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A cellular automata model for the interaction between seismic faults in an extended region is
presented. Faults are represented by boxes formed by a different number of sites and located in
the nodes of a fractal tree. Both the distribution of box sizes and the interaction between them is
assumed to be hierarchical. Load particles are randomly added to the system, simulating the action
of external tectonic forces. These particles fill the sites of the boxes progressively. When a box is
full it topples, some of the particles are redistributed to other boxes and some of them are lost. A
box relaxation simulates the occurrence of an earthquake in the region. The particle redistributions
mostly occur upwards (to larger faults) and downwards (to smaller faults) in the hierarchy producing
new relaxations. A simple and efficient bookkeeping of the information allows the running of systems
with more than fifty million faults. This model is consistent with the definition of magnitude, i.e.
earthquakes of magnitude m take place in boxes with a number of sites ten times bigger than those
boxes responsible for earthquakes with a magnitude m− 1 which are placed in the immediate lower
level of the hierarchy. The three parameters of the model have a geometrical nature: the height
or number of levels of the fractal tree, the coordination of the tree and the ratio of areas between
boxes in two consecutive levels. Besides reproducing several seismicity properties and regularities,
this model is used to test the performance of some precursory patterns.

PACS numbers:

I. INTRODUCTION

Seismicity (either regional or single fault-related) is
not prone to regularities, at least to deterministic reg-
ularities. Because of the short period of instrumental
earthquake records, the statistics of naturally occurring
earthquakes are poor. This fact justifies the develop-
ment of “synthetic seismicity” models [1], in which long
catalogues of events are generated by computer models
of seismogenesis. Such models can be tuned by making
them reproduce what is known of the statistics of past
seismicity to a reasonable degree, and then used to make
inferences about the behaviour of seismicity by making
use of much longer and more homogeneous catalogs of
synthetic events.

Of all the statistical regularities of regional or global
seismicity, the Gutenberg-Richter (GR) law is, together
with the Omori law, one of the most robust. Expressed
in term of the broken area of the fault, the GR law says
that the number of earthquakes breaking an area bigger
than A scales as a power law:

∗Electronic address: atejedor@unizar.es
†Electronic address: jgomez@unizar.es
‡Electronic address: amalio@unizar.es

N(> A) ∝ A−b. (1)

where b is the so-called b−value which, although around
1 in most cases, can fluctuate above and below this value
[2, 3].

Although the robustness of the GR law for regional
seismicity is not questioned in the literature, the origin
of this power-law is not so clear. Two types of models can
explain this distribution [4]. The first assumes that there
is a power-law distribution of faults and each fault has its
own characteristic earthquake. The second assumes that
each fault has a power-law distribution of earthquakes.
Observations and models in favor of and against both hy-
potheses are plentiful [5–14], though the first hypothesis
has more experimental backup.

Evidences of power-law distributions of faults (and
fractures) have been provided in a huge range of scales,
from millimeters to hundreds of kilometers. Bonnet et al.
[15] compiled a comprehensive review of most of them.
They give ample proof that most fracture systems obey
the relationship

dN(l) ∝ l−adl, (2)

where dN(l) is the number of fracture lengths that be-
long to the interval [l, l + dl], with dl << l, and a is the
fracture-length exponent. For faults with linear sizes big-
ger than 100 m, the fracture-length exponent estimated
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from two dimensional (2d) exposures and maps is in the
range 0.8 − 3.5, with 70% of the datasets between 1.7
and 2.75 [15]. We will call this exponent a2dFL, where FL
stands for fracture length as measured in 2d sections.

An alternative way of approaching the size-frequency
relationship of faults is through the fractal theory of frag-
mentation [16–19]. Each fragment (blocks in three di-
mensions) is limited by surfaces that are the expression
of the fractures created in the original unbroken material
during the process of fragmentation. So, by estimating
the size-frequency distribution of fragments in terms of
their linear dimension l, the size-frequency distribution
of fractures is also being estimated. If we accept that this
theory of fragmentation is not only valid at small scales
but also at crustal scales [e.g., 17, 19], the exponent of
the size-frequency distribution of fracture lengths and the
exponent of the size-frequency distribution of fragment
sizes (when expressed in terms of a linear dimension l)
must agree. Most experiments and models of fragmenta-
tion are compatible with a power-law function of the form
N(> l) ∝ l−D, where N(> l) is the number of fragments
with a linear dimension greater than l andD is the fractal
exponent of the distribution. For three-dimensional frag-
mentation D is most commonly between 2 and 3 [17, 20],
with values of D ≈ 2.6 favored by many experiments and
models, in particular by comminution models where frac-
ture probability is maximum for neighboring fragments
of the same size, which evolve towards a geometry where
no two fragments of the same size are in contact at any
scale [18, 19, 21]. These specific models are most rele-
vant to the type of constrained loading that affects the
Earth’s crust.

As written, exponent D is for a cumulative power-law
distribution of fragment sizes, while exponent a2dFL is for
a non-cumulative power-law of fracture lengths. So, the
fractal exponent in non-cumulative form will be a3dFr =
D + 1, with a range 3 ≤ a3dFr ≤ 4 and a most probable
value of a3dFr ≈ 3.6. Writing the exponent as a3dFr stresses
the idea that the exponent has been obtained from three-
dimensional (3d) fragments (Fr) of linear size l.

