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aDepartment of Theoretical Physics, University of Zaragoza, 50009 Zaragoza, Spain.
bDepartment of Earth Sciences, University of Zaragoza, 50009 Zaragoza, Spain.

cInstitute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50009 Zaragoza, Spain.

Abstract

Several recurrences in the dynamics of an individual species in the one-dimensional Bak-Sneppen model are analysed.
The distributions of the time intervals for stasis and crisis are separately calculated together with the respective hazard
functions for the transition between them. The predictabilities of when a crisis will start and when it will conclude are
evaluated by using one- and two-parameter strategies and the information is represented in standard error diagrams.
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1. Introduction

The idea of self-organized criticality (SOC) intro-
duced in [1] has had a great impact in recent decades
in many different areas such as physics, biology, geo-
sciences and social sciences [2]. Perhaps the most sim-
ple and elegant model of this type is the so called Bak-
Sneppen model (BSM) [3][4][5][6].

The one-dimensional (1-d) BSM is a linear array of N
sites. Each site represents a species, and is assigned ini-
tially a random number uniformly distributed between
0 and 1 called fitness, fi (1 ≤ i ≤ N). At each time
step, n, the site with lowest fitness is identified and the
species at that site is mutated, that is, a new random
number is assigned to this site. The interaction is in-
troduced by also assigning new random numbers to the
two nearest neighboring sites of the mutated site. Iterat-
ing this process, after many updates the set of fi in the
array approaches a stationary distribution where most
of them are bigger than a self-organized critical value
fc = 0.66702. In this stationary state an avalanche starts
when ∀i, fi > fc and for a while there appear sites where
fi < fc. The avalanche ends when all the sites in the sys-
tem again fulfill fi > fc, ∀i.

This model was initially designed to describe the co-
evolution of natural species, but it has also been used
to model earthquakes [7] and the effect on commercial
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companies of introducing market regulations [8]. In this
paper, we examine two new recurrence properties of the
1-dim BSM that can be interpreted within the original
spirit of the evolution of species but which also offer an
appealing perspective when observed from the point of
view of the evolution of a set of companies interacting
in the market.

Let us consider any particular site, i, in the 1-d BSM.
If the element in question has a fitness barrier, fi, under
the critical value fc, it belongs to an avalanche and the
element is said to be in crisis (here we prefer the word
crisis instead of activity). And if its fitness is higher than
the critical value, the element is said to be in stasis. This
is illustrated in Fig. 1.

The time intervals separating subsequent returns to
crisis are called T f irst.The distribution of these wait-
ing time intervals is a power-law function, denoted by
P f irst(n), whose exponent is τ f irst = −1.58 [6]. How-
ever, any interval T f irst is formed by two consecutive
subintervals, the first when the element is in crisis, Tc,
and the second when the element is in stasis, Ts (Fig.
1).

T f irst = Tc + Ts (1)

Each subinterval has its own density distribution, de-
noted here Pc(n) and Ps(n). We propose that the infor-
mation carried by these two probability distributions is
much more interesting than that carried by the combined
P(n).

From the point of view of companies interacting in
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a market, it is more important to know how long a cri-
sis will last than the time at which the next one will
occur for the obvious reason that the duration of the
present crisis will determine their fate, independently of
the time span until the next one. An interval of crisis of
a company can be induced by its own weakness, small
f , or by the weakness of its nearest neighbours in the
context of an economic network. The crisis ends at the
moment when f is bigger than fc, and a stasis interval
starts for that particular company.

In Section 2 we perform simulations for sets of dif-
ferent size, N, to evaluate the mean, standard deviation
and variation coefficient (aperiodicity) of the distribu-
tions of the crisis- and stasis- intervals of a particular
company. Then, for the size N = 256 these two distribu-
tions will be plotted to appreciate their power-law nature
and the corresponding critical exponents will be identi-
fied. The hazard rates for the transition from crisis to
stasis and vice versa will also be calculated. In Section
3, the possibility of predicting these two types of tran-
sitions will be evaluated by means of simple one- and
two-parameter strategies. These results will be graphi-
cally displayed in the so-called error diagrams [9]. Fi-
nally, in Section 4 these results are discussed.

2. Results for the waiting time statistics of stasis and
crisis intervals

In Fig. 2 we have plotted the mean, µ, and the stan-
dard deviation, σ, of the crisis and stasis intervals as a
function of the size of the system, N. For stasis inter-
vals, µ and σ increase with N as a power law with ex-
ponents ≈ 1.1 and ≈ 1.7 respectively. In contrast, in the
crisis intervals, µ and σ are almost constant with values
of around 15 and 180 time units respectively.

