a function with a equivalent shape to what was
shown in Fig. 2(b). For 𝑀 > 1, as more orders of interactions are taken
into account, the shape of the function become more asymmetric since
the cumulative nature of higher-order interactions promotes detection
beyond what is achievable by pairwise physical interactions alone. This
enhancement of mitigation resembles similar boosting phenomenology
reported in other dynamical processes with higher-order interactions
at work [18,27,28], such as the increment of prevalence in the active
phase of social contagion dynamics [28] or the enlargement of the
stability region of ensembles of coupled oscillators [27].

Finally, let us note that the detection boost provided by groups can
be facilitated or hindered depending on the synergy exponent. In par-
ticular, if 𝜈(𝑚) < 0 the alarm perception of individuals is amplified and
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epidemic control is strengthened. Conversely, if group conversations
lead to an underestimation of risk (𝜈(𝑚) > 0), then the effectiveness of
the policy is downgraded. Further details can be found in Appendix B.

4. Virtual Detection in real networks

We now turn our attention to more realistic scenarios. In addition
to the real networks (reported in Table 2) constituting the backbone of
physical interactions, for the virtual hypergraph we now build synthetic
collections of groups based on statistics about Whatsapp private com-
munities. To create these virtual hypergraphs, we analyze the extensive
dataset collected by Seufert et al. [49], which consists of 5956 private
WhatsApp chat histories containing over 76 ⋅ 106 messages from more
than 117000 users.

4.1. Crafting virtual hypergraphs from real data

The anonymization process of the aforementioned Whatsapp data
performed by the authors of [49] impedes to reconstruct the actual
virtual communication hypergraph. Nevertheless, we have extracted
the main features to create a synthetic set of virtual groups. Specifically,
we build our synthetic data on three facts inferred from the distribution
of groups (more details in Appendix C). Namely: (i) chats of 2-members
chats represent the 39% of virtual interactions, (ii) the size distribution
of groups with more than 2 members follows a long-tailed function, and
(iii) groups with over 50 members represent less than the 10% of the
chats.

With the former three ingredients we construct the backbone of
virtual interactions that completes, together with the network of phys-
ical contacts, the interaction map of a system. In fact, since both the
network of contacts and the virtual hypergraph share the same set of
individuals and considering that these tend to have virtual connections
with those people with whom they interact physically, we consider as
potential virtual interactions all the cliques that appear in the physical
networks, i.e. 𝛥(𝑚)

𝑖𝑗 = 1, ∀𝑖, 𝑗, 𝑚. Obviously, since these cliques from
the physical network do not obey the statistical laws observed in real
data about interaction groups we must sample out the final virtual
interactions out of them. The rules to decide which cliques remain are
as follows. First, the virtual interactions of order 1 (links) are chosen
to be coincident with the physical pairwise network. Note that those
physical edges chosen to be also virtual ones will represent the 39% of
the total number of hyperedges. Afterwards, we sample the remaining
61% of the virtual interactions of order 𝑚 > 1 from the cliques of size
𝑚 + 1 in the physical network. We make the selection of the cliques of
each order by following the distribution of number of groups, originally
inferred for 𝑚 ∈ [3, 50] on the Whatsapp dataset [50].

The hypergraphs constructed as explained above yield structures
with maximal correlation between physical and virtual interactions,
i.e. all virtual interactions are also present in the physical contact
network. However, people do not interact physically with all the people
they interact with virtually. Thus, to construct hypergraphs in which
the correlation between physical and virtual interactions can be tuned
we define a metric that quantifies the fraction of pairwise projections
of virtual interactions of order 𝑚 that exist as edges in the network of
physical contacts:

𝛩(𝑚) =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝛥

(𝑚)
𝑖𝑗

∑𝑁
𝑖=1

∑𝑁
𝑗=1 �̂�

(𝑚)
𝑖𝑗

. (17)

Equipped with this metric we take the hypergraphs that were originally
constructed out of the physical cliques, i.e. with maximal correlation
𝛩(𝑚) = 1, ∀𝑚 ∈ [1,𝑀], and proceed to make a sequential rewiring of the
set of hyperedges of order 𝑚, accepting changes when they minimize
𝛩(𝑚). This way, we can tune 𝛩(𝑚) to cover the whole range of values
𝛩(𝑚) ∈ [0, 1], achieving a one-parameter family of hypergraphs that
allows to study the influence of the correlation between groups of order
𝑚 and physical edges in the dynamics of VD. In the following, we will
consider that the former correlation does not depend of the size of