How can a2dFL and a3dFr be compared? For fracture sys-
tems with independent and homogeneous geometric pa-
rameters the transition from 2d to 3d is simply reflected
by adding 1 to the exponent [5, 22]: a3dFL = a2dFL + 1.
When these assumptions are not met, Borgos et al. [23]
have shown that a3dFL = a2dFL+B, with 0 ≤ B ≤ 1. Thus,
to compare the ranges of a2dFL with those of a3dFr, two end-
member models can be used, namely B = 0 and B = 1.
For B = 0, we have 1.7 ≤ a3dFL ≤ 2.75 (for 70% of the
datasets); and for B = 1 we have 2.7 ≤ a3dFL ≤ 3.75 (for
70% of the datasets). Only this second model is compat-
ible with the range 3 ≤ a3dFr ≤ 4 of the fractal fragmenta-
tion theory. In this case (B = 1) the common range for
both exponents is 3 ≤ a3d ≤ 3.75, where the subscript
has been dropped to stress that the only assumption left
is the three-dimensional nature of the objects. A very
similar range was given by Turcotte and Huang [24] fol-
lowing a different line of reasoning. Also, Sornette and

Davy [25] suggest that a3d = 3 is an attractor in the
dynamics of fault systems, which in early stages of devel-
opment have a3d > 3 and tend to a3d = 3 in more mature
stages.

In summary, there is ample evidence that faults
(and/or blocks separated by faults) have a power-law dis-
tribution of sizes. If we join this evidence with the char-
acteristic earthquake hypothesis (i.e., each fault can pro-
duce earthquakes of just one size that corresponds to its
area [26]), the GR law is an obvious outcome. And if the
comminution model is also taken into account [18, 19, 21],
the picture emerges of a set of blocks with a power-law
distribution of sizes and no two blocks of the same size
in contact at any scale. In this paper, we will adhere to
this point of view and will implement it by means of a
hierarchical model, the Hierarchical Box Model (HBM).

The HBM is hierarchical in two ways: in the way the
load is redistributed and in the positioning of the boxes
(faults) according to their size. Faults in our model have
a size which depends on the level of the hierarchy and,
as already mentioned, can produce earthquakes of only
that size. The hierarchy is implemented in the form of a
fractal tree of N levels and a coordination number c.

The model that we propose here is not the first one to
have a hierarchical structure. In the seismological litera-
ture the first use of a hierarchical structure can be traced
back to the work of Allégre et al. [27], Madden [28], Tur-
cotte et al. [29] and Jr. et al. [30]. In the first two papers
the hierarchy is implemented in the solving stage of the
model, which is carried out by means of a renormaliza-
tion group approach [31], and the aim was to predict
the “sound” to “broken” transition in rocks. This line of
thought was pursued by Narkunskaya and Shnirman [32],
Allégre et al. [33], Blanter and Shnirman [34], Blanter
et al. [35], who built several models where the hierar-
chy was implemented through the size of the blocks (or
defects) that made the transition from sound to broken,
differing in the rules that decide when a block/defect in
one level of the hierarchy breaks as a result of the “weak-
ness” of the blocks/defects connected to it in the lower
level of the hierarchy. The paper by Blanter and Shnir-
man [34] is most interesting as the authors introduce for
the first time a healing parameter, later incorporated by
Gabrielov et al. [36] in the Colliding Cascades Model.

The paper by Turcotte et al. [29] was intended to ex-
plain the stick/slip transition that causes earthquakes.
In this model all the elements have the same size (they
can be considered as small rupture elements) and what
is hierarchically organized is the way load is transferred
from a failing element to other sound elements in the sys-
tem. Related to this seminal work and gathered under
the umbrella of fiber-bundle models, several hierarchical
fracture models were later proposed [37–44] sharing with
the original one the way load was hierarchically trans-
ferred between elements following the structure of a low-
coordination fractal-tree. Hierarchical trees also emerge
in the discrete scale invariance put forward by Sornette
[45] for complex systems.
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Barriere and Turcotte [46] proposed a novel cellular
automaton to reproduce regional seismicity in an area oc-
cupied by a large number of faults. The model represents
the fault system by a grid of sites (or boxes) with a power-
law distribution of sizes. Tectonic load is modeled by the
addition of external load particles, and the probability of
each site receiving a new particle is directly proportional
to its size (area). Each site has a load threshold equal
to four times its area and when the load surpasses that
threshold a relaxation (earthquake) occurs. The model
is economical in parameters (just two) and is able to re-
produce power-law statistics for the size distribution of
earthquakes. However, the b−values of these distribu-
tions are not realistic. Contrary to the fiber-bundle type
models, the hierarchy in Barriere and Turcotte’s model
applies to the distribution of fault sizes, not to the load
transfer mechanism.

The final model to be mentioned here is the so-called
Colliding Cascades Model [36, 47–50]. The original Col-
liding Cascades Model [36] is a continuous time, contin-
uous load model whose dynamics is based on a set of
coupled ordinary differential equations. Its geometry is
hierarchical, consisting of several levels, each of which is
composed of several elements. The number of elements
grows downwards according to a geometric series of ratio
3 (coordination number of the fractal tree) and the top
level has just one element. All elements are the same
size, irrespective of the level in the hierarchy. Load is in-
troduced in the model only through the top element and
diffuses downwards. Failures can start only in the lower-
most level and then travel upwards in the hierarchy. The
interaction between the descending load cascade and the
ascending failure cascade gives its name to the model.
The size (magnitude) of an earthquake is equal to the
highest level element broken in a failure avalanche.