More important than µ and σ separately, the ratio σ
µ

known as the coefficient of variation or aperiodicity, α,
is a key parameter in the predictability of the system.
Fig. 3 plots the aperiodicity, α, of the crisis and stasis
intervals as a function of N. Note that whilst α in the
stasis intervals is a strictly increasing function, in the
crisis intervals it is almost constant α ≈ 11 (for N >
256).

Fig. 4 shows the density distribution function of
stasis intervals, Ps(n), for a system N = 256, that is
the probability that a stasis interval ends after n time
steps. This distribution is a power law with an exponent
τs = −1.477 ± 0.004. This graph has been built jux-
taposing a first part (up to n < 50) and a second part
(n > 50). In the first part we have used a linear bin-
ning of the data. In the second, where the amount of
data is scarce, a logarithmic binning has been used. It

is manifest that there is no kink in the curve, as would
be expected, given that the same density of probability
is plotted to the left and to the right of n = 50.

Fig. 4 also shows the density distribution of crisis
intervals, Pc(n) (N = 256), i.e. the probability that an
interval of crisis finishes after n time steps. Note that in
this case the initial points (low n) do not follow a power-
law. The slope of the straight part is τc = −2.060 ±
0.011. In this case a linear binning has been also done
for n < 50 and a logarithmic binning for n > 50.

In Fig. 5 we have plotted the hazard rates for entering
into a crisis, Hs, and the recovery rate for leaving the
crisis, Hc, for a N = 256 system. Both rates refer to the
function

Hk(n) =
Pk(n)∑∞
i=n Pk(i)

(2)

where k refers to crisis (k = c) or stasis (k = s) inter-
vals.

According to Eq. 2, Hk(n) is the conditional proba-
bility that if a crisis/stasis has not started for i < n, it
starts just in the nth time interval. As Pk(n) is a discrete
probability distribution, Hk(n) is dimensionless. Note
that for the crisis→stasis transition (Hc) we prefer the
term recovery instead of hazard for obvious reasons.

Because of the power law behaviour of the distri-
butions of both crisis and stasis intervals Pk(n) ∝ nτk

(τk < 0), a simple calculation can be made for |τk | > 1
and for sufficiently large n:

Hk(n) =
n−|τk |

∑∞
i=n i−|τk | ≈ (3)

≈ n−|τk |

i−|τk |+1

−|τk |+1 |∞n
∝ n−1

which agrees with the numerical results shown in Fig.
5.

3. Using error diagrams to evaluate several strate-
gies for predicting the beginning and end of crisis
intervals

A convenient way to asses the predictability of the
occurrence of certain target events in the context of a
temporal series is to declare alarms at particular times,
maintain them during a certain interval, and then dis-
connect them. The aim of any strategy is that the alarm
is ON when the target events occur in order not to miss
an event, and simultaneously to minimize the connec-
tion time of the alarm. A success in the prediction cor-
responds to a target event that occurs while the alarm
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is ON, and an error in the prediction corresponds to a
target event that occurs while the alarm is OFF. Thus,
the fraction of errors, fe, is the number of missed target
events divided by the total number of target events that
have occurred during a long interval of time, T , while
the fraction of alarm time, fa, is the total time that the
alarm was ON divided by T . A so-called loss function,
L, is then defined to take into account the relative im-
portance, in terms of cost, of fe and fa. Here we will
use L = fe + fa, where failure to predict and alarm time
are equally penalized. Our strategies will be parametric
and thus we will explore the value of the parameters that
minimize L. As each type of strategy produces a mini-
mum for L, denoted by L∗, this method allows them to
be easily compared.

In the Random Guessing Strategy (RGS), the deci-
sion of putting the alarm ON or OFF is made randomly
in each temporal step. RGS leads to L∗ = 1, and there-
fore any strategy for which L∗ > 1 is considered useless.
In some cases, if a specific strategy leads to L∗ > 1, it
is possible to find a complementary strategy for which
L∗ < 1.

A Reference Strategy (RS) [10] consists in waiting n
time units after the occurrence of each target event, set-
ting the alarm, and maintaining it until the occurrence of
the following target event. The RS is simple and does
not require knowledge of the internal mechanisms of the
system. The complementary option to RS, RS, is also
easily implemented: the alarm is connected just after
the occurrence of a target event, and is maintained for
an n-step interval. After these steps, if the target event
has not happened the alarm is removed. In both RS and
RS,the aim is finding the n that minimizes L, that is, they
are one-parameter strategies. In this paper, we have also
studied a two-parameter strategy, denoted by biRS. It
has been specifically designed to try to predict the be-
ginning of a crisis interval. In this new strategy, biRS,
the rules of RS hold, but a new parameter is added: the
alarm will also be connected for a period of time, n′, if
any of the second neighbours of the company of refer-
ence enters into a crisis while our company is in stasis.