(𝑚)
groups so that 𝛩 = 𝛩 ∀𝑚 ∈ [1,𝑀]. e

6 
4.2. Virtual Detection fosters epidemic control

Once constructed the virtual hypergraphs based on both the phys-
ical contact networks and the statistical properties of online groups,
we can finally assess the effect of VD based on SRDAs dissemination in
close-to-reality scenarios. Considering that average number of messages
is independent of the group size [49] and that this size does not
influence the time spanned between receiving the SRDAs and testing,
we set 𝜉(𝑚) = 𝜉, ∀𝑚 (more details in Appendix C). In addition, for
he sake of simplicity, we do not consider group synergy, i.e. 𝜈(𝑚) =
0. Therefore, we use as control parameters the rate of testing after
receiving SRDAs (𝜉), and the correlation between physical and virtual
interactions (𝛩).

In Fig. 3 we show the evolution of the fraction of newly infected
agents over time for each of the physical contact networks reported
in Table 2. The epidemic curve in the absence of detection (𝛿 = 0) is
shown to compare with the other scenarios in which different detection
pathways operate. In particular, we consider the case when SD (𝛿 = 0.5)
and CT are at work, being the latter characterized by a penetration
of 𝑓 = 0.21, i.e. the adoption rate of the application Radar Covid in
Spain [16]. In all the cases, the combination of SD and CT does not
achieve bending the epidemic curve but flattens it. While detection
policies reduce the peak of the new contagions curve, the area within
the curve is still of a considerable magnitude. Next, the case when VD is
implemented (𝜉 = 0.5, 𝛩 = 0.5) alone (triggered by a negligible fraction
of SD (𝛿 = 0.05)) shows a qualitatively different scenario. In almost
all the cases VD is able to bend the epidemic curve thus anticipating
and achieving a significant reduction of the peak. Finally, the fraction
of new contagions in the case all the available detection policies are
implemented (𝛿 = 0.5, 𝑓 = 0.21, 𝜉 = 0.5 and 𝛩 = 0.5) shows the
largest degree of mitigation. However, these results do not improve
much with respect to VD alone, indicating the power of the latter to
alter the epidemic trajectory.

As anticipated above, the effect of VD varies across the different
networks considered. In particular, although in most cases VD provokes
a clear bending of the epidemic curve, in panels (c)–(f), a second
peak shows up after the first one is bent, thus leading to a scenario
compatible with a flattened epidemic. In all cases, the reduction on
the peak is accompanied by an increment on the effective duration of
the epidemic wave. In particular, the dense topologies in panels (g)–(h)
give rise to an almost negligible peak at the expense of an extremely
long relaxation time, more akin to an endemic equilibrium than to a
decaying epidemic wave advancing toward the final absorbing state.

To round off, we analyze the role of the correlation between virtual
and physical interactions. Fig. 4 shows the attack rate, 𝑟∞, as a function
of the correlation, 𝛩, for all the network structures in Table 2. When
VD is the unique detection pathway at work, Fig. 4(a), the correlation
between virtual and physical networks yield a smaller attack rate as
shown by the monotonically decreasing dependence and a tendency to
a plateau as 𝛩 → 1. This plateau is a consequence of how bending
strategies excel at anticipating and suppressing the epidemic peak at
the expense of increasing the relaxation time until the absorbent state.
This extremely long relaxation thus provoke that the reduction of the
attack rate is not significantly altered with 𝛩. In fact, in this regime,
𝑟∞ can be significantly reduced when symptom detection is increased
as shown in panel Fig. 4(b) for which 𝛿 = 0.5. Moreover, regardless of
the symptomatic detection rate, the effectiveness of detection policies is
minimal when 𝛩 → 0, for which the reduction in the attack rate is found
o depend solely on the symptomatic detection and contact tracing
ates. Notably, low values of structural correlations are expected in
andom hypergraphs in the thermodynamic limit (𝑁 → ∞). Therefore,
n the event of the virtual interactions being crafted at random, the