The Colliding Cascades Model aims to reproduce the
seismicity in a large area by using a hierarchical structure
of block sizes. It is not economical in parameters (12 are
defined in Gabrielov et al. [36]) and they must be finely
tuned to obtain a specific seismicity regime (the model
is not self-organized critical). Also, the size-frequency
relation obtained in the intermediate regime (the only
one with a power-law distribution) has an unrealistic
b−value. In spite of these disadvantages the Colliding
Cascades model is a compulsory reference within the hi-
erarchical models of regional seismicity and has partly
served to inspire us to devise the model presented here.

This paper is organized as follows: Section II presents
the HBM as a pure cellular automaton, its structure, el-
ements and its rules of updating. The correspondence
between the elements of the HBM and a real network of
seismic faults in a large region is detailed in Section III.
In Section IV the form of fixing or bounding the three pa-
rameters of the model in order to agree with various basic
elements of seismicity is indicated. Two new ingredients
are commented on which are introduced to relax a little
the rigidity of the pure cellular automaton. Once the pa-
rameters are fixed, in Section V we perform simulations

m = 1

m = 2

m = 3

FIG. 1: Schematic representation of the hierarchical structure
used in the model. In this example the number of levels isN =
3 and the coordination index c = 4. The faults (boxes) are
the colored rectangles located on the nodes of the fractal tree,
while the links (thick lines) are the load transfer trajectories.
Each level is identified by an integer m, starting from the
lowest level.

of the HBM and explore the synthetic seismicity that
emerges from it. Section VI contains the basic ingredi-
ents for the forecasting of the main synthetic earthquakes
of the system. Section VII is dedicated to a general dis-
cussion, including the analysis of a new more physical
pattern of forecasting. Finally, Section VIII offers our
conclusions.

II. THE HIERARCHICAL CELLULAR
AUTOMATA

The cellular automata model [51] consists of a grid of
cells, each cell in one of a number of finite states. Each
cell state is updated in discrete time steps according to
a set of rules. These rules depend on the state of the
cell and its nearest neighbors in previous or present time
steps.

In this model, the grid is a fractal tree and the cells
(boxes) are positioned on its nodes. The tree has N lev-
els, which are labeled by the integer index m. A fractal
tree with N = 3 is shown in Fig. 1. The role of the boxes
is to accumulate particles up to a maximum occupancy
C, called its capacity, and when the occupancy reaches or
exceeds C, the box relaxes and becomes empty by trans-
ferring all the particles to other boxes. Thus, each box
has C sites susceptible to be occupied and therefore the
possible states of occupation of a box are 0, 1, 2, .., C− 1.

The capacity of a box depends on m in the form

C(m) = rm−1, (3)

where r is a constant to be fixed.
Now, the coordination of the tree, or branching index,

will be denoted by c (in Fig.1, c = 4). Due to the geom-
etry of the system, colloquially speaking let us say that
each box has one parent, c children, and c − 1 siblings.
In the strict hierarchical structure there are no links be-
tween a box and its siblings.
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The geometric structure of the model is now fixed.
Turning to the rules for updating the boxes, these rules
are similar to those used by Bak et al. [52] in the Sand-
Pile and in other models.

1. At each basic time unit, one new particle is ran-
domly added to the system from outside. The prob-
ability of any box in the system receiving this new
particle is proportional to its capacity. After de-
ciding which specific box will receive the particle,
we examine whether this addition completes its ca-
pacity or not. If it does, then the box topples,
otherwise, the state of the box is increased by one
unit and after another time unit a new particle is
added to the system. Only when toppling stops
(i.e., the occupancy of all the boxes is lower than
their respective C) is a new particle added to the
system.

2. Whenever a box topples, C/2 of the particles are
transferred upwards to its parent and C/2 are
transferred downwards to its children. On these
occasions, all the c children receive the same num-
ber of particles and any remaining particle from
the square repartition is randomly assigned to the
children. When, as a result of a toppling, a box
receives a bunch of particles, we proceed as in rule
1, assessing whether this addition exceeds its C or
not. If it does, the box topples, C particles are
transferred, and the rest are dissipated; otherwise,
the occupancy of that box is increased by the num-
ber of added particles.

Two particular cases of rule 2 are the topplings of the
boxes at m = 1 and the box at m = N . In the case m =
1, the particles transferred downwards are lost. Likewise,
in the relaxation of the highest box (m = N) the particles
transferred upwards are also lost. Together with that
mentioned above, this is the dissipation mechanism used
by this hierarchical system to get rid of particles and
maintain a mean value of the global occupancy.

Summarizing, the parameters of this model are N , c
and r. And, as in all the models of this type, we assume
the time taken by the relaxations of boxes to be very
short in comparison with the basic time interval between
the arrival of the external particles [51].

This HBM will likely arouse interest for describing
other phenomena, but here we use it to model the statis-
tical properties of seismicity over a large region.

III. THE HBM AS A MODEL OF EXTENDED
SEISMICITY

The hierarchical model described in section II is used
here to simulate extended seismicity. For this propose,
the boxes of the model represent the faults that exist in a
region, and their relaxations correspond to earthquakes.
Assuming the hypothesis of the characteristic earthquake

[26], the relaxation of a box produces an earthquake of a
unique magnitude, and this depends only on the level at
which the fault (box) is placed.

In the description of the cellular automaton, three pa-
rameters have arisen: the constant (r) in the definition
of the capacity (Eq. 3), the number of levels in the hi-
erarchy, N , and the coordination number, c. In the pure
model, these are completely free parameters. However,
from the point of view of the application of the model
to seismicity, these parameters acquire a meaning and
therefore their variation ranges may be restricted. They
will thus be analyzed one by one.