A convenient way to graphically display the results of
the application of a strategy is by means of an Error Di-
agram [9], where the fraction of errors fe runs along the
horizontal axis and the fraction of alarm fa runs along
the vertical axis.

In Fig.6 we show the results of applying the
above-mentioned strategies to predict the transition
stasis→crisis for N = 256. As is apparent, the RS is
useless here, whilst RS provides an optimal L∗ = 0.14
result for n = 179. The biparametric strategy biRS is
even better providing L∗ = 0.10 for n = 81 and n′ = 5.

Fig.7 shows the results of predicting the crisis→stasis
transition (i.e, the recovery from a crisis), for N = 256.
Here RS is again useless, while RS provides a signifi-
cant improvement L∗ = 0.47 for n = 15. The results for
biRS are worse than those of RS, L∗ = 0.55 for n = 9
and n′ = 1. (For n′ = 0, the biRS coincides with the
RS).

4. Discussion

We have studied the recurrences of the crisis and sta-
sis intervals in the dynamics of a particular element (a
company), in the 1-dim Bak-Sneppen Model, for differ-
ent array sizes. We have then made specific simulations
for an array of N = 256 sites, and two new critical expo-
nents, τs and τc, have been identified. The considerable
difference between τs and τc implies that in comparison,
the occurrence of long intervals is much more difficult
in crisis than in stasis. This is confirmed in Fig. 2 where
it is apparent that the crisis intervals are much shorter
than the stasis intervals. This behaviour is reinforced as
N becomes larger.

This is understood recalling the dynamics of the BS
model. The fact that a definite site, at a definite time,
is in crisis implies that it is an element of an avalanche
existing in the whole system. During the time that an
avalanche is spatially located near the element of refer-
ence, this element undergoes fluctuations between the
two states (crisis and stasis) and when the avalanche fi-
nally leaves that area, or when it ends, a long stasis in-
terval starts.

With respect to Fig. 5, both rates show a power law
behaviour with an exponent of about −1.This implies
that as the time elapsed since the last crisis (stasis) in-
creases, the probability of occurrence of the next one
decreases.

Regarding the predictability of the recurrences as
shown in Figs. 6 and 7, several facts are clear. The
values α > 1 of the aperiodicity as shown in Fig.3 warn
that for the two types of intervals, the phenomenon of
clustering is present. This is produced by the rapid fluc-
tuations borne by an element when it is affected by a
low-fitness group of an avalanche and explains the poor
performance of the RS and the goodness of the RS. The
positive result of the biRS in predicting stasis→crisis
transitions is due to the fact that it gives (proxy) in-
formation about the approach of the low-fitness group.
This type of information is not available in the simple
RS method. In the crisis→stasis transition, on the other
hand, the biRS is not good because it should not be ex-
pected that when a second neighbour recovers the stasis
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state, our company will do the same immediately after-
wards.

We conclude that the model presented here obviously
does not attempt to describe, for example, a global crisis
in the world economy but only the habitual behaviour
of one company interacting with others in the same sec-
tor: good steady intervals (here denoted by stasis in-
tervals) followed by turbulent intervals that require the
redefining of goals and making in-depth changes (here
denoted by crisis intervals). The dissection made here
to the intervals T f irst, can likewise be performed if the
Bak-Sneppen model is placed not in a regular 1-d lat-
tice, as assumed here, but for instance in 2-d or in a
scale-free network [11] and also, of course, if the rules
of the model are changed as described in [8] .
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Figure 1: Illustration of the different time intervals: T f irst ,Ts and Tc.
f is the fitness of an individual element, and n is the discrete time of
the model.
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Figure 2: Mean and standard deviation of the crisis and stasis intervals
as a function of the size of the system, N.
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Figure 3: Aperiodicity for stasis and crisis intervals as a function of
N.
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Figure 4: Distribution function of stasis (black squares) and crisis
(blue triangles) intervals.(N = 256)
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Figure 5: Hazard rate for entering into a crisis, Hs(n), (black squares)
and Recovery rate for leaving the crisis, Hc(n) (blue triangles).(N =

256) A dotted line with slope -1 is plotted for reference.
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Figure 6: Error diagram to evaluate the predictability of the transition
stasis→crisis N = 256)

5



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fe

f a

 RS
 Random
 RS
 biRS

 

 

Figure 7: Error diagram to evaluate the predictability of the transition
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