000145511 001__ 145511
000145511 005__ 20241114102851.0
000145511 0247_ $$2doi$$a10.1103/PhysRevE.82.016118
000145511 0248_ $$2sideral$$a72353
000145511 037__ $$aART-2010-72353
000145511 041__ $$aeng
000145511 100__ $$aTejedor, Alejandro$$uUniversidad de Zaragoza
000145511 245__ $$aHierarchical model for distributed seismicity
000145511 260__ $$c2010
000145511 5060_ $$aAccess copy available to the general public$$fUnrestricted
000145511 5203_ $$aA cellular automata model for the interaction between seismic faults in an extended region is presented. Faults are represented by boxes formed by a different number of sites and located in the nodes of a fractal tree. Both the distribution of box sizes and the interaction between them is assumed to be hierarchical. Load particles are randomly added to the system, simulating the action of external tectonic forces. These particles fill the sites of the boxes progressively. When a box is full it topples, some of the particles are redistributed to other boxes and some of them are lost. A box relaxation simulates the occurrence of an earthquake in the region. The particle redistributions mostly occur upwards (to larger faults) and downwards (to smaller faults) in the hierarchy producing new relaxations. A simple and efficient bookkeeping of the information allows the running of systems with more than fifty million faults. This model is consistent with the definition of magnitude, i.e., earthquakes of magnitude m take place in boxes with a number of sites ten times bigger than those boxes responsible for earthquakes with a magnitude m−1 which are placed in the immediate lower level of the hierarchy. The three parameters of the model have a geometrical nature: the height or number of levels of the fractal tree, the coordination of the tree and the ratio of areas between boxes in two consecutive levels. Besides reproducing several seismicity properties and regularities, this model is used to test the performance of some precursory patterns.
000145511 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000145511 590__ $$a2.352$$b2010
000145511 591__ $$aPHYSICS, MATHEMATICAL$$b4 / 54 = 0.074$$c2010$$dQ1$$eT1
000145511 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b8 / 31 = 0.258$$c2010$$dQ2$$eT1
000145511 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000145511 700__ $$0(orcid)0000-0001-7275-9321$$aGómez, Javier B.$$uUniversidad de Zaragoza
000145511 700__ $$0(orcid)0000-0002-4303-9525$$aPacheco, Amalio F.$$uUniversidad de Zaragoza
000145511 7102_ $$12004$$2398$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física de la Tierra
000145511 7102_ $$12000$$2685$$aUniversidad de Zaragoza$$bDpto. Ciencias de la Tierra$$cÁrea Petrología y Geoquímica
000145511 773__ $$g82, 1 (2010), 016118 [11 pp.]$$pPhys. rev., E Stat. nonlinear soft matter phys.$$tPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics$$x1539-3755
000145511 8564_ $$s359548$$uhttps://zaguan.unizar.es/record/145511/files/texto_completo.pdf$$yPostprint
000145511 8564_ $$s2497376$$uhttps://zaguan.unizar.es/record/145511/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000145511 909CO $$ooai:zaguan.unizar.es:145511$$particulos$$pdriver
000145511 951__ $$a2024-11-14-10:26:22
000145511 980__ $$aARTICLE