• Parameter r appears in the definition of the capac-
ity of a box which is given by Eq. 3. It is the ratio
of areas between boxes placed in two consecutive
levels. According to the definition of magnitude in
Seismology (m ∝ log10 A, m being the magnitude
of an earthquake and A the broken area) [53, 54],
the value of this ratio depends on the difference in
magnitude corresponding to a change of one level in
the model. For simplicity, a difference of one unit of
magnitude per level has been used. In other words,
the relaxation of a box produces an earthquake of
magnitude m, m being the level of the box in the
hierarchical structure. It is also assumed implicitly
that earthquakes occurring at the first level of the
hierarchy have a magnitude m = 1. In this sce-
nario, the value of the parameter r becomes fixed
at r = 10.

• Parameter N is the number of levels in the hier-
archy. It is related to the largest earthquake that
is expected in a specific region. So, this parameter
is fixed as soon as the studied area is selected. In
this paper, N = 7 is used in all the simulations per-
formed, assuming therefore the largest earthquake
to have a magnitude m = 7.

• Parameter c, the coordination number, is an integer
representing the number of faults of a level related
in the hierarchy to one fault of the next higher level.
This relation has been studied in real fault systems
as mentioned in the Introduction, and Section IV
will be dedicated to analyzing how the known data
from these studies restricts the range of variation
of this parameter.

Apart from the geometrical parameters, the dynamic
processes of the automaton can also be recast in the
language of seismicity: the external loading process
responsible for the random filling of the boxes (faults)
simulates the remote tectonic stress in the modeled
region; the relaxation of a box corresponds to an
earthquake; and earthquakes are accompanied by the
redistribution and dissipation of stress.

Besides the above-mentioned correspondences, there
are some rules regarding the pure model described in
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Section II that can be slackened to obtain a less rigid and
more realistic seismicity model. For example, in some
simulations we have also considered the possibility that
the relaxation of a fault occurs when it is sufficiently
loaded but not necessarily full, i.e. that its occupancy
on failure is, for example, 90% of its capacity and not
necessarily 100%. The effect of this change is only a
slight reduction in the length of the simulations, but
the differences in the results are negligible, so this
modification has not been implemented.

Another modification is to consider that in the process
of redistribution of the load in the relaxation of a fault,
a part of this load is transferred horizontally, that is, to
faults of the same size. This mechanism of “horizontal”
load transfer in the model would simulate stress redistri-
bution in faults of similar size. Thus, the real number s,
0 ≤ s ≤ 1, will be the fraction of the load that is trans-
ferred to its two nearest siblings (a similar parameter is
introduced in the Colliding Cascades Model [36]). This
parameter, s, is assumed to be small, because this modi-
fication is only introduced as a slight perturbation of the
hierarchical structure which commands the dynamics of
the system. In fact, in all the results shown in this paper
we have used s = 0.1 (In Fig. 1, although not depicted,
it is assumed that the set of children of a same parent
are cyclically connected to each other, which implies that
each box has two nearest siblings for the horizontal trans-
fers).

Finally, because the number of faults in a tree of N
levels is (cN −1)/(c−1) (e.g., in systems with N = 7 and
c = 10, 17 and 20 this amounts to 1.1 × 106, 25.6 × 106

and 67 × 106 faults respectively), and the state of the
system is specified by giving the state of all the faults
(boxes), a simple and efficient bookkeeping mechanism of
information has been implemented: the load is expressed
as a fraction of the capacity and is implemented with a
counter, a real number in the range [0, 1] (the number of
occupied sites divided by the capacity), for each fault. In
this way simulation times are kept reasonably low.

The simultaneous operation of all the rules and
modifications mentioned in sections II and III (external
loading, load re-distribution, and dissipation) makes
the model self-organized critical. This can best be
shown by plotting the degree of occupancy of the model
against time (the degree of occupancy of the system, or
total load, is the sum of the box occupancies). Fig. 2
gives the time evolution of load in a system with seven
levels (N = 7), and a coordination index of c = 20.
Fig. 2a shows the time evolution of the total load on
the system, whereas Fig. 2b shows the comparative
load evolution in the 7th and 6th levels and the whole
system, once the system is in a statistically steady state.
Note in Fig. 2a that after a sufficiently long period of
time, no matter what the initial condition for the load
was, the global occupancy oscillates around a mean
value of 0.51. This property, together with power laws
for the size-frequency distributions of the relaxations,
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FIG. 2: Evolution of the amount of load (total occupancy)
in the system (N = 7; c = 20; r = 10). (a) Evolution in
the whole system. Dashed and solid lines represent a system
that is initially loaded at 70% of its capacity and completely
empty, respectively. (b) Comparative evolution in the 7th (red
line) and 6th (black line) levels and in the whole system (blue
line).

constitutes one of the requirements of any critically self
organized model [55]. In Fig. 2b it is apparent that
the occurrence of earthquakes of magnitude m = 7
has a great impact on the occupancy of the m = 6
level but not on the occupancy of the whole system.
Besides, when an m = 7 earthquake occurs, particles
transferred downwards to the m = 6 level can be
transferred upwards again to level 7, all in the same time
unit. For this reason, in Fig. 2b the 7th level is not al-
ways empty after the occurrence of an m = 7 earthquake.