ffectiveness of virtual detection would be negligible.
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Fig. 3. Epidemic control in real datasets. Evolution of the fraction of new contagions when different detection policies are implemented, in different social context. Each panel
(a)–(h) is accompanied by the graphical representation of the real dataset: (a) Malaui village, (b) hospital, (c) scientific conference, (d) French high school, (e) workplace, (f)
primary school, (g) American high school and (h) university. In all panels the wine curve depicts the epidemic wave in absence of detection measures (𝛿 = 0). The purple curve
shows the result of the combination of SD (𝛿 = 0.5) and CT (𝑓 = 0.21). The blue curve represents the influence of Virtual Detection (𝜉 = 0.5, 𝛩 = 0.5) triggered by a negligible
fraction of SD (𝛿 = 0.05). Finally, the yellow curve is the fraction of new contagions in case all detection policies are implemented (𝛿 = 0.5, 𝑓 = 0.21, 𝜉 = 0.5 and 𝛩 = 0.5). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Correlation between physical and virtual interactions drives the effectiveness of Virtual Detection. Attack rate, 𝑟∞, as a function of the degree of correlation, 𝛩,
for (a) 𝛿 = 0.05, 𝑓 = 0 and 𝜉 = 0.5 and (b) 𝛿 = 0.5, 𝑓 = 0.21 and 𝜉 = 0.5. Each data series corresponds to a real dataset as indicated in the legend.
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5. Conclusions

Control policies have proven to be key in containing an epidemic
outbreak. Together, pharmaceutical measures (e.g. vaccines [51]), pre-
ventive measures (e.g non-pharmaceutical interventions such as so-
cial distancing [52], prophylactic measures [36] and awareness cam-
paigns [53,54]), and reactive measures (e.g. Contact Tracing [5,6]),
all have a complementary effect in reducing the effective number
of future infections. In particular, reactive measures can reduce the
infectious period by detecting the infectious population early. How-
ever, Digital Contact Tracing requires the population to download
mobile applications which, unfortunately, have shown low adoption
rates [16]. Conversely, individual awareness driven by the dissemina-
tion of Self-Reported Digital Alerts (SRDAs) through the communication
groups inherent in today’s virtual society could serve to overcome these
adoption barriers.

In this work we have illustrated how the dissemination of SRDAs
provides a virtual detection pathway able at bending the epidemic
curve, thus lowering and advancing its peak. Moreover, we have ana-
lyzed it as a group-based interaction between individuals in which the
additive nature and synergy characteristics of higher-order interactions
play an important role in fostering detection. Our approach includes
higher-order interactions in detection scenarios in a different way than
percolation-based approaches used in Digital Contact Tracing [55], that
consider blocking infection pathways in case the potentially infectious
individuals have a digital application. Instead, here higher-order inter-
actions are incorporated as an intrinsic characteristic of today’s society,
showing how this feature can enhance epidemic control organically.

After a careful study about how virtual detection depends on dif-
ferent ingredients of the interaction backbone, we have found that
this policy achieves its best performance when the overlap between
physical and virtual connections is large. Therefore, it is most effective
in controlled environments with recurrent contacts, with whom people
are more likely to also have virtual interactions. Our results could be
inspiring for prevention campaigns. In particular, it would be beneficial
for such campaigns to consider promoting the establishment of straight-
forward virtual communication between individuals who are engaged
in a coincident activity that necessitates physical interaction. This could
be achieved by creating ‘‘virtual bubbles’’, which would facilitate com-
munication between individuals attending to the activity, regardless of
whether it is recurrent, such as attending a regular lecture, or just a
single event. In the latter situation, the virtual communication structure
would notably expand, encompassing numerous physical interactions
that would otherwise result in undetectable contagions. In any case, to
better reflect reality, further efforts should be made to obtain closed
datasets that take all communication methods into account. In this
direction, Sapiezynski et al. [45] described a multi-layer temporal net-
work that includes the proximity network among participants, as well
as the network of SMS messages, phone calls, and Facebook friendships.
Nevertheless, as online message applications have overtaken traditional
communication methods [56], it is necessary to consider online chats
to better assess this issue with real data.

