000145483 001__ 145483
000145483 005__ 20241220120719.0
000145483 0247_ $$2doi$$a10.1002/kin.21760
000145483 0248_ $$2sideral$$a140340
000145483 037__ $$aART-2025-140340
000145483 041__ $$aeng
000145483 100__ $$aGlarborg, Peter
000145483 245__ $$aDecomposition of CH3NH2: Implications for CHx/NHy radical–radical reactions
000145483 260__ $$c2025
000145483 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145483 5203_ $$aExperiments on methylamine () decomposition in shock tubes, flow reactors, and batch reactors have been re‐examined to improve the understanding of hydrocarbon/amine interactions and constrain rate constants for  +  reactions. In high‐temperature shock tube experiments, the rapid thermal dissociation of  provides a fairly clean source of  and  radicals, allowing an assessment of reactions of  with  and NH. At the lower temperatures in batch and flow reactors,  is mostly consumed by reaction with H to form  + ; these results are useful in determining the fate of the  radical. Interpretation of these data, along with flow reactor data for the /H system at lower temperature, indicates that at temperatures up to about 1400 K at atmospheric pressure and above 2000 K at 100 atm, the  +  reaction forms mainly methylamine. At sufficiently high temperature, H‐abstraction to form  + NH and addition–elimination to form  + H become competitive. The  + NH reaction, with a rate constant close to collision frequency, forms  + H, also leading into the hydrocarbon amine pool. Thus, methylamine can be expected to be an important intermediate in co‐combustion of natural gas and ammonia, and more work on the chemistry of  is desirable.
000145483 536__ $$9info:eu-repo/grantAgreement/EC/H2020/955413/EU/Sustainable technologies for future long distance shipping towards complete decarbonisation/ENGIMMONIA$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 955413-ENGIMMONIA$$9info:eu-repo/grantAgreement/ES/MICINN/PID2021-12432OB-I00
000145483 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000145483 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000145483 700__ $$0(orcid)0000-0003-4679-5761$$aAlzueta, Maria U.$$uUniversidad de Zaragoza
000145483 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000145483 773__ $$g57, 1 (2025), 77-90$$pInt. j. chem. kinet.$$tINTERNATIONAL JOURNAL OF CHEMICAL KINETICS$$x0538-8066
000145483 8564_ $$s2712936$$uhttps://zaguan.unizar.es/record/145483/files/texto_completo.pdf$$yVersión publicada
000145483 8564_ $$s2164311$$uhttps://zaguan.unizar.es/record/145483/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000145483 909CO $$ooai:zaguan.unizar.es:145483$$particulos$$pdriver
000145483 951__ $$a2024-12-20-12:05:37
000145483 980__ $$aARTICLE