IV. MATCHING THE MODEL WITH
NATURAL SEISMICITY

As explained in the previous section, the coordination
index, c, of the hierarchical structure in the model is
related to the ratio of small to large faults in a region:
in the model each fault in a level is directly connected
to c other smaller faults in the immediate lower level.
So, the first constraint on the coordination index comes
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naturally from the fracture length exponent. In Section I
fracture length exponents in the range 3 ≤ a ≤ 3.75 were
proposed as compatible both with the size distribution of
fractures in 2d sections and with the 3d size distribution
of fragments in a fractal model of fragmentation. Also,
the particular value a = 3.6 was considered important
following several lines of reasoning.

Due to the fractal-tree structure of the model, the size-
frequency relation of box areas is a power-law function.
We also know that in level m the number of boxes is
N(m) = cN−m and that successive levels in the hierar-
chy have a factor of ten difference in box area (r = 10);
in other words, the “binning” of box areas is logarith-
mic: dN(A) ∝ A−xd log10 A. Combining both relation-
ships we obtain c−m ∝ A−x, or m log10 c ∝ x log10 A.
As magnitude is proportional to the logarithm of broken
area, this means that x = log10 c. If we further assume
that fault length is proportional to A1/2, then dN(l) ∝

l−2xd(log10 l
2), using again a logarithmic binning to be

consistent with the previous expression in terms of areas.
Thus dN(l) ∝ l−(2x+1) and a = 2x + 1 = 2 log10 c + 1.
Thus, the coordination index c and the fracture length
exponent a are related by the equation

c = 10
a−1

2 . (4)

For the lower range value a = 3, we have c = 10; for
a = 3.77 (upper limit) we have c = 24; and for a = 3.6
(preferred value) we have c = 20. So, coordination in-
dices between 10 and 24 are compatible with the size-
frequency distribution of fault sizes in the Earth’s crust.
Remember that r has been already fixed at r = 10 to be
consistent with the definition of seismic magnitude and
with the fact that the model has a difference of one mag-
nitude per level; likewise, N should be fixed depending
on the largest earthquake expected in the studied region.
This fixes or brackets the three parameters of the model.

V. SYNTHETIC SEISMICITY OF THE HBM

Notwithstanding the general lack of “premonitory”
observables and deterministic regularities of regional
seismicity, there are several statistical regularities that
should be reproduced by any model of seismicity. In this
section, we have analyzed the results that emerge from
the HBM for three important regularities: GR law and
b−value, the fraction of aftershocks, and the energy re-
lease rate.

• Gutenberg-Richter law and b−value An im-
portant check on the validity of the model is the
fulfilment of the GR law. This law has two char-
acteristics: a power-law relation between frequency
and size, and an exponent of −1. Figure 3 shows
the size-frequency relationship in terms of seismic
magnitude for four values of the coordination num-
ber. It can be seen that the size-frequency relation-
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FIG. 3: Magnitude-frequency distributions of relaxations in
the HBM for N = 7, r = 10 and different values of c. A
dotted line with slope equal to −1 has also been plotted.

ship is of the GR type and that the b-value is also
realistic, very close to one.

• The fraction of triggered events (after-
shocks). The next regularity of regional seismic-
ity which is checked in our model is the fraction of
aftershocks in a seismic catalogue. In our model,
after the addition of a new particle of load into the
system, three different outcomes can be expected:
(i) nothing, if the receiver box does not exceed its
capacity; (ii) a single earthquake, when that box
surpasses its capacity and upon load-transfer no
other box does; and (iii) a sequence of consecu-
tive earthquakes when the first relaxation produces
more relaxations as a consequence of the transfer
of load. In the second outcome the lone earth-
quake is a mainshock (which lacks aftershocks). In
the third outcome the mainshock is identified with
the biggest fault (highest level) that has relaxed
in the sequence. The other relaxations are defined
as aftershocks, and the number of them is regis-
tered for the statistics. Thus, due to the time-scale
separation of cellular automata models, it is very
simple in the HBM to compute the aftershocks-to-
mainshocks ratio and compare it to expected values
of this ratio in regional seismicity.

The percentage of aftershocks in the HBM is of 62%
for a magnitude cutoff of m = 2 (for the compu-
tation of the aftershock-to-mainshock ratio, earth-
quakes in the first level of the hierarchy are not
included as their dynamics differ from that of the
other levels). In real seismicity the exact propor-
tion of triggered earthquakes depends on the re-
gion and, above all, the magnitude cutoff consid-
ered. Most estimates for a cutoff magnitude around
m ≈ 2− 3 agree on a percentage of aftershocks be-
tween 60 and 80% [56–63]. The value obtained by
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TABLE I: Number of aftershocks per mainshock of each mag-
nitude in the HBM

Magnitude of mainshock Aftershocks per mainshock

3 6± 3
4 33± 18
5 214± 95
6 1207± 655
7 7677± 4616

the HBM, 62%, is within this range.

Table I separates the aftershock production by the
magnitude of the mainshock. Mainshocks of mag-
nitude m = 3 have an average of 6 ± 3 after-
shocks, while m = 7 mainshocks have an aver-
age of 7577 ± 4616 aftershocks. As a compari-
son, the m = 7.3 Landers earthquake produced
around 17000 aftershocks in the following 370 days.
Extrapolating the number of aftershocks from an
m = 7 mainshock to an m = 7.3 one in the HBM
gives 13000±8500 aftershocks, which compares well
with the actual estimate. The Hector Mine earth-
quake (m = 7.1) produced around 6000 aftershocks
in the first 600 days, also compatible with the HBM
productivity. The m = 6.2 Big Bear earthquake
triggered around 818 aftershocks in a volume of
20 × 20 × 17 km3 in 375 days, while the m = 6.1
Joshua Tree earthquake triggered around 2600 af-
tershocks in a volume of 20 × 20 × 19 km3 in 160
days [64]. In this range of magnitude (6.1 to 6.2)
HBM’s mainshocks have 1500− 1800± 1100 after-
shocks, which also compares well with the num-
ber of aftershocks in the Joshua Tree and Big Bear
earthquakes.