The conclusions drawn by our study and the higher-order frame-
work presented should be further enriched in the future with more
ingredients and data from encrypted applications like Whatsapp. The
inclusion of real data would provide insights into the microscopical
organization of higher-order structures, which has been shown to have
a significant impact on collective phenomena [32,57–59]. However,
this research avenue is challenging since, on the one hand, studies on
private groups use anonymized data, thus making it impossible to track
the same individual across different groups [49,60,61], and, on the
other hand, available studies on public groups are not representative
of the typical use of Whatsapp [62].

Another potential direction for future research could be the re-
finement of the model to encompass the role of asymmetry in virtual

interactions, along with other subtle aspects of virtual interactions.
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Moreover, as previously stated when introducing the model, the effi-
cacy of reactive control strategies, such as contact tracing and virtual
detection, depends on the actions of the detected individuals, who
are expected to self-isolate and therefore stop spreading the disease.
In order to incorporate the impact of defectors into the model, the
detection rates could be refined in a manner analogous to that described
in Ref. [63], where the detection rates depend on the availability of
resources. This refinement would yield the conclusion that an increase
in the number of defectors results in a corresponding decrease in the
efficiency of detection policies. Other future research avenues include
exploring virtual detection under limited resources [63], analyzing
detection processes in contexts where multiple concomitant strains are
involved [47,64,65], and investigating the influence of temporal reso-
lution on detection processes, given recent advances in understanding
temporal higher-order interactions [66,67].
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Appendix A. Hypergraphs with maximum downward closure

To build a random hypergraph with maximum downward closure
and average generalized degrees ⟨𝜅(𝑚)

⟩ = 𝑧, ∀𝑚 ∈ [1,𝑀], we start
form a set of randomly chosen hyperedges of order 𝑀 with ⟨𝜅(𝑀)

⟩ = 𝑧.
Then, among all the subsets of order 𝑚 = 𝑀−1 within the connections,
we randomly select as many as necessary to have the desired average
generalized degree ⟨𝜅(𝑚)

⟩ = 𝑧. We repeat this procedure iteratively until
we obtain a pairwise backbone with ⟨𝜅(1)

⟩ = 𝑧. Following the naive
ssumption that the pairwise virtual interactions and the physical inter-
ctions are coincident, we have our synthetic structure with ⟨𝑘(1)⟩ = 𝑧

(𝑚)
and ⟨𝜅 ⟩ = 𝑧, ∀𝑚 ∈ [1,𝑀].
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Fig. B.5. Group synergy in Virtual Detection drives epidemic control. (a)–(b): Impact of the non-linearity of group detection on the attack rate. Panel (a) shows the cumulative
impact up to order 𝑀 and panel (b) shows the individual for each order. (c)–(d): Impact of the non-linearity of group detection on the peak of the epidemic. Panel (c) shows the
cumulative impact up to order 𝑀 and panel (d) shows the individual for each order. In all panels 𝑘 = 12, 𝜅(𝑚) = 6, 𝜉(𝑚) = 0.5 and 𝛩(𝑚) = 0.5 ∀𝑚.
Appendix B. Influence of group synergy on Virtual Detection

In this appendix, we analyze how Virtual Detection performance
depends on the group synergy. To facilitate a better understanding, we
assume a mean field hypothesis, i.e. that all individuals in the network
are equivalent. We only maintain the heterogeneity in the distribution
of the number of virtual interactions per orders, by considering that
nodes have 𝜅(𝑚) interactions per order. We impose that 𝜌𝑌𝑖 = 𝜌𝑌 , ∀𝑖 ∈ 𝑁
and 𝑌 ∈ [𝑆,𝐸, 𝑃 , 𝐼𝐴, 𝐼𝑆 , 𝐷,𝑅], and therefore, the set of Eqs. (1)–(7)
now accounts for the evolution of fraction of population on each of the
states.