• Energy release rate. Figure 4a plots the energy
release rate in terms of accumulated broken area
(as a proxy for energy) for three earthquake size
ranges, m ≤ 5, m ≤ 6 and m ≤ 7. Clearly the
long-term energy release rate is constant for the
three magnitude ranges, although sudden steps are
more evident in the m ≤ 7 curve as a consequence
of the large number of aftershocks that these large
earthquakes trigger (actually, m = 7 are the largest
earthquakes that a N = 7 system can sustain).
This constant long-term energy release rate is to be
expected from a SOC model, and also from what
happens in real seismicity due to the constant long-
term energy input into the crust from the dynam-
ics of plate tectonics. However, prior to some large
events (Figure 4b), energy release is not constant
and a premonitory acceleration in released energy
can be observed. This is in agreement with many
observations of accumulated Benioff strain prior to
large earthquakes [65–68]. A power law fit of the
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FIG. 4: Seismic energy output of the system. (a) Accumu-
lated long-term energy output for three different ranges of
earthquakes: m ≤ 5 (blue curve), m ≤ 6 (red curve), and
m ≤ 7 (black curve); this last curve is the total energy out-
put of the system as m = 7 earthquakes are the biggest an
N = 7 system can sustain. The total broken area is used as a
proxy for the released seismic energy. (b) Short-term energy
output prior to a large m = 7 earthquake. A premonitory ac-
celeration in the released energy following a power-law with
an exponent γ = 0.38 (inset) is observed.

form ǫ(t) = A + B(tf − t)γ has been suggested,
with exponent γ = 0.26± 0.15 [66] when ǫ(t) is ex-
pressed in terms of the cumulative Benioff strain
(the square root of the released seismic energy).
Here we have obtained an exponent γ = 0.38 al-
though the comparison with real data is not direct
as we have used the broken area as a proxy for the
released energy.

VI. FORECASTING THE LARGE EVENTS

In addition to the statistical averages of the synthetic
seismicity delivered by the HBM, it is also interesting
to carry out specific studies of the largest fault in the
system, i.e. that located in the N th level of the hierarchy,
particularly from the viewpoint of the predictability of
the earthquakes that it generates. Thus, this section is
dedicated to the predictability of the largest earthquakes
in an HBM with N = 7 levels, c = 20 and r = 10.
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A simple way of estimating the predictability of the
large earthquakes in the HBM is by means of their ape-
riodicity, α, also known in Statistics as the coefficient of
variation. The aperiodicity is α ≈ 0.50 for the recur-
rence of the biggest earthquake in the HBM, and this is
within the range of aperiodicities estimated for real faults
[13, 69–72]. This value means that these large earth-
quakes in the system have a quasi-periodic behaviour.
And quasi-periodicity means some predictability. Thus,
the question now is: how accurately can the largest event
in the model be predicted? For this enterprise we will
use a graphical tool, the so-called error diagrams [73],
together with specific predictive strategies [74–76].

Let us assume that one observes the occurrence of a
number of m = 7 events during a time period, T . This
strategy consists of the following: after the occurrence
of each event, one awaits n time units and then sets the
alarm; this alarm is not cancelled until the occurrence
of the next event. If the following event occurs before
the alarm is set, it is counted as a prediction error. In
contrast, if the next event occurs while the alarm is on,
it is counted as a prediction success.

The fraction of error fe is the number of missed events,
or errors, divided by the total number of target events.
Analogously, the fraction of alarm, fa, is defined as the
total time the alarm was on divided by the total time of
observation, T . To evaluate the quality of any forecasting
strategy in a quantitative setting, we define a loss func-
tion, L, which incorporates the trade off between the cost
of missing events and the cost of keeping the alarm on.
We adopt here the simplest option L = fe + fa. A poor
prediction strategy leads to L values close to unity, and
an ideal strategy would give L = 0.

In the reference strategy we explore the relation
between time waited to set the alarm, n, and L. There
is an optimum value for n, n∗, that produces a min-
imum value of the loss function L, L∗. Fig. 5 shows
the performance of the reference strategy in an error
diagram [73]. Any point on the diagonal corresponds
to a value L = 1, and this would be the result of a
random prediction strategy. The irregular line shows
the fraction of errors and the fraction of alarm for
successive values of n. The circle on this dotted line
represents the best option for the reference strategy,
L∗ = 0.63 (fe ≈ 0.45; fa ≈ 0.18) corresponding to a
waiting interval of n∗ = 3.38 × 106 time units. In other
words, using the reference strategy we can predict 55%
of the largest earthquakes while keeping the alarm on
for 18% of the time. In the Sand-Pile Model a similar
analysis [77] provides a value of L∗ close to unity, which
was related to the early belief that SOC systems were
completely unpredictable. In the next section we will try
to improve on these figures using a different prediction
strategy that uses additional information from seismicity.
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FIG. 5: Error diagrams showing the predictability of the
largest earthquake, m = 7, in the HBM using the “reference
strategy”.

VII. DISCUSSION

A new cellular automaton has been presented in its
generic form. Like any cellular automaton, it has very
simple dynamics and a defined geometry. It has three
free parameters. The interpretation of this model in
terms of seismic elements, together with a little slack-
ening of the hierarchical redistribution of load quantified
by the parameter s, lead to a model for extended seismic-
ity. With these ingredients, the HBM is able to produce
synthetic catalogs of earthquakes which are compatible
with some of the most important statistical regularities
observed in Nature, such as the GR law, the percent-
age of aftershocks, the mean number of aftershocks per
mainshock of magnitude m, and the rate of released en-
ergy. In spite of the fact that these successes are not
sufficient to guarantee that the synthetic catalogs gen-
erated by the model are completely consistent with real
seismicity, they are absolutely necessary for a synthetic
catalog to be realistic.

In this section, we are going to analyze a synthetic
catalog from the HBM in order to examine a regularity
that has not hitherto been investigated in depth in real
seismicity.

The recurrence interval of an earthquake in a specific
fault is commonly assumed to be independent of fault
size, though there is no reason a priori that this has to
be the case. Following Marrett [5], if we assume that
characteristic earthquakes rupture the entire length of
the fault and that smaller earthquakes in the same fault
have a negligible frequency, we can combine the scaling
relationships for earthquakes (GR law) and faults (size-
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frequency relationship for fracture systems)to express the
recurrence interval of earthquakes in a fault, T , in terms
of the rupture length l. Mathematically the recurrence
interval is the ratio of the number of faults of a given
length (Eq. 2) to the frequency of the earthquakes that
take place in those faults (Eq. 1 after differentiation with
the change of variable l = A1/2):

T (l) ∝
l−a

l−b−1
= l2b−a+1. (5)

As b is around 1 and a varies from 3 to 3.75 as ex-
plained in Section I, it means that we can expect two
types of behavior for the recurrence interval: (i) that it
is independent of fault length (a = 3); and (ii) that it is a
decreasing function of fault length (a > 3), although the
favored value (a = 3.6) suggests that longer faults have
shorter recurrence intervals. We use the term “recurrence
law” for this functional relationship between recurrence
interval and fault (rupture) length.

The recurrence law can be obtained easily in our
model. As the number of faults in a level m is cN−m

then, statistically speaking, the period of recurrence T of
a fault in that level is

T (m) ∝
cN−m

10−bm
, (6)

where m is magnitude and b the b-value. The denomina-
tor in Eq. 6 is simply the GR law expressed in terms of
magnitudes. Thus we have

T (m) ∝ cN (
10b

c
)m. (7)

As b ≈ 1, Eq. 7 implies that for c = 10 all faults have
the same recurrence interval and for c > 10 longer faults
have shorter recurrence intervals. Several simulations
have been performed for c = 15, 17, 20 to check these
predictions. In these simulations one specific fault in
each level was selected and its mean recurrence com-
puted. Figure 6a shows the results in a plot of fault size
(in terms of earthquake magnitude m) against recurrence
time. Recurrence time has been normalized in each
case dividing by the time of recurrence of the largest
fault (m = 7). It can be seen that the general tendency
is a decrease of the time of recurrence as the size of
the fault grows for the three values of the coordination
number, but this tendency changes for the biggest fault
in the cases of c = 15 and c = 17, when m = 7 earth-
quakes have a slightly longer recurrence thanm = 6 ones.

Figure 6b examines the recurrence for an extensive
compilation of active fault data from the USA [78]. Al-
though with large scatter, a negative correlation between
fault length and recurrence interval is seen, compatible
with the behaviour of the model as shown in Figure 6a
(c = 20). The result shown in Figure 6b of longer faults

b)
a)

FIG. 6: Recurrence law. Graph (a) recurrence intervals as a
function of fault size (expressed in terms of earthquake mag-
nitude) for three values of the coordination number: c = 15,
c = 17 and c = 20. (Error bars are smaller than symbols).
Recurrence intervals have been scaled by the recurrence inter-
val of the m = 7 fault in each case. Graph (b) is a compilation
of fault data (1885 faults) from the United States (USGS) for
normal (red), reverse (yellow) and strike-slip (blue). Error
bars take into account all types of uncertainties as commented
in the text.

having a shorter recurrence interval has been proposed
previously [e.g., 4, 5], although it is by no means uni-
versally recognized [14, 79]. In a recent study, Mous-
lopoulou et al. [14] carried out an in-depth study of six
fault systems in New Zealand, USA, Greece and Italy
and conclude that recurrence data (taking into account
the large scatter) do not preclude a recurrence interval
independent of fault length. If this is the case (see eq. 5),
either the fracture length exponent for all the analyzed
fracture systems is a3d = 3, or the assumption of each
fault having a characteristic earthquake is not valid.

Although the specific recurrence law followed by
real seismicity is still under debate (mainly due to
the scarcity of studies and possibly to the diversity of
recurrence laws), it seems clear that a relationship exists
between the recurrence law and the fracture length
exponent, and between the latter and the parameter c
in the HBM.

To conclude this Section, we now explore another pre-
diction strategy for the m = 7 earthquakes in the HBM
which is based on the observation of aftershocks [80], and
which has been applied in natural seismicity. This is a
type of premonitory pattern where a significant clustering
of earthquakes in time is observed. It was established in
intermediate-term earthquake prediction algorithms [81]
and used in the Colliding Cascades Model [47] and is
one of the first premonitory seismicity patterns for which
statistical significance has been established [81, 82].