The transition probabilities (𝛱𝑆𝐸
𝑖 (𝑡) = 𝛱𝑆𝐸

𝑖 (𝑡), 𝛱𝐶𝑇
𝑖 (𝑡) = 𝛱𝐶𝑇 (𝑡) and

𝛱𝑉 𝐷
𝑖 (𝑡) = 𝛱𝑉 𝐷(𝑡)) depending on the physical and virtual interactions

read:

𝛱𝑆𝐸 (𝑡) = 𝑘
{

𝛽𝐴
[

𝜌𝑃 (𝑡) + 𝜌𝐼𝐴 (𝑡)
]

+ 𝛽𝑆𝜌
𝐼𝑆 (𝑡)

}

, (B.1)

𝛱𝐶𝑇 (𝑡) = 𝑘𝑓 2𝜌𝐷(𝑡). (B.2)

𝛱𝑉 𝐷(𝑡) =
𝑀
∑

𝑚=1

{

𝜅(𝑚)𝜉(𝑚)𝐷(𝑚) [𝜌𝐷(𝑡)
]𝜈(𝑚)

}

. (B.3)

The expected number of detected neighbors belonging to a virtual
hyperedge of order 𝑚 with which a node also has physical interaction
is:

𝐷(𝑚) = 𝑚𝛩(𝑚)𝜌𝐷(𝑡), (B.4)

where 𝛩(𝑚) is the average correlation between physical interactions and
virtual interactions of order 𝑚.

In Fig. B.5(a)–(b), we show how Virtual Detection performance
depends on the synergistic nature of virtual interactions. For simplicity
purposes, we assume that the non-linearity of the synergistic detection
is the same along all orders, i.e. 𝜈(𝑚) = 𝜈, ∀𝑚 ∈ [1,𝑀]. Panel (a) shows
the effect of virtual interactions up to order 𝑀 on reducing the final size
of the epidemic, and panel (b) separates the contribution of each order
𝑀 . In the presence of social reinforcement (𝜈 < 0), Virtual Detection
has an effectiveness beyond what is achievable in the linear situation.
In contrast, in the case of social inhibition (𝜈 > 0), the attack rate
values get closer to their original value as the non-linearity increases.
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Moreover, in B.5(c)–(d) we complement our analysis showing the value
of the peak of new contagions, defined as:

𝑐max = 𝑐(𝑡)|max = 𝛱𝑆𝐸 (𝑡)𝜌𝑆 (𝑡)|max. (B.5)

The observed tendency is analogous to that observed for the attack
rate. However, it is notable that while the peak becomes negligible in
the context of strong social reinforcement situations, in the stationary
state of the dynamics more than 50% of the population end up in the
recovery compartment, indicating that they have been infected in the
last phase of the epidemic. This finding is consistent with the results
presented in Fig. 2(b) of the main text.

It is important to note that the mean-field description (and, in par-
ticular, Eqs. (B.3), (B.4)) also facilitates the understanding of the effect
of the virtual generalized degree 𝜅(𝑚), the rate of Virtual Detection 𝜉(𝑚),
the group size 𝑚 and the correlation between physical and virtual inter-
actions 𝛩(𝑚). Notably, their roles in the formula are interchangeable in
the linear case, i.e. 𝜈 = 0, with large values of the parameters fostering
Virtual Detection. Furthermore, it is notable that, in the event that we
posit that large groups are associated with low values of correlation
between physical and virtual interactions, there would be a trade-off
between the group size, 𝑚, and the correlation, 𝛩(𝑚). Consequently, an
optimal group size for optimizing Virtual Detection could be identified.

Appendix C. Insights obtained from Whatsapp data

In this appendix we extract insights from the dataset collected by
Seufert et al. [49], which consists of 5956 private WhatsApp chat
histories containing over 76 million messages from more than 117,000
users. In Fig. C.6(a) we show the distribution of active users per
chat in log–log scale. There is a clear shift from the number of chats
with 2 people to the number of chats with more than 2 people. In
particular, the cumulative distribution shows how chats with 2 people
represent the 39% of the total number of chats. For chats with more
than 2 members the distribution follows a long-tailed functional form.
Furthermore, chats with more than 50 active members represent the
10% of the total number of chats and thus there is a clear lack of
statistics, which is noticeable by the dispersion on the average number
of messages per chat size shown in Fig. C.6(b). This average number of
messages per chat size seems to be almost independent of the chat size.
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Fig. C.6. Insights obtained from the dataset collected by Seufert et al. [49]. (a) Distribution of the number of chats in terms of the number of active users per chat. (b)
Average number of messages in terms of the number of active users per chat.
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