This prediction strategy can be applied to the HBM
in the following way. Having specified the magnitude
of the target earthquakes, m = 7, we will observe all
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FIG. 7: Error diagram showing the predictability of the
largest earthquake, m = 7, in the HBM using the strategy
B6. Results from the Reference Strategy (Section VI) are
also shown (light grey) for comparison.

the mainshocks with magnitude m′ (m′ < m) and the
number of their respective aftershocks, Bm′ . When Bm′

is equal to or bigger than a given threshold, CB ,

Bm′ ≥ CB (8)

the alarm is connected during a fixed time interval n. If
an m = 7 earthquake does not occur in this interval, the
alarm is eliminated (obviously, the alarm is also immedi-
ately cancelled if the event of m = 7 occurs). As said in
Section VI, a prediction success is considered when the
m = 7 earthquake occurs while the alarm is on. On the
other hand, it is considered an error when an event of
magnitude m = 7 occurs when the alarm is off. Thus,
the two parameters to be explored in order to obtain the
optimum value of L (L∗) are CB and n.
Fig. 7 shows the results of carrying out this strategy

where the magnitude of the mainshocks is m′ = 6 (B6).
The full circle represents the best option for this strategy,
L∗ = 0.45 (fe = 0.05 and fa = 0.40) corresponding to a
value of the alarm interval n∗ = 2.5× 106, and a number
of aftershocks within the burst equal to or bigger than
CB = 2400. Compared with the reference strategy, now
95% of the earthquakes can be predicted, although the
alarm time rises to 40%.

Besides, in this strategy, in contrast with the reference
strategy, there are false alarms. The fraction of false
alarms, ff , is defined as the number of times the alarm
has been lifted without a prediction success, divided by
the number of times the alarm has been connected. In
our computation of L∗ = 0.45 its value was ff = 0.65.

VIII. CONCLUSIONS

The new HBM presented here to model the interaction
between seismic faults in a wide region is standard in the
sense that it is a cellular automata model whose elements
(boxes) are located on a hierarchical scaffolding. A box
receives load from the exterior and from the relaxation
of its neighbors (parent, children and also from its clos-
est siblings). When a box of the mth level topples, it
simulates the occurrence of an earthquake of magnitude
m. This implies that in this model each fault relaxes by
means of its unique characteristic earthquake. The load
of the toppled box is mostly transferred up and down
along the links of the hierarchical tree inducing new re-
laxations.

Of the new ingredients of the HBM not found in other
seismicity simulators, we should stress two.

• The faithful representation of the logarithmic na-
ture of the magnitude of an earthquake: boxes
placed on level m + 1 have ten times the capacity
of those placed on level m.

• The coordination of the tree had never received
any particular attention. A sort of universality had
been taken for granted in the sense that the prop-
erties derived from a tree had to be similar to those
derived from other trees no matter what their re-
spective coordination, number of levels, etc. Here
we show that c is not arbitrary but is bounded by
the empirical exponent of the fracture length dis-
tribution of faults and by fragmentation theory.

This model is economical in parameters. Besides the
three geometrical parameters, r, N and c, we have intro-
duced a minor parameter s for the horizontal stress trans-
fer. The results presented in this paper correspond to the
values, r = 10, N = 7, 10 ≤ c ≤ 24 and s = 0.1. For
these values, the model is able to reproduce fundamental
properties of real seismicity such as: (i) size-frequency
distributions of earthquakes of the GR type with a b-
value equal to 1, (ii) a constant long-term rate of energy
release and an accelerating short-term energy release be-
fore major earthquakes, and (iii) a number of aftershocks
per mainshock of a specific magnitude, all of them in
agreement with real statistics.

If the study is focused on the largest events, several
results arise. The aperiodicity in the return time of the
m = 7 earthquakes is around α ≈ 0.50, a reasonable value
for large seismic faults [13]. There exists a tight correla-
tion between m = 7 and m = 6 events. This is natural
because between these two levels there is a direct transfer
of load. This fact has been used for forecasting purposes,
the success of the B6 strategy being the manifestation
of the mentioned correlation. Thus, the HBM puts in
evidence the fact that in spite of exhibiting a power-law
behavior for the size frequency of relaxations, which is
one of the genuine manifestations of the SOC systems,
some important properties such as the recurrence of the
largest events can be predicted with significant accuracy.



11

So far we have seen some of the virtues of the model.
However, it does also have its shortcomings. As men-
tioned, this is a cellular automata model, so both time
and load are discrete magnitudes. The discrete time
together with the separation of temporal scales makes
it impossible to establish a chronological order within
an aftershock series. On the other hand, the discrete
geometric structure of the hierarchical tree, c, being a
constant integer, would make the representation of non-
integer magnitudes difficult.

An important ingredient in most models of seismicity
is heterogeneity. Heterogeneity has been introduced in
models in countless ways, affecting all possible param-
eters, variables or even “constants” of the models. In
this sense the HBM, as presented here, is highly homo-

geneous: (i) all faults located at the same level have the
same size; (ii) each fault can generate earthquakes of one
specific size; (iii) all faults are directly connected to c
other faults, c being a constant in each simulation; (iv) all
boxes (faults) fail at the same threshold load (when the

occupancy is equal to its capacity); (v) the “stress drop”
is equal in all faults as a box empties completely after
a relaxation, etc. Most of these homogeneity constraints
can be relaxed, either individually or combined. The
results presented in this paper can be used as a bench-
mark against which the non-homogeneous versions of the
model can be assessed.
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